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ABSTRACT Worker safety and productivity are crucial for effective job management. Interruptions to an
individual’s work environment and their impact on mental health can have adverse effects. One prospective
instrument for assessing and calculating an individual’s mental state in an interrupted scenario and cognitive
demand levels is the use of physiological computing devices in conjunction with behavioral and subjective
measurements. This study sought to address how to gather and compute data on individuals’ cognitive states
in interrupted work settings through critical analysis. Thirty-three papers were considered after the literature
search and selection procedure. This descriptive study is conducted from three perspectives: parameter
measurement, research design, and data analysis. The variables evaluated were working memory, stress,
emotional state, performance, and resumption lag. The subject recruitment, experimental task design, and
measurement techniques were examined from the standpoint of the experimental design. Data analysis
included computing and cognitive pre-processing. Four future research directions are suggested to address
the shortcomings of the present studies. This study offers suggestions for researchers on experiment planning
and using computing to analyze individuals’ cognitive states during interrupted work scenarios. Additionally,
it offers helpful recommendations for organizing and conducting future research.

INDEX TERMS Interruptions, cognitive task, mental workload, performance, emotion.

I. INTRODUCTION
An interruption is defined as any event that hinders produc-
tivity and is not directly related to the main task [1], provided
that there is an intention to resume and complete the initial
workstream [2]. According to Coraggio [3], an interruption
refers to an external event that hinders an operator from
carrying out their current task and diverts their attention to
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another task. Today’s workplace is rife with interruptions.
In contemporary work environments, there exists an abun-
dance of interruptions that disrupt productivity. The advent
of technological advancements, specifically in the realm of
advanced information and communication technology, has
enabled individuals to engage in multiple tasks concur-
rently [4]. Knowledge workers change their working spheres
due to interruptions every 11.5 minutes, and they work in
10 different spheres daily, as noted byGonzalez andMark [5].
According to Leroy and Glomb, for today’s workers,
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FIGURE 1. Single interruption anatomy.

‘‘complete duties without interruptions have become a lux-
ury.’’ [6] Studies conducted by Wajcman and Rose [7] and
Spira and Feintuch [8] revealed that knowledge workers
encounter an average of 86 interruptions during their work-
day, resulting in a substantial annual cost of $588 billion to
the US economy. Interruptions that are sudden and inevitable
can cause frustration and stress, resulting in a negative impact
on work performance, particularly in terms of accuracy
and time to complete tasks [9], [10]. Interruptions worsen
psychiatric symptoms, increase physical and mental pres-
sure, and reduce productivity [11], [12], [13]. Interruptions
reduce performance quality and negatively affect task perfor-
mance. Moreover, they can give rise to feelings of unease,
irritation, and a tendency to commit errors, hold-ups, and
fluctuations [14], [15], arising mainly from limited cognitive
capacities that are not appropriately allocated among various
tasks [16], [17], [18], [19]. The majority of research has
indicated that interruptions have a negative impact on the
execution of the main task, primarily due to the presence
of a delay in resuming the primary activity following the
completion of a secondary task [20] (as depicted in Figure 1).
However, alternative research argues that interruptions are
advantageous for finishing tasks as they promote simple
activities while having a detrimental impact on more intricate
ones [21]. Recently, a substantial and increasing body of
research has focused on the effects of interruptions on indi-
vidual performance, error handling, and cognitive workload.

Mental workload (MWL) is an important subject in the
field of work systems [22]. MWL refers to the cogni-
tive energy required to complete a task within a limited
timeframe [23]. When an individual finishes a particular
assignment, the burden can either be cognitive or physical,
although they are closely connected and cannot be entirely
distinguished [24]. Operators exert increased effort to accom-
plish challenging and arduous tasks [25]. Subjects experience
boredom and errors when their MWL decreases to an inade-
quate level [26]. An operator overload can occur due to a rise
in the requirement for available resources [27]. The operator’s
daily MWL and lack of rest can lead to health problems
such as chronic stress, burnout, and depression [28], which
may affect their overall well-being and performance [29].
Moreover, improving the MWL of a system operator can
enhance operator contentment, reduce the likelihood of
errors and training costs, and enhance system efficiency and
security [30], [31], [32], [33]. The most widely used meth-
ods for assessing MWL are evaluations of secondary task

performance, measures of primary task performance, physi-
ological techniques, and subjective measures [26], [34], [35].
The majority of experimenters created tools and techniques
based on laboratory research, and then applied their findings
to analyze performance reactions in real-world settings; thus,
field research employing scientific evaluation techniques
may yield more advantageous results than laboratory-based
studies, particularly in the case of MWL, which significantly
affects job performance [36].

One notable characteristic that is exhibited is the concept
of restricted capacity, which refers to the inherent limita-
tion in human beings’ ability to manage a finite amount
of knowledge at any given time. In the realm of cognitive
psychology, Wickens [37], [38] made groundbreaking con-
tributions to the development of the MWL concept, which
elucidates the notion that the cognitive resources required for
job accomplishment are inherently constrained. Advancing
this line of inquiry, Sharples and Megaw have shed light on
the intricate relationship between the availability of cognitive
resources and task performance [39]. It is posited that when
an individual possesses surplus cognitive resources, they may
be capable of undertaking additional tasks (can be referred
as cognitive demand levels) simultaneously; however, as the
demands of these tasks start to surpass the available cog-
nitive resources, the levels of MWL become excessively
burdensome, leading to a precipitous decline in performance.
Importantly, this model also recognizes that the performance
of tasks may deteriorate due to underload, wherein individu-
als fail to allocate sufficient attention to the task at hand.

There is a vast and expanding body of research in the
field since interruptions and their impact on job imple-
mentation, mistake management, and mental burden have
gained attention in recent years. Two reviews have shown
the effects of distraction and interruption, cognitive load, and
workplace stress. Engström et al. [40] reviewed 84 articles
and reports investigating cognitive load’s effects on driv-
ing performance. This review focuses on various aspects of
driving performance, including object and event detection,
lateral control, longitudinal control, and decision-making.
This reviewmainly focused on the effects of cognitive load on
driving performance in controlled settings, such as simulators
or test tracks, and may not fully capture the complexities
of real-world driving conditions. This study did not include
naturalistic driving studies, which could provide insights into
the effects of cognitive load on driving performance in real-
world scenarios. In the review paper, Jean-François Stich
[41] adopted the ‘‘overview of reviews’’ method to integrate
findings from distinct disciplines and themes, leveraging
existing reviews to compare workplace stress in virtual and
traditional offices. This study uses several key reviews to
compare workplace stress in virtual and traditional offices by
selecting review papers. The selected reviews covered various
sources of stress, such as interruptions, workload, communi-
cation, and work-life conflicts. However, the consequences of
interruptions and mental job levels on cognitive capacity in
practical settings have not been thoroughly examined. More
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significantly, specific concerns in previous research continue
to lack systematic answers.

1) How can an experiment be planned to produce
high-quality data for a field study?

2) How canmental burdens be calculated in an interrupted
real-world setting while processing data accurately and
efficiently?

3) What research should be conducted in the future, and
what are the existing research constraints for calculat-
ing the variation in mental capacity and cognitive states
caused by interruptions and cognitive task levels?

This study aimed to provide a systematic asset for deter-
mining the effects of interruptions and mental task levels on
mental strain in a real-world scenario by performing a com-
prehensive study and assessment of significant peer-reviewed
academic journal articles. Interruptions and mental or cog-
nitive workload, research strategy, and data management in
the current research paper were analyzed and summarized.
This study’s deficiencies were recognized to create a guide
for future investigation and immediate actionable engineering
practice.

The remainder of the paper is organized as follows:
Section II briefly describes interruptions, MWL, and cogni-
tive task levels. The methodological structure of this study is
described in Section III. Section IV summarizes these studies
from the perspectives of interruption and MWL selection,
study design, and data management. Section V encapsulates
the current limitations of this study and offers suggestions for
future research. The conclusions are presented in Section VI.

II. STUDY BACKGROUND
A. INTERRUPTIONS
An unexpected delay in behavioral performance, attentional
focus, or both from an ongoing task is referred to as a
job interruption [20]. There are five interruptions based
on Jett and George’s typologies [42] and those of Leroy,
Schmidt, and Madjar [43]: intrusions, distractions, multi-
tasking, breaks, and surprises. Mark, Gonzalez, and Harris
divided interruption into internal and external categories,
defining internal interrupts as ‘‘situations where a person
purposefully pauses a task’’ and external interrupts as ‘‘those
that arise from the events in the environment’’ [44]. Sasan-
gohar, Donmez, Easty, and Trbovich refer to interruption
as a nested interruption when the tertiary task disrupts the
secondary task (which interrupts the primary work). For
instance, a doctor asks an Intensive Care Unit nurse to order
medicines via a computer system (a secondary task) while
preparing the medications (a first or primary task). The nurse
was disturbed by an urgent pump alert (a third or tertiary
task) while completing the drug order [45]. The four types
of interruption studies were (a) objective, (b) subjective, (c)
episodic, and (d) frequency [20].
Objective approach: In this method, the researcher deter-

mines whether an event is interrupted, not the participant.
Observers may directly or indirectly observe disruptions

through video recordings of the task. This method is appro-
priate for examining work interruptions that are externally
visible to the researcher because it does not capture the
participants’ subjective responses. The objective approach
generally helps research how observed task pauses impact
objectively quantifiable outcomes, including task perfor-
mance and resumption, mistakes, and completion times [46].
Subjective approach: This method arrests the individuals’

subjective appraisal of interruptions. This method is suitable
for researching emotional, attitudinal, and stress reactions to
interruptions because it focuses on participants’ assessments
of work interruptions. However, the act of recording the
participants’ subjective experiences might turn into an inter-
ruption. Changes in research design (such as administering
surveys outside of working hours) can solve this problem but
may incur additional expenses (e.g., retrospective bias) [46].
Episodic approach: This strategy assumes that the content

of each interruption varies. Researchers can examine indi-
vidual interruption episodes in laboratory settings or field
investigations using participants’ memories of specific inter-
ruptions. This method enables researchers to concentrate on
the components of a particular task disruption and the charac-
teristics of the jobs, the participants, and the circumstances of
that disruption period influence the results. However, because
of its event-level emphasis, the episodic method is less suited
for examining the cumulative impact of frequent interruptions
experienced in modern workplaces.
Frequency approach: Instead of focusing on the experience

of a specific interruption, this strategy emphasizes the over-
all implications of several interruptions. The presumption
is that interruptions have identical substances and that their
aggregate effect determines their impact. This method aids
in analyzing the overall impact of interruptions spread across
days, weeks, or months. The characteristics of the interrupt-
ing or interrupted activities or the interrupter engaged in
each work disruption are challenging to identify and examine
because of the focus on aggregate impacts [20].

B. MENTAL WORKLOAD
The total extent of cognitive or memory work essential for
executing a job is called MWL, often called the cognitive
load [47]. The quantity of mental energy required to perform
a job in a finite amount of time is known as the MWL [23].
Multiple methods were employed to estimate cognitive work-
load. Various studies have employed a subjective approach.
Difficulty in executing a particular job determines workload.
The National Aeronautics and Space Administration (NASA)
task load index (TLX) technique [48] is a good example of
this strategy. Integrating apparent ratings on the six subscales
and weighting evaluates and quantifies the workload level.
This subjective self-reporting measurement assumes respon-
dents can identify tasks with varying workloads [49].

The behavioral task performance method considers poor
behavioral performance to be a reliable indicator of workload
and a quantifiable result for a specific cognitive activity [37],
[50]. Quantifiable or qualitative outputs show how well an
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individual performed the work. Although MWL and task
performance are related, they do not always match. When
the MWL is optimal, task performance is at its maximum;
however, it may decline when it is too low or too high.
The crucial components of this approach include choosing
appropriate tasks and considering individual variations [49].
The physiological technique incorporates statistics from

the heart rate (HR) [51], HR variability (HRV) [52], galvanic
skin response [53], skin temperature, brain measurements,
and breathing rate to determine the upper and lower limits
of cognitive capacity. However, this information is collected
using intrusive and invasive techniques, such as wearing or
directly attaching sensors, and there is a risk that personal
health data will be exposed [49].

C. COGNITIVE DEMAND LEVELS
The Multiple Resource Model (MRM) [38] expands upon
the concept of limited resources by taking into account var-
ious types of resources and different stages of processing.
This theoretical framework encompasses three dimensions,
which propose that encoded information can be either spa-
tial (visual) or verbal (auditory) in nature (left dimension).
Additionally, the perception and cognition of this informa-
tion can be either spatial or verbal (middle dimension), and
the selected responses can be either spatial (manual) or
verbal (vocal) in nature (right dimension). The successful
completion ofmultiple tasks (cognitive demand levels) simul-
taneously relies on the absence of competition or overlap
in the required resources across these three dimensions. For
instance, engaging in texting while driving can have dis-
astrous consequences because both activities involve visual
encoding, spatial processing, and require a manual response.
On the other hand, driving while having a conversation is
theoretically feasible since it necessitates different resources
across the three dimensions. Therefore, based on the MRM,
such a dual-task scenario is considered viable.

While managing numerous concurrent activities is a
common task in the workplace, varying task complexi-
ties often necessitate different amounts of data processing
resources, resulting in varying degrees of MWL [54]. Ras-
mussen [55] created a prominent taxonomy of various
information-handling tasks to discern the different levels
of individual mental behavior: rule-, skill-, and knowledge-
centered behavior. Performing skill-centered tasks often
entails robust, automated, and seamless signal-response
processes [56]. Propositions stored in long-term memory
are used to predict rule-based behaviors [55]. Rule-based
behavioral cognitive function is slower and less automated
than skill-centered behavior. Knowledge-centered behav-
ior includes new conditions that lack existing solutions.
Under these circumstances, dealing with the problem requires
considerable mental effort and delayed responses. Knowl-
edge tasks often require higher cognitive skills, includ-
ing situational awareness in planning, decision-making,
and problem-solving [57]. As a result, the mental load
becomes overwhelming, and performance may decline

quickly when the task needs to surpass the available cognitive
resources [39]. Diverse behavioral demands can also affect
the cognitive load, and varied cognitive behaviors may be
related to various physiological responses [54].

D. FIELD VS. CONTROLLED STUDIES
Field research has been conducted in both natural and real
environments. Instead of manipulating the factor under study,
observing, studying, and clarifying what already exists is
preferable [58]. The naturalness of the environment was
maintained as the study settings mimicked real-world scenar-
ios. The subjects in the field study may or may not have been
aware they were under observation. Controlled research is an
analysis performed in a situation created specifically for the
study. Laboratory research is a closely regulated experiment
in which the investigator controls the specific element under
investigation to determine whether it manipulates changes
in individuals [59]. In laboratory research, individuals may
be picked more carefully, placed in more controlled envi-
ronments, and are often aware that they are part of a study.
The main benefit of field research is that it can be employed
in numerous real-world scenarios because it represents a
broader range of circumstances and locations than laboratory
studies [60]. Be aware that this benefit may be deceptive; it
may be challenging to determine the generalizability of the
study because of the absence of control and the inability to
describe the field setting precisely.

A code of ethics may occasionally influence the choice
of where to conduct a study [61]. Laboratory investigations
provide better control over irrelevant factors that may oth-
erwise affect the results and provide clearer cues about the
behavior studied [62]. Any change in the participants was
due to the manipulated variables when all uncontrolled fac-
tors were successfully eliminated. This method successfully
established a cause-and-effect connection. However, pru-
dence is advised when considering such a connection. Like
other study methodologies, there are drawbacks to laboratory
research, possibly signifying an artificial setting that affects
the participants’ actions and outcomes [63].

III. RESEARCH METHODOLOGY
The research methodology of this study consists of three
steps (see Figure 2). Two critical academic records were
examined to identify relevant articles. Subsequently, a two-
round assessment procedure eliminates unacceptable results
and establishes the essential evaluation parameters. Finally,
by reading the article’s complete text, the study topics’ char-
acteristics, research designs, and data handling presented in
the analyses were extracted and examined.

A. SEARCH STRATEGY
Two renowned academic research databases, Scopus and
the Web of Science Core Collection (WSC), were thor-
oughly searched for papers published in this literature review
using their titles, abstracts, and keywords. According to the
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FIGURE 2. Research methodology.

preliminary search results these two databases are among the
most prominent academic resources available online regard-
ing journals and current articles. The search scope considers
workload levels, cognitive load, and interruptions because the
present review focuses on how interruptions and cognitive
task levels affect MWL. Therefore, the following keywords
were used for the literature search: (‘‘workload’’ OR ‘‘cog-
nitive load’’ OR ‘‘workload levels’’) AND (‘‘interruptions’’
OR ‘‘work interruptions’’ OR ‘‘interruption’’) in terms of
topic for WSC and terms of article title, abstract, and key-
words for Scopus. The study was refined to account for only
English-language articles available in peer-reviewed journals
between 2016 and 2023 in the engineering and neurosciences
neurology research areas. A total of 181 publications were
found in the initial search; 90 were from Scopus, and the
remaining 91 were from the WSC. The 181 articles from the
original inquiry were reduced to 137 after removing 44 arti-
cles (42 duplicates and 2 reviews).

B. INCLUSION AND EXCLUSION
This systematic review followed the PRISMA guidelines [64]
and study was based on the effects of interruptions and cog-
nitive task levels on the MWL, meaning that the experiment
must include tasks for measuring mental or cognitive load,
and the included studies must consist of interruptions. Studies
that were not entirely related were excluded. Two separate
researchers assessed publications, and the acceptability of the
studywas decided by their agreement. A two-round screening
strategy was used to narrow the pool of included studies.
Titles, keywords, and abstracts were searched in the first
round to remove irrelevant papers. The feasibility of the
remaining documents was determined in the second round by
performing a full-text analysis.

In the initial review (based on title, abstract, and key-
words), 97 irrelevant publications were eliminated from the

FIGURE 3. Number of publications selected for review annually on
Interruption and MWL.

137 selected articles (does not include mental or cognitive
load, and interruptions). After doing full-text analysis, 3 pub-
lications that included interruptions study but did not involve
mental or cognitive workload and 4 papers that did not
concentrate on interruptions (including mental or cognitive
workload) were eliminated during the second round of full-
text review. Finaly, 33 papers were selected for the systematic
review after screening.

C. CONTENT ANALYSIS
The essential elements of the identified studies, such as pub-
lication information (year, journal), research topics (inves-
tigated interruptions and mental or cognitive workload),
research design (subject selection, task design, and measure-
ment process), and statistical handling (data preprocessing
and computing techniques), were obtained and examined by
analyzing the entire manuscript of the articles.

IV. RESULTS
A. DESCRIPTIVE ANALYSIS
Zeigarnik attempted to describe selective memory processes
while executing duties, presenting one of the earliest docu-
mented interruption experiments [65]. The study of interrup-
tions and their impacts gained prominence during the second
half of the 20th century due to catastrophes in safety-critical
fields (e.g., Edwards and Gronlund 1998 [66]; National
Transportation Safety Board 1988 [67]). The study of inter-
ruptions has attracted interest from numerous scientific fields
over the past few decades. According to the literature, mental
psychology and human–computer interfaces are key fields for
studying interruptions. The number of publications selected
for review each year on how interruptions and the intensity of
mental tasks affect cognitive state or workload is depicted in
Figure 3. The 33 papers were selected to span the following
application areas: medical (seven papers), office (six papers),
aviation (four papers), naval (two papers), industry (one
paper), and other (13 papers). A summary of information on
interruptions and their impact on cognitive state taken from
the 33 papers that were evaluated is discussed below. Apart
from the widespread use of technology at work, today’s com-
panies emphasize cooperation and open workspaces, making
interruptions more common [68]. It is hardly surprising that
there have been many studies on interruptions over the last
two decades. However, as researchers concentrate on ideas

54426 VOLUME 12, 2024



N. Koundal et al.: Effect of Interruptions and Cognitive Demand on Mental Workload

FIGURE 4. Research framework.

and results most consistent with their specialties, this study is
dispersed across fields with minimal integration. The number
of relevant studies will increase from 2016 to 2023 due to the
rapid advancement of noninvasive biosignal (physiological)
measuring methods and algorithms. Seven articles published
in 2022 specifically demonstrated the existence of a sizable
and expanding body of research on interruptions and their
impact on the cognitive state in recent years.

The 33 highlighted studies can also be used to develop a
generic research framework to investigate how interruptions
and task levels affect cognitive states in practical environ-
ments (see Figure 4). Therefore, researchers must select
their study topics before planning and conducting experi-
ments. The authors must select sufficiently representative
subjects, choose and use appropriate equipment, execute the
experiment, and capture raw data. Before data processing,
outliers were eliminated after acquiring raw data. Subse-
quently, appropriate computing models with abundant data
are provided for additional analysis. The following section
provides more details on each stage.

B. RESEARCH TOPICS
The three primary areas of interest in the publications under
examination were interruption types, measurement parame-
ters, and environment (see Table 1).

1) INTERRUPTION TYPES
Several disruptions have been examined in the publications
under review. Therefore, they can be classified as internal
or external. Internal (intrinsic) interruptions are caused by
thought, discomfort, weariness, and other factors form within
the individual [69]. Only two articles experienced internal
interruptions during the review process. Gontar et al. inves-
tigated the effect of internal interruptions on cabin crew
personnel performing turnaround duties. Internal interrup-
tions occur less frequently and are more challenging to detect
than external interruptions [70]. The stress effects of four

different forms of observed interruptions were examined by
Fletcher et al. in 2018. Rumination and breaks are internal
disruptions in this study [46]. Other sources (stimuli) outside
the individual such as phone calls, emails, environment, and
other distractions lead to external interruptions [69]. Mental
interruptions (such as reading, math problems, and sentence
and noun repetition) [54], [71], [72], [73], [74], [75] social
interruptions (such as phone calls and discussions) [54],
[71], [76], [77], [78], [79], pop-ups and messages (such as
chat-answering and suggestion messages) [49], [80], [81],
[82], [83], [84], [85], [86], and auditory and verbal disruption
(such as ‘‘Excuse me, could you please help me,’’ giving
feedback and alarm) [46], [72], [87], [88], [89], [90], [91],
[92], [93] were the most frequent types of external inter-
ruptions that were observed. Falkland et al. identified an
interruption in their study by verifying a prescription for a 68-
year-old female of an abnormally low dosage of intravenous
Panadol (180 mg) [94]. Falkland et al. regarded participants
completing the NASA-TLX report as an interruption [95].
In the mental rotation task, part of the interruption task in

Lodinger et al., participants indicated whether the alphanu-
meric stimuli were positioned in a regular or mirror-image
direction [96]. Gontar et al. investigated cabin interruptions
and provided a list of the people [70]. The four interconnected
interruptions identified by Andreasson et al. are process-
driven, social, nested, and notification interruptions. The
primary responsibility of the maintenance staff is to exe-
cute planned and scheduled maintenance activities for the
equipment, which constitutes their main task. However, they
frequently face interruptions and are assigned to addressmore
critical issues, known as interruption tasks. Additionally,
they are sometimes called upon to handle urgent warnings,
which are nested interruptions, thereby preventing them from
completing their report and the original maintenance job
described in an emergency work order report [97]. Spatial
and non-spatial visual interruptions are the two visual inter-
ruptions introduced by Borowsky et al.. The spatial task
presented a black screen containing ten white asterisks. The
non-spatial task presented a black screen slightly tinted either
red or blue [98]. The study done by Koundal et al., the impact
of cognitive task levels and nested interruptions on mental
states was assessed [99].

2) MEASURING PARAMETERS
In the reviewed articles, researchers examined mental or cog-
nitive workloads, and with that, they also looked at additional
factors such as task performance, resumption lag, working
memory, emotion, fatigue, and stress. Performance and men-
tal or cognitive workloads have often been investigated across
all parameters. Cognitive states are interdependent [101]. The
total amount of cognitive effort or memory humans require
to execute a task is known as mental or cognitive workload
[47]. The subjects experienced an increased workload when
the condition was interrupted instead of continuous [54].
The number of interruptions increases the workload [76].
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TABLE 1. Research topics in the publications under examination.
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When interruptions occurred at precise breakpoints, partic-
ipants reported a higher mental effort [81]. Participants who
experienced interruptions during the problem identification
phase reported having a heaviermental effort [82]. In the liter-
ature the camera views used in laparoscopic surgery provide
different views of the anatomy and have different cognitive
costs and associated levels of workload. Longer resumption
delays were an outcome of the side view of peg transfer
task, which was also considered mentally demanding [96].
In the interruption situation, the mental effort of nurses was
2.04 times elevated, while patient care tasks were 4.72 times
higher for electronic medical record (EMR) charting [77].
Even small changes (such as displaying alarms on an inte-
grated workstation) can reduce the workload in a complex
work environment such as an operating room, improving
patient safety [91]. Interruptions during multi-robot super-
vision tasks increase the perceived workload, with extrinsic
interruptions having a more negative effect on the workload
than intrinsic interruptions [85]. Contrary to question cues,
visual cues can efficiently decrease theMWL of workers over
the course of learning by encouraging them to focus upon
the regions that contain safety hazards and the mental effort
involved in accurately identifying them. As a result, workers
can find safety hazards easier [102]. Task performance refers
to the efficiency of a participant in completing a task [103].
Students in interrupted situations execute less effectively and
more slowly than in uninterrupted settings [54]. During the
interruption, compared to emergency physicians who used
fewer cues, those who used more cues scored much better in
the simulation test [94]. After interruptions, the participants’
attention was redirected in a different direction due to the
heavy workload, which further impaired their performance
on the core task [87]. Only those individuals who performed
worse on the test were interrupted during the evaluation and
selection phases [82]. In the instant and scheduled modes, the
job efficiency of the skill primary task settings was lower
than that of the cognitive primary task, settings. However,
in a planned manner, there was no distinction between the
skill/mental work set and the skill/skill task set. In the imme-
diate method, the time performance ratio of the main cogni-
tive task sets was noticeably higher than that of the primary
skill task sets [49]. There was a slightly lower deterioration
in the performance of the primary task due to the interrup-
tion of alarm handling with the integrated workstation [91].
Attending to notifications during a complex sensorimotor
task negatively impacts primary task performance, regard-
less of the modality used to present the notification [92].
Task interruption disrupted post-interruption performance
and accuracy, with larger P3 amplitudes and alpha power after
interruption than after suspension [100]. A two-stage warning
system enhanced situation awareness reduced MWL, and
improved takeover performance comparedwith a single-stage
warning system [86].

The Resumption lag is the time between the cessation of
the second job and restarting the primary job [104]. Resump-
tion lags among primary and secondary jobs take longer in

the negotiated mode than in the other modes [49]. Partici-
pants took much longer to revert to their primary jobs, while
interruptions occurred at precise breakpoints [81]. When
interrupted for a prolonged period and utilizing a side view
instead of a top view, the subjects needed considerably more
time to restart the peg transfer job. However, it took less
time to restart the peg transfer activity across trials from both
viewpoints [96]. More time is needed to resume the primary
visual-manual assembly performance after interrupting a
comparable activity [75]. Increased P3 amplitudes and alpha
power in the interruption tasks suggest that the interference
of irrelevant information has a stronger effect on resump-
tion lag [100]. The Memory for Goals theory is a cognitive
model that seeks to explain how goal-directed activity and
memory recall are affected by interruptions affect people’s
ability to execute goal-directed activity and recall informa-
tion. It postulates that performance declines due to a reduction
in memory engagement of the main task relying upon the
working memory process [104]. Chen et al.’s findings show
how suppressing unimportant information influences mem-
ory performance following an interruption [73].

Participants who demonstrated a more vital ability to use
cues also demonstrated less performance loss after interrup-
tions [95]. Interruptions increased the WML, as evidenced
by an increase in theta power [100]. Emotions are cogni-
tive states triggered by neurophysiological shifts; they are
linked differently to ideas, sensations, behavioral reactions,
and levels of pleasure or discomfort [105]. Researchers
have attempted to evaluate emotional status from a multi-
dimensional viewpoint due to the complexity of emotional
states. The valence-arousal-dominance paradigm identifies
three aspects of an individual’s emotional state: a dominance
dimension from being in charge to being ruled by emo-
tions, an arousal component from not being stimulated to
excitement, and a valence dimension from dislike to plea-
sure [106]. Compared to positive material, negative content
elicited less cognitive burden, visual attention, and annoy-
ance [80]. In the problem identification phase, interrupted
participants reported having a more unfavorable attitude
toward interruptions [82]. Fatigue is a reduction in the capa-
bility and effectiveness of mental, physical, or both tasks
caused by an excess of either task [107]. Mental fatigue
after an interruption significantly affected the performance of
key tasks, workload, and resumption lag [71]. Mental stress
is an unreasonable and adverse psychological reaction to
variations in obligations that affect the human nervous sys-
tem [108]. Distractions extend beyond the common variance
described by intrusions, breaks, and disparities to explain a
distinct fraction of the variation in occupational stress [46].
Abdalhadi et al. study the effect of acute stress on decision
making using Function Near Infrared Spectroscopy [109].

3) ENVIRONMENT
The evaluated studies included a range of environmental
settings, including laboratory settings and real-world sce-
narios (in the wild) (see Figure 5). In laboratory research,
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FIGURE 5. Environmental setting of evaluated studies.

factors under investigation are carefully controlled to deter-
mine whether they affect individual characteristics [110].
The experimenter attempted to simulate a natural environ-
ment using various simulation techniques, including the
A320 flight simulator [76] aerodrome control simulator [93],
automated car simulator [72], [92], emergency dispatch sim-
ulator [87], rail control simulator [95], S-CCS microworld
(a simulation of single-ship naval anti-air warfare) [78], and
dynamic position simulator [74]. The laboratory computer
experiments stood out the most during the screening pro-
cess. Research conducted in an actual or realistic world is
known as a ‘‘Real-world study.’’ Rather than changing the
elements under investigation, it seeks to observe, examine,
and elucidate what currently exists [58]. The experimenter
conducted the study in various settings, including the foundry
industry [97], airports [70], hospital emergency rooms [77],
[79], [89], [91], and engineering workplaces [46].

C. EXPERIMENT DESIGN
High-quality raw data are required to evaluate the par-
ticipants’ cognitive states practically. However, measuring
various metrics is frequently problematic because the find-
ings are susceptible to participant errors, irrelevant variables,
and environmental interventions. The participants’ predictive
validity strongly influenced the generalizability of the gener-
ated models and results. Even if these errors and interferences
are unavoidable, the experimental design can be improved to
reduce their impact. In other words, a logical experimental
strategy is necessary to enhance the accuracy of the raw
statistics gathered and used to evaluate participants’ cognitive
states. A good experiment must consider various factors,
including subject assortment, task layout, and measurement
techniques (Table 2).

1) PARTICIPANT SELECTION
Selecting a prominent and representative sample of subjects
is essential to gathering high-quality data [111]. The effects
of individual variations on the findings were eliminated, and
the dependability of the conclusions improved when the par-
ticipant size was sufficiently large. Table 2 shows the number
of subjects analyzed to determine how interruptions affect-
ing participants are depicted. According to Brysbaert [112],

an effect size of d = 0.4 is a reasonable initial estimation
of the minimum effect size that matters in psychological
tests. Therefore, no fewer than 50 participants were required
to compare the two within-participant variables with 80%
power.Moreover, 100, 200, ormore individuals were required
when a between-group variable or interface was added. Since
they were collected under perfect scenarios, these data con-
stituted the absolute minimum for an 80%-powered study
within the restriction set. The cognitive state of a subject
is more nuanced in the real world. Related data often defy
specific statistical test criteria and require clarification (e.g.,
normal distribution, balanced designs, no extraneous fluctu-
ating sources of noise, and independence of observations).
In addition to the number of subjects, the representation of the
chosen participants is essential for the accuracy of the mea-
sured data. Participants must be carefully chosen to portray
the audience’s vital demographic traits and other features.
A total of 33 studies were assessed, 16 of which selected
employees to participate in the experiments [54], [70], [73],
[76], [79], [80], [83], [84], [88], [89], [90], [91], [93], [94],
[97], [98]. Alternative studies used undergraduate students.

2) EXPERIMENT TASK DESIGN
The critical component of the experimental design is the
experimental task. The required tasks must be as practical
as feasible to reflect worker actions in the natural realm.
Six studies employed research activities from the real world,
six utilized simulation tasks, and fourteen used computer
tasks in the publications under evaluation. Kim et al. con-
ducted a study in the Rochester, Minnesota, and Mayo Clinic
emergency rooms in 2019 [77]. A self-report assessment of
four categories of perceived interruptions was developed and
validated in two populations (working undergraduate stu-
dents and engineers) as part of Fletcher et al.’s research [46].
Walter et al. and Westbrook et al. studied emergency doctors
employed in a teaching hospital in Sydney [79], [89]. In the
study byGontar et al., all turnaround jobs related to short-haul
flights were scheduled on an Airbus of the A320 series [70].
The heavy-duty diesel engine foundry for automobiles, buses,
and trucks served as the site for Andreasson et al., where
regular worker duties were monitored [97]. Some studies
used typical operations, including driving [72], [92], [98],
operating rail equipment [95], flying an A320 [76], and per-
forming navy missions [74], [78] and duplicated them in a
laboratory setting (a simulator) as experiments. Only eight of
the 33 studies reviewed the assigned cognitive levels. Doost
et al. examined the degree of cognitive tasks based on skills,
rules, and knowledge [54]. Chen et al. examined systemmon-
itoring, resource management, and task-level tracking [71].
Midha et al. investigated three levels of reading and writing
assignments [88]. The research under consideration also used
sentence copying as a physical task and mathematical ques-
tion solving as a cognitive activity [49], [100]. Campoe et al.
defined task levels as patient-controlled analgesia (PCA) with
the bolus, basal PCA with the bolus, and continuous PCA
with the bolus [90]. Verb creation and noun repetition were
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TABLE 2. Experiment designs in the publications under examination.
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FIGURE 6. Measuring methods.

cognitive task levels in the automated driving simulation [72].
The Feature Recognition Task, Feature Association Task,
Feature Prioritization Task, Feature Identification Task, and
Feature Discrimination Task were the task levels executed in
the study by Falkland et al. study [94]. Most of the reviewed
papers conducted studies using computer-based activities.

3) MEASUREMENT METHODS
Many measurement techniques have been examined in the
publications under evaluation. These fall into the follow-
ing categories: objective (Physiological and Performance)
and subjective as illustrated in Figure 6. Objective measures
are based on quantifiable criteria, which makes them more
consistent and precise. Whereas subjective measures which
are based on personal opinions or feelings are susceptible
to bias and variability due to intrinsic and extrinsic fac-
tors [113]. The subjective measurement techniques used in
the reviewed articles included the following: NASA-TLX,
expert observations (WOMBAT software, Distributed cog-
nition (DCog) lens), Rating Scale Mental Effort (RSME),
Derogatis and Melisaratos’ Brief Symptom Inventory, Oper-
ation Span Task (OSPAN), modified Emergency Department
Work Index (EDWIN) score, and Situation Awareness Rating
Technique (SART). In addition, heart rate (electrocardiogram
(ECG), Polar S810i), skin conductance (electrodermal activ-
ity (EDA)), task performance (GoPro, time of completion
error, Septris, EXPERTise 2.0, E-Prime 3), electroencephalo-
gram (EEG), eye tracking, iMotion, hierarchical task analysis
(HTA), and functional near-infrared spectroscopy (fNIRS)
were among the several objective methods used in the
reviewed publications.

Only fifteen studies under review used all the matrices
(subjective and objective). EDA and ECG (physiological)
measurements, primary task performance (error and time
completion), and NASA-TLX (subjective) assessments were
employed by Doost et al. [54]. An eye tracker (Tobii X3-120)
(physiological), NASA-TLX (subjective), and a performance
scale were used by Kanaan et al. [87]. Wu et al.’s study
used EEG (Emotive EPOC Neuroheadset) (physiological),
NASA-TLX (subjective), and a performance scale (error and
time) [82]. The performance index (E-Prime 3.0), EEG (64-
channel Neuroscan SynAmps2) (physiological), NASA-TLX

(subjective), and sleepiness/fatigue (Stanford Sleeping Scale
(SSS)) were used by Chen et al. [73]. Midha et al. used fNIRS
(Octamon, ArtinisMedical Systems) (physiological), NASA-
TLX (subjective), and a performance scale (GoPro) [88]. Lee
et al. used an eye tracker (SMI RED 250) (physiological),
NASA-TLX (subjective), and a performance scale [49].

Among the reviewed papers, thirteen used only subjective
measurement methods. Kim et al. used natural goal opera-
tor methods, selection rules language (a simulation model
to measure the impact of interruption on MWL), and the
observation method (two observers followed the participants)
[77]. The RSME for measuring MWL and Situation Aware-
ness Rating Technique (SART) [86] were used by Van der
Kleij et al. [74]. Fletcher et al. used four subject matter experts
(SMEs) (three doctoral candidates and one master’s student)
and Derogatis and Melisaratos’ Brief Symptom Inventory
(physical stress measures) [46]. The workflow time study
(shadowed over 120 h; direct observation study), OSPAN;
working memory capacity and multitasking, WOMBAT soft-
ware (observer used), and workload index (measured using
a modified version of an existing metric) were utilized by
Westbrook et al. andWalter et al. [79], [89]. Gontar et al. used
the NASA-TLX (subjective) and paper-based observation
measure methods in this study [70]. Andreasson et al. used
the DCog lens (observational study); the primary resources
for information collection were contestant observations, pho-
tographs, and field reports [97]. In the performance-based
study, Falkland et al. used ‘‘Septris’’ to assess performance
following an interruption [94]. The Tobii Pro X3 120 Hz eye
tracker (gaze point and eye movements) and iMotions plat-
form (recording face muscles) were used by Lewandowska
et al., [80]. Power et al. used HTA (an objective approach
to determining breakpoints) and GoPro HERO7 Black (to
record the computer screen and keyboard) [81].

D. DATA PRE-PROCESSING
Gathering high-quality data from wearable devices perform-
ing real-world activities is complex because of external
hardware artifacts, internal signal artifacts from eye move-
ments and flickering, and muscle movements caused by
physically challenging duties [114], [115]. Before calculat-
ing the participants’ cognitive levels, high-quality data must
be obtained by eliminating artifacts through adequate pre-
processing [101]. The extrinsic artifacts were eliminated
using filtering techniques. In particular, a notch filter (60 Hz)
was employed to eliminate electrode wire noise and essential
artifacts. Another name for a notch filter is a band reject
filter or band stop filter. These filters let signals above and
below the stop band frequency range through while rejecting
signals in the band. For instance, eye blinking, movement,
and muscle motion were dislodged using independent com-
ponent analysis (ICA) and a low-pass filter (cutoff 65 Hz) to
eliminate motion artifacts and information aliasing. ICA aims
to decompose the recorded EEG signals into a set of statis-
tically independent components, each of which is presumed
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to correspond to the activity of different brain sources. The
fundamental assumption behind ICA is that the EEG sig-
nals recorded at different scalp electrodes represent linear
mixtures of the underlying neural activities originating from
various brain regions. A high-pass filter (cutoff > 0.5 Hz)
was used to eliminate artifacts from gradual signal changes,
sweat, and electrode drifts [73], [76], [82], [100]. The data
were downsampled to 256 Hz for further calculations [72],
[84]. The interquartile range [76] and wavelet filtering [73],
[88] were used to remove muscular and motion artifacts.
Wavelet filter operates based on the principles of wavelet
analysis, which involves decomposing a signal into its con-
stituent frequency components at different scales. Wavelet
filters can effectively remove noise from signals by exploiting
the differences in frequency content between the signal and
the noise. The signal is decomposed into wavelet coefficients
representing various frequency bands, and then a threshold-
ing technique is applied to remove coefficients associated
with noise. Gratton and Coles’ ocular correction was used to
compensate for eye movements [72], [84], and Goldberg and
Kotval used a fixation algorithm for blinks [78], [84], [87].
A one-dimensional data interpolation method for a uniform
sampling rate and a single imputation method for filling in
missing data were also used [49]. Cohen’s kappa was used to
divide the data into 1 second [89]. Cohen’s kappa is widely
used in various fields, including psychology, medicine, and
machine learning, to assess the reliability and agreement
between raters or classification systems, particularly when
dealing with categorical data or nominal variables. It provides
a more robust measure of agreement than simple percent
agreement, especially when dealing with imbalanced datasets
or when chance agreement is a concern. Homer2 was used to
process raw fNIRS data [88]. Homer2 is a software package
widely used in the field of fNIRS data analysis. It provides a
comprehensive set of tools for preprocessing, analyzing, and
visualizing fNIRS data. Homer2 offers various preprocess-
ing functions to clean and prepare fNIRS data for analysis.
This includes procedures formotion artifact correction, signal
filtering, and baseline correction. It also provides tools for
conducting statistical analyses on fNIRS data, such as general
linear model analysis, correlation analysis, and group-level
statistics. These analyses help researchers identify significant
changes in brain activity in response to experimental condi-
tions or stimuli.

E. COMPUTATION MODELS
Importance was assessed to ascertain whether there were
meaningful variations between the control and experimen-
tal groups. Numerous significance test techniques, including
the Kruskal-Wallis test, Analysis of the variance (ANOVA)
test [80], k-means cluster test [94], [95], Mann-Whitney
inverted U-test [83], emotion analysis (facial actions coding
system) [80], time analysis [77], confirmatory factor anal-
ysis [46], bivariate correlation [70], Wilcoxon signed-rank
test [87], and paired sample t-test, have been applied to ana-
lyze participants’ mental status and performance calculation.

A one-way ANOVA was utilized to analyze the difference
wave (novel standard, expressed in µV) [72], examine the
difference in perceptions of the interruptions that occurred
in different phases, and examine whether there was a differ-
ence in overall workload across the four conditions [82], test
whether there were significant differences in brain activity
between the easy, medium, and hard difficulty reading and
writing tasks [88], determine the relationship between driving
experience and cue utilization [95], compare nurse frustration
(NASA-TLX Subscale 6) across the three interruption condi-
tions, compare the total task completion times, and compare
full cognitive workload scores for the NASA-TLX across
the three interruption conditions [90]. A two-way repeated
ANOVA was used to evaluate the impacts of the task per-
formance condition and task cognitive level on dependent
variables; [54] task performance time on the system dia-
logue messages; [83] find interactions among camera view,
rotation angle, and interruption duration; [96] ascertain the
impacts of influences on dependent variables [74], performed
for subjects’ answers to the NASA-TLX questionnaire; and
determine [49] the relationship between the interruptionman-
agement system andworkload [84].Mixed repeatedmeasures
ANOVA was used to examine whether differences in cue
utilization were associated with differences in Septris scores
before and after the interruption [94], to explore the inter-
action effects between the interruption phase (before the
interruption, after interruption) and workload (low, high)
[87], and to examine whether differences in cue utilization
were associated with differences in response latencies before
and after disruption in the train control simulation [95].

The paired sample t-test was used to analyze the following:
variations in time spent attending to interruptions due to the
order of presentation [81], Stanford Sleepiness Scale [73]
score, pupil diameter between different conditions [78],
effect of interruptions across conditions on post-interruption
time per layer [75], and resumption lag difference between
the IMS and random conditions [84]. Statistical analysis
was performed using IBM SPSS version SAS V.9.4 and
R software. The eye-tracking analysis models used were
MATLAB (eye-tracking metrics) [87] and ClearView [78].
The different cognitive signal analysis models used were
the BrainVision Analyzer 2.1 [72], Fast Fourier transforma-
tion [82], EEGLAB toolbox ofMATLABR2020a [73], [100],
Modified Beer-Lambert Law (fNIRS) [88], and machine
learning [76].

F. EFFECT OF INTERRUPTIONS
Result outcomes of the interruptions effect on the cognitive
states and measuring methods evaluated from the articles
under review are illustrated in Table 3. Doost et al observed
that social media interruptions had a significant impact onHR
and skin conductance levels, indicating increased MWL and
stress, as well as decreased performance in knowledge-based
tasks when interrupted by social media [54]. The Functional
Resonance Analysis Method designed scenarios showed that
the models’ capability for task transfer was demonstrated
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through the results, which revealed that the detectedworkload
increased with interruptions; in addition, the convolutional
neural network model demonstrated high sensitivity and
specificity in workload detection during n-back-test evalu-
ations, suggesting its ability to generalize across different
subjects and transfer tasks to new environments [76]. Inter-
ruptions at fine breakpoints resulted in longer resumption lags
and higher MWL compared to coarse breakpoints, indicating
that the disruptiveness of an interruption is tied to the point
within the task hierarchy where it occurs [81]. Participants
experienced a greater decline in primary task performance
due to interruptions under high workload conditions com-
pared to low workload conditions, as evidenced by decreased
scanpath length per second and mean saccade amplitude; this
effect was not observed in participants with low workload,
indicating a more focused but narrower visual search strat-
egy in high workload scenarios. Participants reported better
performance under low workload conditions based on the
Performance subscale of the NASA-TLX [87].
Participants who were interrupted during the evaluation-

and-selection phase had worse task performance, while inter-
ruptions during the problem-identification phase resulted
in increased MWL and negative perceptions of interrup-
tions. Interruptions during the alternative-development phase
caused changes in arousal and valence, and EEG mea-
sures showed that interruptions affected MWL and emo-
tional states, particularly in the frontal lobes’ theta band.
Despite poorer performance, participants interrupted during
the evaluation-and-selection phase still had positive feelings
and confidence towards interruptions, suggesting a discon-
nect between subjective experiences and actual performance
impact [82]. Interruptions were found to increase alpha
activity and P300 amplitude, indicating improved inhibitory
control and attentional reallocation, as well as increased theta
power and a speeding-up effect post-interruption, although
fatigue negatively affected cognitive abilities and worsened
the impact of interruption on working memory and behav-
ioral performance; moreover, interruptions were shown to
impose a higher cognitive burden compared to suspension
and baseline tasks [73]. Interruptions during tasks were found
to cause noticeable changes in MWL, as indicated by sig-
nificant differences in oxygenated hemoglobin (O2Hb) and
deoxygenated hemoglobin (HHb) levels, however, there was
no significant difference in brain activity detected by fNIRS,
highlighting a discrepancy between subjective and objec-
tive assessments of workload during writing tasks [88]. The
length of interruptions significantly affects task resumption,
with shorter interruptions resulting in quicker resumption; the
side view resulted in longer resumption times andwas rated as
higher in mental demand, aligning with subjective workload
ratings; participants perceived better performance with the
top view [96].

Participants exhibited more dilated pupils in cognitive
primary task sets compared to skill primary task sets, sug-
gesting higher cognitive workload in the former. Participants
reported (NASA-TLX) the highest subjective workload in the

immediate interruption mode and the lowest in the negotiated
mode [49]. The study revealed that an increase in interrup-
tions led to a significant increase in completion time for
nurses using PCA pumps, and although there was a positive
correlation between interruptions and cognitive workload,
the results were not statistically significant due to limited
sample size and data variability; furthermore, the study found
that post-interruption errors resulted in narcotic overdosing,
a serious concern for patient safety, and familiarity with the
PCA pump did not reduce the likelihood of errors [90]. Par-
ticipants’ eye movements revealing that visual interruptions
negatively impacted the ability to anticipate hazards. NASA-
TLX scale showed that higher MWL and effort were reported
by participants in the visual interruption conditions. Spatial
and non-spatial task conditions resulted in a higher number
of glances needed to identify the hazard compared to the
gray-screen condition [98]. EEG data revealed a significant
increase in P2 and P3 amplitudes after interruptions during
the 2-back task, suggesting enhanced cognitive processing
to reestablish task goals. There was an observed increase
in theta and alpha power spectra post-interruption, which
may reflect the cognitive demands associated with reorient-
ing attention and re-engaging working memory resources.
Participants reported a higher subjective workload following
interruption conditions compared to suspension and baseline
conditions [100].

A significant relationship was found in the 2-Way ANOVA
between the number of robots and the percentage of faults
reported, indicating that as the number of robots increased,
performance decreased; participants consistently reported
a higher perceived workload during extrinsic interruptions
regardless of the number of robots being monitored [85].
Chen et al. discovered that interruptions have a greater neg-
ative effect on performance when tasks are complex, and
mental fatigue worsens the negative impact of interruptions
by affecting primary task performance, subjective workload,
and resumption lag. Additionally, resuming complex tasks
requires more time due to the increased cognitive load [71].
The duration of the interruption task and the resumption lag
were positively correlated with the subjective workload upon
resumption for older participants, implying that interrup-
tions exacerbate the mental load during task switching [83].
The simulation results revealed that interruptions signifi-
cantly increased nurses’ MWL, with 2.04 times increase
during patient care activities and 4.72 times increase dur-
ing EMR charting [77]. The results indicated that change
detection support is beneficial in recovering situation aware-
ness after an interruption, but it also increased workload in
non-interrupted conditions, suggesting that continuous sup-
port may not always be advantageous [74]. The subjective
experience of interruptions has a significant impact on an
individual’s stress levels, supporting the theory that percep-
tion of a stressor is a more proximal predictor of stress
outcomes than the objective stimulus [46].
Working memory capacity was found to have a protective

effect against errors, with a 10-point increase on the OSPAN

54434 VOLUME 12, 2024



N. Koundal et al.: Effect of Interruptions and Cognitive Demand on Mental Workload

TABLE 3. Effect of interruptions in the publications under examination.

resulting in a 19% decrease in prescribing errors; clinical
error rates increased with patient age and physician age, but
decreased with doctor seniority, and resident medical officers

had the highest error rate compared to consultants; junior
doctors had lower rates of legal procedural errors compared
to senior colleagues, and a 10-point increase in OSPAN
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performance led to a 19% reduction in legal procedural
error rate [89]. A high frequency of disruptions that pilots
must manage was observed, with an average of 7.9 inter-
ruptions per pilot per turn-around, suggesting a substantial
volume of interruptions; the relationship between interrup-
tions and operator workload accounted for 11.3% of its
variance, but factors like time pressure, weather conditions,
and non-routine events increased the variance explained
in operator workload significantly [70]. Interruptions were
found to significantly affect the distributed workload within
the socio-technical system, impacting the overall production
performance at the casting line [97]. Özdemir et al. found
positive correlations between the number of aircraft, total
time, exercise duration, and instruction count with many of
the task load indexes of pseudo-pilots, indicating that an
increase in these factors leads to an increase in workload. The
study successfully identified the number of aircraft, air traffic
control trainee performance, and the interruption duration
as the key factors affecting the overall workload of pseudo-
pilots [93]. The negative content received more attention,
and had less mental effort compared to positive content,
as detected by the iMotions Facial Expression Analysis Mod-
ule, which showed significant emotional response differences
such as greater anger, sadness, and contempt for negative
pictures and higher levels of joy and surprise for positive pic-
tures [80]. The frontal P3 (fP3) neurophysiological response
was significantly decreased during automated driving with
additional cognitive load, indicating reduced susceptibility
to auditory stimuli, regardless of the difficulty level of the
cognitive task [72]. The potential increase in productivity
resulting from interruptions in assembly operations due to
cognitive arousal was not directly measured in terms of error
rates or time metrics [75]. The notifications, regardless of
how they were presented, had a detrimental effect on the per-
formance of the main task, with visual notifications causing
more distraction than audio notifications [92].
The IMS accurately identified periods of high workload

62.2% of the time and low workload 37.8% of the time, even
with a 1-second delay in pupil dilation response, indicat-
ing its ability to detect brief decreases in pupil size during
high workload moments and strategically time interruptions
based on real-time workload assessment through pupil dila-
tion [84]. The cognitive load associated with task resumption
was reduced when participants received a warning before the
interruption, as indicated by pupil diameter measurements
taken before the first post-interruption decision [78]. The uti-
lization of a two-stage warning system resulted in a decrease
in mental strain and an improvement in situation awareness
compared to a single-stage system, indicating that the more
complex warning system may better prepare individuals for
the takeover task [86]. The physicians with higher cue uti-
lization scores demonstrated significantly better performance
on the simulation task after an interruption, compared to
their lower cue utilization counterparts [94]. Participants who
made better use of cues were able to perform consistently
even when interrupted, while those who did not make good

use of cues experienced longer response times and more
errors, and also reported feeling a higher workload [95]. The
positive effects of communicative prompts, such as timely
information transfer and advice provision, suggest that while
they contribute to cognitive load, they also play a crucial
role in workload management and patient treatment [79]. The
use of an integrated workstation for displaying alarms may
enhance patient safety by reducing workload and minimizing
errors in the operating room, provided that the alarm system
design is further optimized [91].

V. FURTHER DISCUSSION
A. IMPLICATIONS
Human cognitive capacity is important because safety and
efficiency in the workplace are highly regarded. Therefore,
it is essential to precisely measure and calculate workers’
cognitive conditions to improve job management. Self-
reported questionnaires have been extensively used to mea-
sure employees’ cognitive health; however, occasionally, they
cannot provide accessible, unbiased, and accurate findings.
In interrupted work situations, employees’ cognitive states
are anticipated to be computed precisely and objectively
due to improvements in wearable physiological monitoring
devices and related calculation algorithms [88]. The ability
of physiological equipment to calculate the distinct cognitive
states of employees under varied job cognitive levels has been
demonstrated in research articles. The analysis supports using
physiological measuring equipment to determine workers’
cognitive conditions in an interrupted situation.

This study evaluated tension, exhaustion, emotion, work-
ing memory performance, task performance, and resuming
lag with MWL in interrupted work settings. The investi-
gator should choose subjects with an adequate sample size
and generalizability while planning an experiment, and they
should receive proper pre-experiment instructions. fNIRS,
a non-invasive and movement-friendly brain scanner, is a
potential method for measuring brain activity [88]. fNIRS
uses near-infrared light to track changes in blood oxygenation
in the brain. Neurovascular coupling can be used to evalu-
ate cognitive performance when active brain areas require
more blood flow to fulfill their higher energy needs. Task
design must consider the accuracy and resemblance of the
data to the actual job tasks. Sometimes, it may be help-
ful to use virtual reality and augmented reality to create
hazardous or other activities that cannot be conducted in
a lab. Several tools can be used to identify physiological
parameters, including self-reported surveys, reaction times,
and perception task precision. Before conducting data anal-
ysis, improving the raw data quality by using a bandpass
filter, eliminating outliers, data downsampling, and ICA is
possible. In addition, statistical and machine learning models
perform well when computing employee cognitive states in
interrupted real-world work environments.

Simulating the impact of interruptions and job complexity
on cognitive states has three key benefits:
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1. Cognitive activity can bemeasured directly using phys-
iological equipment. The most direct measurement
techniques are voltage fluctuations recorded by the
EEG and blood hemoglobin variations identified by
fNIRS. Although this process is not fully understood,
the EEG and fNIRS signal patterns have been exten-
sively studied and can be predicted accurately.

2. Physiological tools make it possible to track the evo-
lution of cognitive processes. Most cognitive processes
occur in consecutive sequences across timescales rang-
ing from a few seconds to milliseconds.

3. The physiological device’s signal contains more
detailed information because it includes many dimen-
sions, such as magnitude, frequency, power, and phase.

Two or more physiological tools, such as EEG and eye track-
ing, can be used concurrently to gather additional cognitive
data. This rich information simplifies the construction and
exercise of numerous computational models [116].

An experiment design framework was built to investigate
the effects of interruptions and cognitive task levels onmental
status. Some tasks, particularly those with high workloads,
are unacceptable toworkers with impaired cognitive function.
Real-time cognitive status monitoring and identification of
workers with poor mental health are possible using phys-
iological methods. Managers can alter their work to avoid
accidents and underperformance. In addition, prior research
has shown that the type of interruption, task level, and
work environment are all directly connected to the cognitive
conditions of workers [54], [73], [80], [88]. Physiological
monitoring tools can provide unbiased evaluations of these
working circumstances and useful guidelines for improving
job management.

B. LIMITATIONS
Because studies on the effects of interruptions and cognitive
task levels on mental status using physiological measuring
equipment are still in their early stages, important limita-
tions of existing studies must be addressed. These restrictions
include ambiguity in the study question, poor design of the
experiments, the use of subpar data processing techniques,
and a lack of sufficient computer capacity. The following
describes these details:

1) Different approaches have been used to compute the
various characteristics of employees affected by job
interruptions, such as working memory performance,
MWL, emotions, resumption lags, performance, stress,
and fatigue. Nevertheless, employees’ cognitive pro-
cesses are complicated and impacted by various inter-
nal and external stimuli (e.g., interruption type, task
level, and working environment). There is much con-
nectivity among these cognitive states. However, earlier
research did not sufficiently explain the problem and
offered a framework for computing workers’ mental
states. How do these characteristics affect employee
cognitive processes? How do the related cognitive

states interact with one another? However, these ques-
tions remain to be answered.

2) Measuring the cognitive status of workers can greatly
benefit from various computational approaches (both
subjective and objective). However, their practical
applicability may be questioned if real-world events
cannot be accurately replicated. However, the experi-
mental design used in this study had several limitations.
First, most current research enrolls only undergradu-
ates with small subject populations. They did not check
whether the findings and conclusions were appropriate
for the workers. In addition, many researchers have
focused on sanitized activities, such as computer-based
simulations. Consequently, the experiment lasted only
for a short time. The atmosphere in a lab is quite
different from that at work. Such study designs cannot
replicate the problematic, diverse, and demanding labor
that employees regularly perform, which affects the
accuracy of the computed findings.

3) An effective preprocessing approach for physiological
devices was employed in earlier research to obtain
high-quality data while working in an interrupted envi-
ronment and to eliminate artifacts. It still does not work
well when the scalp sweats significantly and the head
needs to move regularly, which is unavoidable in real-
world activities. Physiological signal pre-processing
techniques are an additional barrier to determin-
ing the cognitive conditions of workers during work
interruptions.

4) Although machine learning algorithms are effective
for analyzing large amounts of data, they still need
to be adequately applied to determine how inter-
ruptions affect workers’ cognitive states. Traditional
machine learning methods cannot be trained indepen-
dently because their effectiveness frequently depends
onmanually created features [117]. Consequently, deep
learning algorithms that can classify and understand
features together have been developed [118], [119].
Deep neural networks can complete various tasks,
including classification, regression, and generation,
using manually derived features as input variables or
directly ingesting raw data [120]. Deep algorithmic
approaches for analyzing and decoding physiological
data have recently gained popularity as a research area.

C. FUTURE RESEARCH RECOMMENDATIONS
The following is a summary of the recommendations for
future studies to fully understand the impact of interruptions
on cognitive states in a real-world environment.

1) It is essential to consider the important variables (e.g.,
interruption type, task level, and working environment)
and how they affect the cognitive state and other param-
eters (MWL, emotions, resumption lag, performance,
stress, fatigue, and working memory performance).
These considerations could offer managers helpful
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guidelines for enhancing working circumstances and
maintaining employees’ cognitive health, necessitating
theoretical and experimental neuroscientific studies.

2) Future research should incorporate more accurate
simulations of real-world events into experiments to
calculate workers’ cognitive states in interrupted work
contexts. To select adequate and representative subjects
for research, the researcher must first address the limi-
tations of selecting participants from prior studies. The
impact of interruptions on individuals should be studied
using physiological, behavioral, and subjective met-
rics. Instead of using streamlined laboratory activities,
experimental tasks and settings should reflect actual
working situations by providing a more compelling and
realistic setting for exploratory experimentation.

3) Future research should concentrate on physiological
measurement device data preprocessing under inter-
rupted work scenarios. Due to the near impossibility of
avoiding head movements and perspiration in workers’
everyday jobs, improved algorithms are required to
lessen their adverse effects on the quality of physiolog-
ical data. This approach can also improve preparedness
for research tasks and everyday activities.

4) Future research should focus on enhancing the pre-
cision and effectiveness of the computing model to
fulfill the demands of real-time supervision of individ-
uals’ mental statuses established using physiological
measurement methods. Numerous deep learning meth-
ods, including convolutional neural networks [121],
[122], recurrent neural networks [123], [124], and
graph neural networks [125], [126], have been used
in EEG-based computations in different disciplines
and have outperformed conventional machine learn-
ing methods in terms of performance. Future research
should consider implementing standard deep learning
techniques to increase model precision and efficacy in
physiological measure-based assessments of employee
cognitive state computations in an interrupted work-
place environment.

VI. CONCLUSION
This manuscript conducted a thorough examination of the
existing literature concerning the effects of interruptions
and mental task intensity on cognitive function, with a spe-
cific focus on the evaluation of cognitive state, experimental
methodologies, and analytical strategies. The incorporated
studies affirmed the prospects of physiological, behavioral,
and subjective techniques to measure various parameters for
workers affected by work interruptions, such as MWL, emo-
tional state, resumption lag, performance, stress, fatigue, and
working memory performance. A good and practical exper-
imental design should consider participant assortment, task
layout, and measurement technique assortment to improve
the characteristics of the data gathered. The dataset was
pre-processed before calculating employees’ cognitive levels
to eliminate the included distortions. The cognitive states of

the workers can then be calculated using data from both con-
ventional statistical approaches and sophisticated machine
learning modes.

Additionally, it identified critical problems with the exper-
imental design (participant selection, task model, and mea-
surement method) and data analysis (pre-processing and
cognitive status computation). The analysis also highlights
areas of research that need to be addressed in future inves-
tigations. Studies on workers’ cognitive status computation
during work interruptions are presented in the current review.
It may be a systematic direction for researchers, particularly
those new to the topic, to understand how to begin work inter-
ruption studies. It offers valuable advice to project managers
for enhancing their work management.

Nevertheless, previous studies have not adequately
explained the connection between cognitive states influ-
enced by internal and external stimuli. Existing experimental
research designs cannot replicate interrupted work sce-
narios. Relevant algorithms cannot address the efficiency
of real-time interrupted scenario monitoring or the vul-
nerability of physiological signal measurements. In the
interrupted work scenario, further research is required for the-
ory development, experimental optimization, and algorithm
development.
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