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ABSTRACT Cloud data warehouse (CDW) platforms have been offered by many cloud service providers
to provide abundant storage and unlimited accessibility service to business users. Sensitive data warehouse
(DW) data consisting of dimension and fact data is typically encrypted before it is outsourced to the cloud.
However, the query over encrypted DW is not practically supported by any analytical query tools. The
Searchable Encryption (SE) technique is palpable for supporting the keyword searches over the encrypted
data. Although many SE schemes have introduced their own unique searching methods based on indexing
structure on top of searchable encryption techniques, there are no schemes that support Boolean expression
queries essential for the search conditions over the DW schema. In this paper, we propose a secure and
verifiable searchable encryption scheme with the support of Boolean expressions for CDW. The technical
construct of the proposed scheme is based on the combination of Partial Homomorphic Encryption (PHE),
B+Tree and Inverted Index, and bitmapping functions to enable privacy-preserving SE with efficient search
performance suitable for encrypted DW. To enhance the scalability without requiring a third party to support
the verification of search results, we employed blockchain and smart contracts to automate authentication,
search index retention, and trapdoor generation. For the evaluation, we conducted comparative experiments
to show that our scheme is more proficient and effective than related works.

INDEX TERMS Cloud data warehouse, searchable encryption, Boolean expressions, homomorphic encryp-
tion, blockchain.

I. INTRODUCTION
Typically, a data warehouse (DW) serves as the repository
for a wide array of sensitive or strategic data, where the
aggregated outcomes are derived from a multidimensional
framework and feature significantly larger data volumes. The
cloud data warehouse (CDW) represents a promising plat-
form that offers high resource resilience and accessibility for
businesses. Since the cloud is honest but curious, data encryp-
tion techniques are generally applied before outsourcing the
data to the cloud. Since the data warehouse is constructed
based onmultidimensional model where multiple dimensions

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

and facts are materialized. One of the common DW mod-
els supported by many online analytical processing (OLAP)
tools is cube-based or multidimensional OLAP(MOLAP).
In MOLAP, DW consists of a number of data cubes, where
each cube represents the pre-computed view of the dimension
and fact data.

To support analytical queries over encrypted DW, the user
needs to make a normal query, while the cube result should
be returned in an encrypted format. Then, authorized users
with a key can decrypt and access the plain query result.
However, this makes it impractical for multiple query results.
Searchable encryption (SE) techniques are viable for support-
ing multiple queries in an efficient manner. SE is a method
in which keywords are extracted from a data cube, encrypted,
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and uploaded to the cloud. Keywords are shared between data
owners and data users in the secure channel. Once a search
query is made, the search function will be performed by
cloud to find a matching keyword from the data user’s request
with the ones stored on the cloud. Some studies [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29] have proposed a solution to support multiple
keyword searches, such as multi-keyword rank searches and
range searches with the search structure of a normal index,
an inverted index, or a Tree index. These works allow users to
input more keywords than the traditional ones, which speeds
up the searching process. Most of the papers in [3], [4], [5],
[6], [10], [11], [12], [13], [15], [16], [17], [22], [24], [26],
and [27] introduced their optimized inverted index to support
multiple keyword searches, where the index is listed and
mapped to each keyword of the encrypted data.

Nevertheless, existing SE schemes are not well applicable
for supporting efficient search over encrypted DW for several
reasons. First, since the cube is constructed based on multiple
dimensions and fact data, the multiple keyword-based SE is
not adequate for the search. The Boolean search connect-
ing multiple keywords from multiple-dimension data binding
with indexing is required. Second, existing SE schemes usu-
ally rely on a particular search structure for indexing and
a collection of documents as the searching object, which
are inefficient to apply to encrypted DW. This is because
DW has complex data types for each dimension, and any
indexing must be adaptable to the various data types within
the warehouse. Finally, most SE solutions allow any users to
perform searches over the outsourced data as long as they
are legitimate users. However, DW is generally used for
supporting decision-making and the search result over certain
sets of encrypted cubes should be limited to the specific group
of users who have the right to make a query. Therefore, the
privacy-preserving SE and indexing structuremust be tailored
to satisfy this requirement.

Regarding the search strategies, tree-based indexing tech-
niques such as B+Tree, Bitmap can handle more complex
queries such as fuzzy words and Boolean expressions. How-
ever, implementing such indexing techniques to support a
large number of encrypted cubes together for a secure and
verifiable search in a CDW setting is non-trivial. Various
scenarios still present potential threats to search permission
and the integrity of search results. For example, unauthorized
individuals may attempt search queries, or search results
could originate from unauthenticated sources or entities lack-
ing proper permission. The privacy-preserving technique
applied for indexing is therefore essential.

In this paper, we have introduced a secure and verifiable
searchable encryption method with the support of Boolean
expressions for encrypted data cubes outsourced in the cloud.
Our proposed SE scheme is based on Partially Homomorphic
Encryption (PHE) to ensure the security of keywords and
three key indexing techniques, including B+Tree, inverted
index, and bitmapping functions, along with. In addition,

we applied blockchain technology to develop and execute
smart contracts for enabling search permission and search
result verification. The contributions of this article are sum-
marized as follows:

1. We proposed a secure and fine-grained cryptographic-
based access control scheme with efficient and verifi-
able searchable encryption for cloud data warehouse.
Our proposed searchable encryption also supports
Boolean expressions in the search query over encrypted
data cubes outsourced in the cloud.

2. We introduced a novel design of indexing techniques
entailing the optimization of search space with the
support of range and hierarchical search based on
B+Tree indexing with the association of user role
structure. In addition, we applied the inverted index
and bitmapping to enable fast search for dynamic key-
word searches and distinct values of the cube data,
respectively.

3. We leveraged blockchain technology and smart con-
tracts to support decentralized and robust user authenti-
cation, efficient indexing and search result verification
of OLAP query, eliminating the need for third-party
involvement in the verification process.

4. We conducted the comparative analysis and experi-
ments to demonstrate the efficiency of our proposed
scheme.

The remaining sections of this paper are organized as fol-
lows: Section II presents related works. Section III describes
the background of materialized view, Paillier encryption,
and blockchain. Section IV presents our proposed scheme.
SectionV describes our proposed cryptographic construction.
Section VI presents security analysis. Section VII discusses
the evaluation and experiments. Section VIII concludes the
paper.

II. RELATED WORK
There are several works that propose the technique of search-
able encryption over encrypted data with the support of
multiple keyword searches in various search structures and
functionalities.
Typically, searchable encryption is based on two encryp-

tion approaches: symmetric and asymmetric encryption. For
symmetric searchable encryption (SSE), symmetric encryp-
tion algorithm such as AES is used to encrypt and decrypt
the search keyword. While SSE has been recognized for its
efficiency and speed, the cost of key management is high if
there are a large number of users. For asymmetric search-
able encryption (ASE), the concept of key pairs is applied
to the keyword in the way that a public key is used for
encryption and a private key is used for decryption. Various
forms of searchable encryption (ASE) have been examined in
the underlying research area. For example, a public encryp-
tion with keyword search (PEKS), utilizes the public key to
encrypt keywords extracted from data [1], [26]. Attribute-
Based Searchable Encryption (ABSE) [6], [13], [14], [15],
[18], [29] involves the assignment of attributes to keyword
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indices. These attributes are then matched with user query
trapdoors to maintain the confidentiality of keywords and the
overall encryption characteristics. Additionally, Ciphertext
Policy Attribute-Based Searchable Encryption (CP-ABE-SE)
is a fine-grained and specialized method that adds an addi-
tional layer of security and facilitates complexmulti-keyword
searches in queries, as used in the scheme [23].

Recent works [5], [22], [27], [36] employed homomorphic
encryption to support SE functions. Specifically, both full
homomorphic encryption (FHE) [27] and partially homomor-
phic encryption (PHE) [5], [22], [36] have been adopted due
to their ability to perform operations directly on encrypted
data, eliminating the need for decryption. In the case where
the basic search operations are needed and efficiency is a
primary concern, PHE is a better choice.

In addition to the cryptographic method used as a core
construct of SE, indexing search structures can be imple-
mented to support efficient search. For instance, the inverted
index is employed in schemes [3], [4], [5], [10], [12], [13],
[15], [16], [17], [22], [24], [26], [27] which provide specific
locations for the search within a dataset. When a user queries
a term, the server promptly references the index, efficiently
locating and retrieving the relevant documents. Basically, the
B+Tree is regarded as the suitable indexing tree for hierarchi-
cal and range-based data types. It has been utilized in several
schemes [9], [14], [25], [26], [28]. It supports fast queries
and dynamic updates, insertion, and deletion, with encrypted
indices being stored at leaf nodes as seen in the scheme [30],
[31]. Another function to support the fast retrieval of indexing
searches is bitmapping. It has been utilized in schemes [32],
[33], [34] that are efficient for databases with limited distinct
values. By transforming data into bit arrays, bitmap indexing
can substantially reduce search costs.

To provide more search capability, there are schemes that
can support both multiple keyword and Boolean expres-
sions [4], [21], [27] which deal with more complexity of the
index structure and search conditions.

In [4], Zheng et al. introduced a system based on the
obfuscating technique and dynamic symmetric searchable
encryption that supports a single keyword with Boolean
queries. The scheme retrieves bitmaps matching the queried
keywords with the chosen anonymous parameter k . The client
then computes the Boolean function on these bitmaps to
determine the documents’ identifiers that satisfy the Boolean
query. In [6], the authors developed encrypted indexes for
keyword sets associated with the stored data, which allow
the cloud service provider (CSP) to perform searches on
encrypted data without ever accessing the plaintext keywords,
thereby ensuring data confidentially and privacy. Similarly,
in [37], the authors did not mention the use of a standard
search index, but they utilized cryptographic methods to
ensure keyword searchability in the lightweight public key
SE for mobile devices. In [21], the authors proposed the
technique of three on-chain indexes: EDindex, BSindex, and
PTindex. The ED index manages the storage of encrypted
data with an inverted index. BSindex is used to support the

calculation of stag and xtoken from the search query before
they are compared with the index storing on the blockchain
executed by smart contracts with PTindex. With this on-chain
search procedure, smart contracts will check whether all
x-tokens exist in the BSindex or not with the comparative
formular. In [27], the authors presented the utilization of Term
Frequency-Inverse Document Frequency (TF-IDF) for the
purpose of arranging pertinent outcomes. They also incorpo-
rated techniques such as locality-sensitive hashing and bloom
filters to facilitate a fuzzy keyword search, in addition to
enhancing the bi-gramme keyword transformation approach.
While this approach supports Boolean expressions, the accu-
racy of search results is lower than that of the systems that
directly support Boolean expressions.

Recently, some SE works [8], [21], [35] integrated
blockchain technology to offer robust search result veri-
fication as well as assist the user authentication process.
Employing blockchain also provides transaction traceability
and tamper resistance properties beneficial for maintaining
trustworthy keyword indices for searchable encryption appli-
cations. In [8], Chen et al. proposed a verifiable searchable
encryption approach that acquires verification components
during trapdoor generation from user queries. This trapdoor is
generated with authentication properties and is subsequently
validated by the blockchain, serving as proof of the hashed
keyword. The utilization of blockchain technology guaran-
tees that search results remain unaltered. In [21], Wang et al.
proposed the SE scheme designed to maintain the integrity
of medical records. This is achieved through the execution of
smart contracts, which also serve the dual role of managing
access control for encrypted data by checking who can access
and share it.

In [35], Rong-Bing et al. proposed the utilization of
blockchain technology for ensuring data integrity. This is
done by creating an immutable ledger and managing search-
able encryption indexes. This approach not only maintained
the confidentiality and privacy of the data, but it also opti-
mized search costs over large volumes of search queries and
data sharing transactions.

Nonetheless, employing a single indexing technique
directly to support searches across a large number of
encrypted data cubes is not feasible. This is due to the
high search space costs and the complexity of multidimen-
sional data cubes. As a result, a comprehensive approach that
combines Boolean multi-keyword searches, restricted user
privilege search spaces, efficient range, and distinct search
structures is promising but poses a real challenge.

Our work aims to apply PHE with a combination of
B+Tree, inverted index, and bitmapping functions while also
integrating blockchain technology. This integration enables
secure, efficient, and verifiable searchable encryption for
encrypted data cubes.

III. PRELIMINARIES
This section describes the background of the materi-
alized views concept which includes the definition of
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multidimensional space and base cube. Then, we briefly
describe the Paillier encryption and blockchain technology.

A. MATERIALIZED VIEWS
In a data warehouse, materialized view (MV) is a
pre-computed view result comprising aggregated and/or
joined data from fact and possibly dimension tables.
In MOLAP, a DW is modelled in a multidimensional space
where multiple dimensions are formed and associated with
the measure attribute. The precomputed view can be cal-
culated from the possible aggregation operations of the
dimensions and measured in a cube.
Definition 1: Multidimensional space: Let � be the space

of all dimensions. For each dimension D,
i there exists a set of

levels, denoted as levels (Di). A dimension is a lattice (H, ≺)
of levels. Each path in the lattice of a dimension hierarchy,
beginning with its least upper bound, and ending with its
greatest lower bound is called a dimension path. For example,
the dimension path [day, week, month, year] is represented as
day≺week≺ month≺ year.
Definition 2: Base Cube
A base cube Cbis a 3-tuple< D, L, R> where

• D= < D1, D2, . . . , Dn, M> is a list of dimensions (Di,
M ∈ �). M is a measure of the cube.

• L =<DL1,DL2,. . . , DLn, ∗ML> is a list of dimension
levels (DLi., ∗ML ∈ 9). ML is the dimension level
of the measure of the cube where the measure level
(∗ML) belongs to a set9. This set represents all possible
measure levels within the data warehouse schema.

• R is a set of cell data formed as a tuple x = (x1, x2, . . . ,
xn, ∗m) where I in [1, . . . , n], xi ∈ dom(DLi) and ∗m ∈
dom(∗ML).

In our model, we assume that materialized view represents all
possible views of the base cube Cb. Each view is computed
from the set of aggregation operations including {sum, avg,
count, max, min, rank(n)}. Each one of the operations results
in a new cube c’ or a materialized view (MV).

B. PAILLIER ENCRYPTION [36]
Paillier Encryption (PE) is the probabilistic asymmetric
algorithm for public key cryptography. In PE, the message
spaceM for the encryption is n. N is a product of two large
prime numbers p and q.

Let L be defined as L(x) = (X–1)/n. For a message
m ∈ n, we denote [m] ∈ n2 to be the encryption of m with
the public key pk. Particularly, Paillier encryption consists
of three algorithms P ={P.KeyGen, P.Enc, P.Dec} which are
defined as follows:

• P.KeyGen(1k): This algorithm is used to generate the
public key. It begins by establishing an RSA modulus
n= pq of k bits where p and q are large primes such that
gcd(pq, (p-1)(q-1)) = 1. Let K = lcm((p-1) (q - 1)) =
1 and pick g ∈ ∗n. The public key is the pair pkp = (n,
g) and the secret is skp = K .

FIGURE 1. Our system model.

• P.Encpkp(m): This algorithm is employed to encrypt a
messagem ∈ n : chooser ∈ and compute [m] = gm∗
rn mod n2 ∈ n2.

• P.Decskp ([m]): To decrypt a ciphertext c = [m], this
algorithm computes m as follows: m = (L(msk )mod n2/
L(gsk ) mod n2) mod n.

C. BLOCKCHAIN
Blockchain technology is an immutable, distributed, trans-
parent, and traceable ledger that records the provenance of
digital data. Its foundation lies in public key encryption and
cryptographic hashing techniques. The digital assets or data
stored within each block maintain their immutability due to
the fact that once a block is finalized, it is hashed and inter-
connected with others in the blockchain network. In a typical
blockchain structure, each block comprises essential ele-
ments, including a cryptographic hash of the preceding block,
a timestamp indicating when the transaction took place,
a nonce value, and the transaction data. On the blockchain,
smart contracts, which are self-runnable programmes can be
deployed and operated on a blockchain network.

IV. OUR PROPOSED SCHEME
In this section, we present the system model, our pro-
posed indexing technique, and the construction of searchable
encryption scheme.

A. SYSTEM MODEL
We proposed a secure and verifiable searchable encryption
for cloud data warehouse. Figure 1 illustrates the system
overview of our proposed scheme.

The system model consists of the following entities.
1. The Private Cloud Service Provider is responsible

for storing the data cube, which is organized using
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MOLAP methodology following the ETL process,
where data is extracted from various sources, trans-
formed, and loaded. The data owners extract keywords
from each data cube (MV) before subjecting them to
encryption via a Paillier cryptographic algorithm. Sub-
sequently, all the encrypted data cubes (Enc_MV) are
transmitted to the proxy server hosted in the public
cloud.

2. Proxy Server is a semi-trusted server located in the
cloud responsible for executing searches and returning
search result indices to the blockchain. Additionally,
it maintains amemory cache for frequently queried data
within a specific timestamp to expedite search retrieval.

3. The Public Cloud Service Provider (Pub_CSP) is
responsible for housing all the components related to
Enc_MV, which is organized in a B+Tree structure to
facilitate rapid searches. Enc_kw, the encrypted key-
words, serves a triple-purpose function: 1) It extends
the leaf nodes of the B+Tree as the parent tree to
enable range and hierarchical searches. 2) It functions
as a database or table for creating an inverted index
for specific keywords. 3) It is used as a large table for
bitmap indexing of distinct keyword values.

4. Blockchain platform serves as the repository for
accessing and searching transaction records. It incorpo-
rates smart contracts that fulfill various roles, including
storing evidence of keywords, validating user permis-
sions, authorizing search queries to locate the index of
Enc_MV related to the keyword and user’s trapdoor,
and conducting integrity checks.

5. Data Users (DUs) perform an OLAP query or search
the keywords to get a particular Enc_MV.

B. OUR PROPOSED B+TREE, INVERTED INDEX, AND
BITMAP INDEXING FOR ENCRYPTED CUBES
Our proposed SE method comprises three combinations of
indexing and search structures: B+tree, inverted index, and
bitmap index. Each of these structures is designed to han-
dle distinct types of data values associated with individual
dimensions and factual data within the cube. To better grasp
the concept of the data cube, Table 1 provides an example
from a bank loan scenario, demonstrating the construction of
multidimensional data.

In the context of the multidimensional data cube, as illus-
trated in Table 1 above, we construct all data cubes using
the B+Tree data structure. In our design, there are 38,000
generated records for all data cubes, and this B+Tree struc-
ture greatly facilitates rapid retrieval, insertion, and deletion
of data. In our design, the structure is associated with user
privileges, where users can only query the cube that aligns
with their role within the system. However, within each data
cube, there can be thousands of records. The implementation
of B+Tree search significantly narrows down the search
space, leading to reduced time consumption when searching
for specific records within a data cube. A sample B+Tree
search structure is depicted in Figure 2 below.

TABLE 1. Example of A bank loan data cube.

FIGURE 2. A sample of B+tree structure.

The B+Tree depicted above has a maximum degree of 3,
and each leaf node corresponds to a unique number of values
in ascending order, connected by linked pointers. Each leaf
node possesses a distinct node key number, which is assigned
in ascending order from the smallest to the largest. A parent
node may share the same unique node key value with one of
its leaf nodes, yet this value essentially serves as an index
number delineating the range of its child nodes. For example,
a parent node with a node key value of 0006 may have child
nodes with key values of 0005 and 0006. It is important to
note that each child node maintains a unique node key value,
ensuring a clear and orderly structure within the system. For
instance, when a user queries for an amount ‘‘x’’ where x is
less than 8 or greater than 2, the result would be returned from
all leaf nodes where its node key value is range from 3 to 7.
Additionally, we integrate three indexing search functions for
each data cube to efficiently retrieve data. These functions
include the B+Tree, which facilitates range or hierarchical
searches, similar to the parent B+Tree used for searching
within a specific cube. The inverted index is employed for
keyword-oriented attributes such as name or campus, and
the bitmapping function supports searches for distinct values.
Figure 3 illustrates the sub-B+Tree, which is one of the three
combined search functions, serving as a subset of each leaf
node of the main B+Tree.

In the initial setup, the parent B+Tree stores an encrypted
data cube at each leaf node, and our proposed three indexing
search functions are integrated for each cube. Consequently,
when a user submits a query to retrieve records from any
data cube, the query is divided into various search functions
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FIGURE 3. B+Tree and Sub-B+Tree.

FIGURE 4. Example of inverted index.

that are embedded at each leaf node of the parent B+Tree
structure. Additionally, we have another search function in
the form of the inverted index, which is illustrated in Figure 4
below.

The inverted index proves valuable for attributes with a
focus on keywords. From Figure 4, before we constructed
the indexing format, we arranged the set of keywords (Set of
KW) associated with 1 ID (Cube ID) per record in a row of an
inverted index table. The Keywords (KwN) of each record can
also be duplicated for a number of records themselves. Then,
we formatted the index of each specific keyword (Keyword)
associated with a list (set of Cube IDs) where a particular key-
word is found in all IDs. For instance, if we have five records
for customer names represented as {ID, LastName, First-
Name} with values {[1, ‘Mary’, ‘Johnson’], [2, ‘Jennifer’,
‘Mary’], [3, ‘Linda’, ‘Jennifer’], [4, ‘Taylor’, ‘Mary’],
[5, ‘Linda’, ‘Johnson’]}, we structure them as follows:
‘Mary’: {‘‘Mary’’: [{1}, {2}, {4}]},
‘Johnson’: {‘‘Johnson’’: [{1}, {5}]},
‘Jennifer’: {‘‘Jennifer’’: [{2}, {3}]},
‘Linda’: {‘‘Linda’’: [{3}, {5}]},
‘Taylor’: {‘‘Taylor’’: [{4}]}

The inverted index structure enables the grouping of mul-
tiple IDs into an index, with a dictionary storing those IDs
that share the same string value, regardless of whether it
pertains to LastName or FirstName. When a user queries for
‘Mary’ and ‘Johnson’, we point to the dictionary index of

FIGURE 5. Bitmapping function.

{‘‘Mary’’: [{1}, {2}, {4}]} and {‘‘Johnson’’: [{1}, {5}]}, and
the result is {‘‘Mary AND Johnson’’: [{1}]} representing the
intersection based on the ‘AND’ operation.

To accommodate limited distinct values with Boolean
operations, we introduce a bitmapping function that also
supports Boolean expression searches. Figure 5 provides an
example of how the bitmapping function operates.

The binary bitmapping function allows for highly efficient
searches of any distinct value. As illustrated in Figure 5, the
result from a user’s query can be quickly identified by map-
ping the bit result to the structured documents. For example,
if the input is Loan_TypeB or C, the bitmap value of each loan
will undergo an OR operation, producing a binary outcome.
This outcome will then be assigned to the index location of
the document according to its ID.

From the above three index searching structures, our pro-
posed system can facilitate the search queries quickly and
effectively because we handle the data types of each record
efficiently, regardless of the query complexity. The user query
will be broken down into 3 phases/functions, starting with
B+Tree to handle the range and hierarchical data, inverted
index for the value of attributes, and bitmapping for distinct
values. The system returns the intersection of the output from
those search functions as the final output.

C. SECURITY MODEL
In this section, we present the securitymodel for our proposed
scheme. The security model defines the nature of the adver-
sary, their capabilities, and the interactions between the data
owner, authorized users, and the adversary within the pro-
posed scheme. This security model is established according
to the following adversarial model.
• Adversary Set: A ⊆ Aall (A is a subset of all possible
adversaries Aall).
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• Adversary Type: A is a computationally bounded, pas-
sive adversary.

• C omputational Bound: The computational capabilities
of Adversary A are bound in a manner preventing them
from solving problems that necessitate both polynomial
space and computational resources

• Active Attacks: A ∩ Active Attacks = 0 (A is limited to
passive attacks and cannot engage in active attacks).

1) SEARCH QUERY MODEL
Adversary’s Capabilities: Adversary A can submit search
queries to the encrypted data and receive corresponding
search results without learning the underlying data.A can also
submit data to the encrypted index.
System Components:
1. Data Owner (DO)
• The data owner encrypts and stores the data using the

Paillier encryption scheme.
• The data owner builds an index for efficient search and

provides authorized users with search capabilities.
For a given keyword and index I:

• DO→(Encrypt)keywordcipher = Paillier(keyword)
• DO→(Index)I(keyword)
2. Authorized Data Users (DUs) have the capability to

perform searches on the encrypted data and retrieve
relevant results without revealing the plaintext data.
These users have a secret key for decryption.

• DU→(Search) Results (keywordcipher, q)
• DU→(decrypt) keywordplain=Paillier−1(keywordcipher)

Security Properties
Confidentiality:
• The searchable encryption scheme guarantees the confi-
dentiality of the data.

• A passive adversary should not be able to learn any
information about the plaintext data from the encrypted
data, index, or search queries.

• Formalized: A plaintext
Search Privacy:
• Search queries should not reveal any information about
the search terms or the data being searched.

• An adversary should not be able to determine which
terms are being searched.

• Formalized: A Info(queries)
Index Privacy:
• The searchable index should not leak information about
the data or the search terms, even when search queries
are made.

• Formalized: A Info(index)
Keyword Privacy:
• The scheme ensures the privacy of keywords used in

search queries.
• Even if an adversary observes multiple search queries

with overlapping keywords, they should not be able to
deduce sensitive information about the data.

TABLE 2. Notation.

V. OUR CRYPTOGRAPHIC CONSTRUCTION
The section presents the details and analyses of the DW-
MBSE construction. To ease of explanation, we define the
notations used in our model as shown in Table 2 below.

Our scheme consists of ten major phases: system setup,
keyword extraction, keyword encryption, data and keyword
structure, user query process, trapdoor generation, search
mechanism, blockchain result verification, user decryption,
and data caching.

A. PHASE1: SYSTEM SETUP
In this phase, various components are set up, including the
generation of public and private keys, a unique user ID for
data user identification, a proof of keyword to be stored
on the blockchain, and the configuration of cache memory
on the proxy server located in the public cloud. While all
cryptographic keys are generated by the Trusted Authority
(TA), the remaining tasks are executed by the private cloud,
with the exception of caching, which ismanaged by the public
cloud. The system setup details are provided in Algorithm 1
as the following pseudo code:

Once the Algorithm 1 is executed, the following system
components are created:

• Public Key and Private Key for Paillier Cryptography:
The public and private keys required for Paillier cryp-
tography are generated and ready for use in the system.

• Empty Dictionary for Proof of Keywords: An empty
dictionary is set up to store proof of keywords. This
dictionary will be used to securely store keywords on
the blockchain.

• Unique ID for Each Data User: A unique identification
(ID) is created for each data user. This ID will help iden-
tify and distinguish individual users within the system.
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Algorithm 1 System Setup
1: systemSetup(()→public_key, private_key,
2: userDatabase, proofOfKeyword, cache){
3: # Choose two large prime numbers randomly
4: p,q← while gcd (pq, (p-1)(q-1)) =1
5: n← p × q
6: λ← lcm(p-1, q-1)
7: g← Random integer in Zn2
8: µ← (L(gλ modn2))−1modn
9: return public key (n,q), private key(λ, µ)

10: public_key, private_key← Paillier_setup()
11: userDatabase← {}
12: for each user do{
13: userDatabase[user.ID]←
14: {‘‘role’’: user.role,
15: ‘‘public_key’’: user.public_key}
16: end for
17: proofOfKeyword← {}
18: cache← {}
19: } end

Algorithm 2 Extract Keywords
1: Extract_keywords(records→ K ){
2: K← {}
3: K.append(records(date[day, month, year]))
4: K.append(records(customer[name, branch,
5: loan_type]))
6: K.append(records(amount[day, month, year]))
7: } end

• Empty Dictionary for Storing Search Result Index:
Another empty dictionary is prepared to store the index
of search results. This will be utilized in the memory
cache on the proxy server to enhance search efficiency.

These components are fundamental to the system’s operation,
enabling secure keyword storage, user identification, and
efficient search result retrieval.

B. PHASE2: KEYWORD EXTRACTION
In this stage, keywords are extracted from each data cube
done in the private cloud. The keywords are divided based
on their value type, representing each dimension of the
multi-dimensional data cube stored in the data warehouse.
The process is detailed in the following pseudo code:

C. PHASE3: KEYWORD ENCRYPTION AND FORWARDING
In this phase, the data owner applied Paillier encryption to
the extracted keywords. The set of keywords, along with
their associated Enc_kw and Enc_MV, is then distributed to
various components: the proof of keyword is forwarded to
the blockchain, and the encrypted keyword (Enc_kw) and
encrypted data cube (Enc_MV) are sent to the proxy server
in the public cloud. The detailed algorithm is presented in
Algorithm 3 as follows:

Algorithm 3 Encrypt and Keywords Forwarding
1: encrypt_and_send_keywords((K , public_key)
2: →Encrypted_keywords, Proofs){
3: E(K )←{}
4: for each keyword in K do
5: encryptedKeyword←
6: Paillier_Encrypted(keyword, public_key)
7: E(K ) )[keyword]←encryptedkeyword
8: proofOfKeyword[keyword]←
9: Hash-SHA256(keyword)

10: end for
11: send_to_cloud(E(K ))
12: send_to_Blockchain(proofOfKeyword)
13: } end

Algorithm 4 Strcture Encrypted Keyworod
1: structure_keyword((E(K ))→Inverted_index,
2: Bitmap_index, B+Tree) {
3: Inverted_index←create_Inverted_index(E(K ))
4: Bitmap_index←create_Bitmap_index(E(K ))
5: B+Tree←create_B+Tree(E(K ))
6: } end

The inclusion of a ‘‘proof of keyword’’ on the blockchain
serves the essential purpose of integrity verification during
the process of returning search results from the proxy to
the blockchain. It ensures that the search results have not
been tampered with or altered in any way, allowing for the
validation of data integrity as it moves between different
components of the system.

D. PHASE4: KEYWORD CONSTRUCT
In this stage, the proxy server constructs the Enc_MV based
on B+Tree, where each leaf node of the B+Tree is extended
to support three additional searching functions for Enc_kw.
The construction process is described in Algorithm 4 as
follows:

This algorithm outlines the process of constructing a
B+Tree structure for Enc_MV and extending each leaf node
to support three different searching functions. These func-
tions are designed to facilitate various search operations on
the encrypted data, enhancing search efficiency and accuracy.

The construction of Enc_MV as a B+Tree with its
node-key-value, along with the creation of three additional
structures (inverted index, bitmapping, and sub B+Tree) as
extensions from the leaf nodes of the parent B+Tree, is a
comprehensive approach to organizing and indexing multi-
dimensional data securely and efficiently. These structures
enhance the ability to search for and retrieve data from
the encrypted data cube while maintaining data privacy and
security.

E. PHASE5: USER QUERY PROCESS
After the system is fully set up, data users are able to submit
search queries to the blockchain. The blockchain will either
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Algorithm 5 Process User Query
1: process_User_Query((userID, query)→
2: (encrypted_search_results or error_message)){
3: if NOT user_Identity_Check(userID,
4: userDatabase) then
5: return ‘‘Unauthorized User’’
6: end if
7: if query IS_EMPTY then
8: return ‘‘Empty Query’’
9: end if

10: trapdoor← generate_Trapdoor (query,
11: public_key)
12: result← search_and_verify (trapdoor)
13: if result IS_NOT_Verified then
14: return ‘‘Verification Failed’’
15: end if
16: return result
17: } end

Algorithm 6 Generate Trapdoor
1: generate_Trapdoor(query,public_key→trapdoor){
2: trapdoor←
3: Paillier_Encrypt(Covert_To_Number(query),
4: public_key)
5: return trapdoor
6: } end

grant or deny permission for the search based on several
criteria, including the validity of the user’s ID, the presence
of a non-empty query, and whether any compromises are
detected during the result verification process. The specifics
of this access control mechanism are outlined in Algorithm 5,
as follows:

From the algorithm above, the process begins with the
data user inputting their userID, which is then verified by
the blockchain to ensure its validity. After successful userID
verification, the user can proceed to enter their search query.
If the search query is empty, it will result in an unauthorized
search query. Once the search query is authenticated and
authorized, the next step involves generating a trapdoor. The
details of trapdoor generation are presented in Algorithm 6.

F. PHASE6: TRAPDOOR GENERATION
This phase involves the generation of a trapdoor by the
blockchain, utilizing the user’s query, and applying crypto-
graphic mechanisms. This trapdoor is then forwarded to the
proxy server to carry out the search. The process is outlined
in the following pseudo code:

G. PHASE7: SEARCHING IN CLOUD
In this phase, the proxy server carries out the search operation
based on the trapdoor received from the blockchain. The
search process involves several steps to enhance efficiency
and accuracy. These steps are as follows:

Algorithm 7 Searching on Cloud
1: search_Cloud((trapdoor, Inverted_index,
2: Bitmap_index, B+Tree)→ combinedResults) {
3: results← {}
4: results[‘‘Inverted’’]← search_Inverted_index
5: (trapdoor, Inverted_index)
6: results[‘‘Bitmap’’]← search_Bitmap_index
7: (trapdoor, Bitmap_index)
8: results[‘‘B+Tree’’]← search_B+Tree (trapdoor,
9: B+Tree)

10: combinedResults←Combine_Results(results)
11: return combinedResults
12: } end

1) Node Key-Value Search of Parent B+Tree: Initially, the
proxy performs a search on the node key-values within
the parent B+Tree. This step narrows down the search
space, improving the efficiency of the search operation.

2) Search via Inverted Index: For each expression within
the query, the proxy utilizes the inverted index to search
for relevant data. This is one of the search functions
supported by the B+Tree structure, allowing for pre-
cise keyword-oriented searches.

3) Search via Bitmapping: The proxy conducts search
through the bitmapping function. This method supports
distinct value searches and Boolean expression-based
searches, providing flexibility in querying.

4) Search via Sub-B+Tree: The proxy also employs the
sub-B+Tree structure as one of the search functions,
utilizing it to locate specific data within the leaf nodes
of the parent B+Tree.

The pseudocode below illustrates the algorithm of our
searching strategy over encrypted data.
Once the index of the search result is obtained, it will be

sent to blockchain to check before forwarding to the data user.

H. PHASE8: BLOCKCHAIN RESULT VERIFICATION
This phase involves the blockchain’s execution to check the
integrity of the search result, relying on the proof of keyword
that has been previously stored on the blockchain. This ver-
ification ensures that the data user receives the search result
from a trusted and untampered source. The detailed algorithm
for this verification process is described as follows:
This algorithm outlines the process of verifying the

integrity of the search result by comparing the provided proof
of the keyword with the one stored on the blockchain. If the
two proofs of keyword match, the search result is considered
trusted; otherwise, it is not trusted. This verification step
ensures that the data user receives reliable and untampered
search results.

I. PHASE9: DECRYPTION
The decryption phase is performed by the data user who
initiated the search query. This phase involves decrypting
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Algorithm 8 Blockchain Result Verification
1: blockchain_Verify((results,
2: proofOfKeyword)→True/Fasle)
3: for each result in results do
4: if NOT proofOfKeyword[result.keyword]
5: = Hash(result.keyword)
6: return False
7: end if
8: end for
9: return True

10: end

Algorithm 9 User Data Retireval and Decryption
1: retireve_And-Decrypt_Data((Encrypted_index,
2: private_key)→Encrypted_Data_Cube) {
3: Decrypted_index←
4: Paillier_Decrypt(Encrypted_index,private_key)
5: Encrypted_Data_Cube←
6: Cloud_index(decrypted_index)
7: return Encrypted_Data_Cube
8: } end

the index of Enc_kw, aiming to achieve backward secu-
rity and prevent any patterns that might allow the cloud
to understand the keyword from the search query. The
decryption algorithm is described as follows: Once the
data user has successfully decrypted the index of Enc_kw,
they can use this decrypted index to directly locate and
retrieve the targeted Enc_MV (encrypted data cube). This
direct access allows the user to obtain the specific data
they were searching for while preserving data privacy and
security.

J. PHASE10: USER DATA RETRIEVAL (FOR CACHING)
This phase involves the collaboration between the proxy and
the blockchain to monitor the frequency of search queries
from a particular user. If the same query is requested more
than three times, the system will store the index of the search
result on the proxy. This caching mechanism aims to avoid
repeating the search process, thereby reducing costs, particu-
larly in terms of time and resource consumption. The details
of this caching process are described in Algorithm 10 as
follows:

Notably, while the system employs caching for impro-
ved efficiency, this caching is set to expire and be removed
after 60 minutes. This time limit ensures that the cached
results do not remain accessible indefinitely, and users
are always working with the most current and secure
data.

VI. SECURITY ANALYSIS
We analyze the security of our proposed scheme based on the
security of Paillier encryption, query verification, secure user
authentication, and backward security.

Algorithm 10 User Data Retrieval
1: retrieve_Data((userID, trapdoor, cache)→
2: Retrieved_data or cache){
3: unique_key←Concatenate(userID, trapdoor)
4: if unique_key IN cache then
5: cache_result← cache[unique_key]
6: if Time_Since(cached_result.timestamp) <

7: 60 minutes then
8: return cache_result.data
9: end if

10: end if
11: result←search_And_Verify (trapdoor)
12: cache[unqiue_key]←{‘‘timestamp’’:
13: Current_Time(), ‘‘data’’: result }
14: return result
15: } end

A. PARTIAL HOMOMORPHIC ENCRYPTION
Let CT be the ciphertext space and PT be the plaintext space.
Let λ be the security parameter.
Definition 3: Decisional Composite Residuality Assump-

tion (DCRA) is computationally infeasible to distinguish
between a random composite residue x and a random com-
posite non-residue ymod n2, where n is a composite number.
CPA-Security: An encryption scheme is CPA-secure if an

adversary, allowed to conduct polynomial a bunch of encryp-
tions of its selection, cannot differentiate the encryption of
one among others.
Theorem 1: Paillier cryptographic scheme is CPA-secure,

given that decisional composite residuality assumption
satisfies.

Proof.
Game 0 (G0)
In this game, an adversary A chooses two distinct messages

dm0, dm1 ∈ PT and distributes them to the challenger C . The
challenger now selects a random bit rb ∈ {1,0} and forwards
the ciphertext CT= Encpk(dmb) back to A. The adversary A
wins if it correctly guesses rb.

WinG0 = |Pr
[
rb′ = rb

]
− 0.5| (1)

Game 1 (G1)
This game is identical to G0 except that the challenger

selects a random element re’ from CT and forwards this to
A instead of re.

WinG1 = |Pr
[
rb′ = rb

]
− 0.5| (2)

Reduction to DCRA
Having an assumption for contradiction that there exists

a polynomial-time adversary A that can differentiate G0from
G1 with the non-negligible advantage e. Then, we construct a
polynomial-time algorithm B that solves the DCRA problem
with advantage at least e.
For this, B would simulate the challenger C for A and use

A′s guess to solve the DCRA problem. If A makes a guess of
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b correctly, B concludes that given instance was a composite
residue, otherwise a composite non-residue.

Thus, we get: |WinG0– WinG1| ≤ AdvDCRA(λ)
If the DCRA problem is hard, then AdvDCRA(λ) is negligi-

ble, making the Paillier encryption scheme CPA-secure:
AdvCPA(Encpk, Decsk, λ) ≤ AdvDCRA(λ)
This sums up the proof that the Paillier encryption scheme

is CPA-secure under the assumption that the Decisional Com-
posite Residuality Assumption (DCRA) holds. Due to the fact
that the proof is relied upon the indistinguishability of Games
0 and 1 and the reduction to the DCRA problem to establish
the security of the scheme. This completes the formal proof
for Paillier encryption.

Moreover, according to [36], x and y are random numbers,
and rn=pq to obtain the ciphertext ct of pt by ct= yptxrnmode
rn2where p and q are two 64-bit large prime numbers for
Paillier algorithm. For an intercepted ciphertext ct, it is not
possible to reverse generation corresponding plaintext pt,
because it is a problem of computing nth residue classes. The
private key is generated according to p and q, which is hard
to crack due to its larger prime factors.

In addition to the generic Paillier cryptographic mech-
anism and the proof of random prime number above, our
algorithm 1 demonstrates the uses of Paillier in which the
inner properties and parameters indicate the strong random
prime number of p and q. p and q are randomly choose from
gcd (pq, (p-1)(q-1)) and we generate the public key (n,g)
and private key (λ, µ). Each property of each key is gen-
erated differently where private key is mathematically more
complex. To decrypt the Paillier encryption, computing nth

residue of operations is a must to break the security strength
for generating the decent private key.

B. QUERY VERIFICATION
• Verifiable Search Request

Our proposed system checks the query from user’s request
based on the algorithm 5 in the system construction. Within
the framework of index search via parent B+Tree, only
authorized users possess knowledge of the B+Tree’s index,
where each unique node key value corresponds to a distinct
data cube. Specifically, individuals serving for the specific
role is assigned to the unique node key value associated with
the leaf node beneath the parent B+Tree. This design ensures
that the confidentiality of other data cubes, as well as diverse
roles or positions, remains secure against unauthorized access
when users execute queries. It is important to note that the
encrypted data cube does not divulge any crucial information
directly to potential attackers. This is attributed to the estab-
lishment of a secure index by the token within the role-based
node key value, situated atop the encryption mechanism of
the token.

• Verifiable Search Result

Our proposed scheme supports the verification of search
results based on the hash proof of keyword which is stored
on the blockchain. Blockchain can verify that the result is

tampered with or attacked. We aim that there is no PPT
adversary can gain information about the data and search
queries. The proof is demonstrated using Real/Ideal simula-
tion paradigm.

Basically, our SE scheme is denoted as BSE-CDW
(Boolean Keyword Searchable Encryption with Verifiability
and Traceability for Cloud Data Warehouse). This scheme is
founded upon the utilization of our B+Tree, inverted index,
and bitmapping search index structures, with PHE serving
as our underlying security mechanism. Suppose Arepresent
a stateful challenger, S denote a stateful simulator, and L
embody a stateful leakage algorithm. These entities are inte-
gral to the assessment of the following probabilistic experi-
ments: RealBSE−CDW(PHE) and of IdealBSE−CDW(PHE). The
BSE-CDW scheme is designed to provide robust security
and efficiency in the realm of Boolean keyword search-
able encryption, with additional features such as verifiability
and traceability tailored for Cloud Data Warehouses. The
RealBSE−CDW(PHE) model reflects the practical execution
of the scheme, while of IdealBSE−CDW(PHE) model serves
as a theoretical benchmark, allowing us to gauge the ideal-
ized performance in a controlled environment. This rigorous
approach ensures a comprehensive evaluation of the scheme’s
security guarantees, verifiability, and traceability features,
contributing to a thorough understanding of its capabilities
in preserving the confidentiality within the cloud data ware-
house context.

In the RealBSE−CDW (PHE) model, a challenger executes
algorithm I within our proposed system to generate the public
and private key security parameters of the PHE. Simultane-
ously, an adversary A selects a data cube or a materialized
viewMV and generates a security index Ialong with a valida-
tor π . Then, they are sent to the challenger C. The challenger
conducts a series of queries, denoted as q, where the number
of queries is a polynomial. For each query, A receives a
token transmitted from the challenger. This token is obtained
through the Trapdoor algorithm, specifically algorithm 6
(PHE(Pub, kw)) → {Tkw}, from the trapdoor generation
algorithm. The search result is then obtained through the
user query process and result verification algorithms (I, Tkw,
tq) → {MVnkv,π tc,πq}. In the final step, A returns a bit,
denoted as b. If b equals 1, the adversary accepts the result;
otherwise, it rejects. This process represents a comprehensive
evaluation of the RealBSE−CDW scheme’s security under the
PHE framework. The challenger’s generation of public and
private keys, the adversary’s selection and validation of a
data cube, and the subsequent query-response interactions
contribute to a robust assessment of the scheme’s resilience
against adversarial attempts. This experimental setup ensures
a thorough examination of the scheme’s effectiveness in
providing secure and efficient Boolean keyword searchable
encryption with verifiability and traceability for cloud data
warehouse.

In the context of IdealBSE−CDW (PHE), an adversary A
selects a data cube MV. In accordance with the leakage
function L, the simulator S generates a security index and a
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verifier using the Setup (1k)→ {Priv1, Pub1, Priv2, Pub2,
PHE parameters} algorithm. This information is then trans-
mitted to adversary A for further evaluation. Aperforms a
series of queries, denoted as q and belonging to the realm of
polynomial numbers.

For each query, the simulator S furnishes A with the token
Tkw and the corresponding validator π for A’s response.
Subsequently, Areturns a bit, denoted as b. Upon receiving
bequaling 1 signifies the adversary’s acknowledgment of the
simulation; otherwise, it results in rejection.

The critical assessment of BSE-CDW’s L-confidentiality
is subject to the existence of a probabilistic polynomial
time simulator S for every probabilistic polynomial time
adversary A.
Theorem 2: If there is a simulator capable of emulating

the actions of an adversary within a polynomial time frame,
we declare that the BSE-CDW scheme is L-confidential.

Proof: We aim to demonstrate the existence of a poly-
nomial time simulator S and a probabilistic polynomial time
adversary A, establishing indistinguishability between their
outputs in both the Real and Ideal scenarios. Initially, S
initiates the simulation by creating a secure index I , randomly
selecting node key pairs, and inserting them into the B+tree.
Simultaneously, S generates a random string π ’ of length |π |
to serve as a verifier.

The proof of keyword is established by hashing tokens
of selected keywords. Each MV undergoes encryption via
a pseudo-random function, linking it to a unique node key
pair value (nkv). The confidentiality of the verifier is secured
through MV encryption and nkv, rendering A incapable of
distinguishing (I’,π ′) from (I,π). Upon Ainitiating a search,
Ssimulates a search token Tkw. Initially, the queried token
Tkwundergoes hashing, verifying its existence based on the
proof of keyword. If the token Tkw queried by A exists
in I’, Srandomly selects a result path and returns it to A.
A is unable to differentiate between a real token Tkwand
a simulated token Tkw. For subsequent queries, if tokens
have been queried before, they remain consistent with their
previous instances or match the initial token in the simula-
tion. Additionally, when Asimulates the update of the token
Tkw, the updated token becomes Tkw’, and the verifier π ′

is set to a random string of the same length as π . For
each query, Arandomly selects a string to simulate a search
token. In the Real game, all tokens undergo encryption via
the pseudo-random function F , preventing the adversary A
from distinguishing whether the simulated token originates
fromRealBSE−CDW(PHE) or IdealBSE−CDW(PHE). This com-
prehensive simulation and encryption strategy ensures the
seamless integration of Real and Ideal scenarios, validating
the indistinguishability of their respective outputs.

C. USER AUTHENTICATION
Authentication serves as the initial security layer in our
proposed scheme for validating user queries. To initiate
the authentication process, the requesting user must input
their designated Personally Identifiable Information (PII),

specifically a personal trusted ID assigned during Phase 1 of
system setup. This personal ID is a 12-bit alphanumeric code,
establishing a foundational security requirement. Following
authentication, the blockchain undertakes a crucial check
to determine if the user’s request is empty. In the event of
an empty query, the request is promptly terminated, and a
record is securely stored on the blockchain network. These
blockchain records represent trusted transactions, encom-
passing both end-to-end network addresses and a timeline for
auditors to conduct thorough audits. The identification of an
empty query is pivotal as it is indicative of potential guessing
attacks, wherein malicious actors attempt to compromise the
authentication system using the ‘‘true equals true’’ method-
ology. Furthermore, this aligns with our commitment to
confidentiality, preventing unauthorized accessibility to all
data or irrelevant information. This necessity for request
verification underscores the importance of maintaining the
integrity of our authentication system, ensuring its resilience
against potential security threats. The subsequent section will
delve into the intricacies of the query verification process.

D. BACKWARD SECURITY
Our proposed scheme achieves backward security in the con-
text of a user’s search query and the handling of encrypted
data cubes. Backward security means that even if an adver-
sary gains access to system records and operations, they
cannot infer or understand sensitive information about data
deletions. This strengthens the overall security of the system.

Our scheme achieves backward security based on the fol-
lowing mechanisms.

(1) User Search Queries: When a user submits a search
query with a keyword (kw), the proxy server may record
all operations related to each encrypted data cube whenever
insertion or deletion of data associated with the keyword
occurs. This means that the system keeps a record of relevant
operations for auditing and tracking purposes.

(2) Proxy’s Limited Knowledge: It’s emphasized that the
proxy server does not have the ability to understand or learn
about the content of data deletions. This is because all the
indexes are encrypted, ensuring that the proxy only sees and
records encrypted data.

(3) Blockchain’s Role: The blockchain plays a role in
facilitating backward security. It maintains an authentication
list of users and imposes certain restrictions on user queries
and decryption processes. These restrictions and authentica-
tion mechanisms are designed to enhance the security of the
system.

The combination of these measures, including the encryp-
tion of indexes, user authentication, and query restrictions,
ensures backward security.

VII. EVALUATION
To evaluate our proposed scheme, we performed the com-
parative analysis by comparing the functional features and
the computation cost of our scheme and three related works
supporting searchable encryption in cloud. In addition, we did
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TABLE 3. Functionality comparison.

the experiments to demonstrate the search performance of our
scheme and related works.

A. FUNCTIONALITY COMPARISON
This section presents a comparison of the features of our pro-
posed system and related works including [4], [8], and [30].
Table 3 presents a comparison between our scheme and these
related works across five distinct functions.

As presented in Table 3, all schemes implemented
lightweight encryption for the extracted keywords. For exam-
ple, scheme [8], [30] utilized symmetric encryption while
scheme [4] and ours relied on partial homomorphic encryp-
tion. For the scope of search operations, only scheme [4] and
ours support multiple keyword searches and Boolean expres-
sions, while scheme [8] and [30] do not support Boolean
expressions. Additionally, it’s important to note that only
the BPVSE scheme [8] and our system utilize blockchain
technology to enhance the authentication and verification
processes for both data users and search results. Lastly, our
scheme uniquely supports proxy search caching, a critical
feature for rapidly retrieving search results, particularly when
there’s a high volume of identical and frequently requested
queries. This feature significantly improves search perfor-
mance, especially when dealing with large volumes of cube
data that are frequently accessed.

B. COMPUTATION COST COMPARISON
This section compares computational cost between our work,
scheme [4], [8], and [30] as presented in Table 4. To evaluate
the cost for computing each property of each scheme, the
following notations are used.
• |A0|: The number of attributes owned by the data owner.
• |AU|: The number of attributes owned by the data user.
• G0: exponentiation and XOR operations in group G0.
• G1: exponentiation in an elliptic curve group.
• Zp: the group {0, 1, . . . , p-1} with multiplication
modulo p.

• L: the number of iterations in searching for inverted
index or/and bitmap index.

• B: the logarithm concerning the number of entries in the
B+Tree.

• Esym: Represents the cost of symmetric encryption.
• |W |: the average number of keywords per document.
• |Q|: the number of keywords in the user’s query.

TABLE 4. Computation cost comparison.

Scheme [4] and our scheme share similar computational
costs, with encryption and associated expenses generally
dependent on the number of attributes and exponentiation in
G0 while schemes [8] and [30] deal with the cost of sym-
metric encryption and decryption. Specifically, scheme [4]
additionally uses multiple XOR operations that correspond
to the number of keywords or attributes. In contrast,
our scheme incorporates partially homomorphic encryption
(PHE), which is considered lightweight compared to fully
homomorphic encryption (FHE). The cost of generating a
trapdoor does not significantly differ across all schemes.
Given the similar encryption costs, there is a slightly higher
computational cost for the trapdoor generation in scheme [8],
where additional verification processes, are involved in gen-
erating the trapdoor. In terms of search costs, only scheme [8]
does not support multiple keywords and Boolean expressions,
making it cost-efficient when dealing with single keywords.
On the other hand, in scheme [30], the search cost is higher
compared to scheme [4] and our scheme, particularly when
handling a larger number of keywords per document, involv-
ing several multiplications in Zp. With regard to search
structures, all schemes, except for scheme [8], implement a
B+Tree index search structure to support multiple keyword
searches. However, only scheme [4] and our scheme offer
support for both multiple keywords and Boolean expressions,
incurring comparable computational costs. Our scheme has a
slightly higher cost than the scheme [4] due to the integration
of three different indexing search functions. Our scheme is
slightly higher than scheme [4] due to our combination of
three different indexing search functions.

C. EXPERIMENTAL EVALUATION
In this section, we conducted experiments to measure the pro-
cessing time for data cube generation, encryption, decryption,
trapdoor generation, search, and query throughput. In addi-
tion, we measured the gas used in executing the smart
contracts.

The implementation is done via Python’s Cryptogra-
phy and its standard libraries modules such as random,
hashlib, csv, os, time, concurrent.futures, multiprocessing,
pickle, threading, and datetime. Additionally, we employed
third-party libraries such as phe [38] for the Paillier crypto-
graphic system, web3 [39] for binding Python language with
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TABLE 5. Time cost of major operations.

TABLE 6. Processing time computation.

Ethereum. We also used machine learning in Python called
Scikit-learn [40] to stimulate the scheme [30]. The experi-
ments were done on an Intel(R) Xeon(R) E-2336 CPU @
2.9GHz and 16 GB of RAM on a server that is running on the
Ubuntu 20.04 Operating System. We employed the Ethereum
network as the blockchain platform for our simulation and
utilized Solidity to develop the smart contracts. The devel-
opment was carried out on Remix, which is a web-based
Integrated Development Environment (IDE) designed for
the Ethereum network. We utilized Ethereum’s smart con-
tracts as it fully utilizes the implementation of decentralized
access control and transparent auditable operations mecha-
nisms. This could allow for fine-grained control over who
can access, modify, or query the data stored in the cloud
data warehouse, reducing reliance on centralized entities for
access management.

• Performance Analysis

We first did the experiment to measure the cost of major
operations, including encryption and decryption time (TC ),
trapdoor gen time (TD), and verification time (TV ) of our
proposed scheme. Table 5 shows the time used for running
these operations. Table 6 presents how the time cost for each
operation is computed.

In this paper, we conducted simulations of our proposed
system to calculate the time required to perform the core
functions of our system, such as keyword and search result
encryption, trapdoor generation, verification, and search
result decryption. As demonstrated in Table 5 , TC represents
the time cost of using Paillier encryption and decryption for
keywords and search results, which consistently takes around
202milliseconds. For encryption and trapdoor generation, the
time cost increases with the number of records n and a random
value TE . In our scheme, TC only is the time taken to perform
decryption, while TD is the time taken to generate a trapdoor
when the user makes a search query. Lastly, the TV is the
time needed to verify the search result based on a hash- proof
comparison.

• Search performance

We did the experiment to compare the search performance of
our scheme, [4], [8], and [30]. For the test, we varied the num-
ber of records contained in the data cube and measured the
time used to complete the search process. In our experiment,
we used Tiny OLAP open-source GitHub [40] to generate the
38,000 records for all data cubes.

FIGURE 6. Cost of search time comparison.

FIGURE 7. System throughput.

Figure 6 presents the search cost produced by these
schemes.

As shown in Figure 6, schemes [8] and [30] displayed
sensitivity to the number of data records, particularly when
the records exceeded 50. In contrast, scheme [4] and our
system provided relatively constant processing times. To be
specific, for data cubes with 500 or more records, our sys-
tem outperforms the other works. At this scale, our system
maintains its superior performance, completing searches in an
average time of 601.37 milliseconds, followed by scheme [4]
at 614.15 milliseconds, scheme [30] at 8,100 milliseconds,
and scheme [8] at 14,841.795 milliseconds. These results
confirm the efficiency of our proposed system in handling
large-scale datasets.
• Throughput Measurement

In our throughput experiment, we investigated how many
concurrent user requests affect the search output rate, as illus-
trated in Figure 7. The x-axis indicates the number of
concurrent search requests, which is associated with the num-
ber of records in each of the 100 data cubes while the y-axis
illustrates the rate of search outputs generated per second.

To assess system throughput, we initially conducted exper-
iments using an Intel Xeon E-2236 processor, with 6 cores
and 12 threads, and a base frequency of 2.9GHz. We exe-
cuted the experiments 20 times and averaged the results for
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graphical representation. The initial results, depicted by the
green line in Figure 7, indicated that the system achieved
its highest throughput in the simulated environment, reach-
ing nearly 184 queries per second (QPS) when the user
request count reached 50. However, beyond 100 concur-
rent requests, the throughput sharply declined to 138 QPS,
attributed to the exhaustive utilization of server resources.
These findings underscored the practical search performance
of our algorithm, capable of supporting various query func-
tionalities, including Boolean expressions and comparative
operators (<, >, =, !=), facilitating efficient range searches
and timeframes. Our implementation leveraged multithread-
ing processing using Python libraries such as threading and
ProcessPoolExecutor, enabling fast concurrent queries and
higher throughput.

To explore the relationship between computational
resources and throughput in handling concurrent requests,
we conducted additional experiments on an AMD Ryzen 9
5900X processor, equipped with 12 cores, 24 threads, and
a base frequency of 3.7 GHz. The results, as depicted in
Figure 7, demonstrated that higher resources such as CPU led
to increased throughput and resource utilization. Specifically,
a server with a 27% increase in CPU and RAM exhibited
a notable rise in throughput ranging from 40% to 70%.
Consequently, data warehouse administrators can evaluate
the required resources from Cloud Service Providers (CSPs)
based on current transaction volumes and projected through-
put demands.

• Processing Cost occurred in Blockchain

Finally, we evaluate the performance of the smart contracts
executed using blockchain technology by means of the gas
cost. In our experiments, we simulated the network gas fees
required by the blockchain to execute smart contracts. These
contracts serve the purpose of authenticating users, creating
trapdoors for individual user queries, and verifying search
results against keyword hashes stored on the blockchain.

In our experiment, we set the gas limitation to 3000000 and
set several criteria for different smart contracts. To facilitate
user authentication, we randomly generated 1,000 users, each
with their own distinct userID and password, and subse-
quently verified their queries. In the verification process,
we made the assumption that there could be as many as
100,000 hashed keywords to be matched against the user’s
query trapdoor. Table 7 shows the estimated gas cost used to
run the smart contracts.

Typically, the gas price denotes the quantity of Ether (ETH)
a user is willing to pay per unit of gas, typically measured in
‘Gwei,’ where 1 Gwei equals 10−9 Eth and 1Gwei equals to
1 billion Wei. The consumption cost in USD is computed as
the product of the gas used and the gas price, representing the
actual cost of a transaction or the execution of a smart con-
tract. Our analysis reveals that the smart contracts incurred
relatively low costs for trapdoor generation and verification
processes, with the exception of authentication and autho-
rization, which involved a substantial gas fee due to multiple

TABLE 7. Blockchain cost query cost (Consider gas price per unit =

0.375USD).

query handling operations. Consequently, the integration of
blockchain into our proposed system did not significantly
impact the overall performance of our scheme. However,
it did enhance the trustworthiness of user requests by ensur-
ing authentication and validation, as well as preserving the
integrity of search results obtained from public clouds. In our
system, a proof of stake consensus is used and it involves
validators instead of miners which address the scalability,
security, and more dynamic decentralized ecosystem.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have presented a flexible, verifiable,
and secure searchable encryption scheme with support
for boolean expression over encrypted data cubes within
a cloud-based data warehouse. Our scheme enjoys both
security and search performance based on the integration
of partial homomorphic encryption, inverted index, and
B+Tree. In addition, we leveraged blockchain technology to
streamline the automation of search permission verification,
user authentication, and search result validation processes.
These tasks are executed in a manner that ensures scala-
bility and immutability. Notably, we have utilized various
search function types to suit different data types applicable
for searching over multidimentional data, such as inverted
indexes, B+Trees, and bitmapping functions. Another key
advantage of our proposed B+Tree indexing scheme is to
reduce the search space. Our experiments have demonstrated
that our scheme can significantly save time and resources.
The system can also provide reasonable system throughput
for supporting multiple concurrent OLAP query requests. For
future works, we will investigate the technique to achieve
fully forward security in supporting the keyword update.
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