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ABSTRACT Interstitial lung diseases (ILD) are diverse diseases that share pathological, radiological,
and clinical traits and involve interstitial fibrosis and inflammation. These have a significant impact on
lung disease morbidity and mortality. From the lung High-Resolution Computed Tomography (HRCT)
image, the region of interest (ROI) had to be manually identified for most of the early ILD classification
investigations, which was time-consuming. Additionally, the clinical signs of various disorders are identical,
which makes precise detection difficult. In recent studies, outstanding results were achieved in categorizing
medical photos using deep learning techniques. For ILD classification, a hybrid deep learning network
model has been developed in this research. The lung portion of the HRCT images was initially segmented
using an improved U-Net++ model. The multi-scale improved U-Net++ module has been applied for
effective lung segmentation with lung anomalies. The segmented lung image’s features were extracted
for categorization in the second stage using a Refined Attention Pyramid Network (RAPNet). Then,
we developed a MobileUNetV3 to classify five ILD classes. The ILD database is used to test the proposed
approach. Due to the stage-by-stage improvement in the DL method performance, the proposed hybrid deep
learning network model’s performance has significantly increased.

INDEX TERMS Interstitial lung diseases (ILD), deep learning, improved U-Net++, refined attention
pyramid network (RAPNet), MobileUNetV3.

I. INTRODUCTION
More than 200 chronic lung tissue inflammation types are
grouped as interstitial lung disease (ILD), which can severely
impact the pulmonary interstitium and potentially make it
difficult for the patient to breathe [1]. Consequently, early
detection of these disorders is crucial for developing deci-
sions regarding decisions [1]. Finding the precise type of
interstitial lung disease (ILD) is crucial to creating effective
treatment regimens since individuals with ILD risk develop-
ing lung cancer [2]. Data-driven decision-making is growing
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in popularity in the healthcare sector because it can quickly
collect and analyze complete and reliable data [3]. It compels
those in charge of making decisions to select an appropriate
course of action, foresee future occurrences, and formulate
long-term plans [4]. Diagnosing a specific form of ILD and
adopting defensive processes are all related to problems with
ILD classification [5], [6].

Image processing using HRCT images is the initial method
for quickly identifying normal and pathological illness
instances [7]. Additionally, making decisions based on data
to classify ILDs can help with early ILD detection [8], [9].
The feature extraction and ILD class labelling steps in the
image-based classification approach are done to train the
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classifier [10], [11]. For spatial and frequency-based image
analysis, feature extraction involves effectively extracting
shape, texture, and color [12], [13]. The deep learning fea-
tures that deep learning algorithms suggest, however, will not
be captured by these features [14].
In medical image analysis, the reliability of feature extrac-

tion has increased due to the development of deep learning
algorithms [15]. These techniques are employed in the clas-
sification, segmentation, and detection fields to address a
variety of applications [16]. Deep feature vectors can be
obtained using deep learning algorithms like GoogLeNet,
VGG, and AlexNet [17]. For training and testing, the
considerable amount of data required in this architecture
makes it challenging in medical research and occasionally
time-consuming and tedious [18]. From a data-rich source
domain, the knowledge is inherited and preserved by transfer
learning and addresses the problem of data scarcity, which
may lead to over-fitting [19]. To implement the machine
learning methods, the appropriate feature extraction results
in labelling these characteristics.

Deep learning network models can identify many combi-
nations of pathological patterns in HRCT pictures. Still, most
of them have minimal inter-class distinctions and substantial
intra-class variance. Even for many seasoned experts in this
field, the complexity of the diagnosis presents a challenge and
may cause up to 50% ambiguity in the radiological assess-
ment. Radiologists must also examine several instances,
which is time-consuming and complicated. This research sug-
gests a novel hybrid deep-learning network model addressing
these problems.

The research’s essential contribution is
• To reduce the need for ILD-infected lung tissue manu-
ally extracted fromROI, the proposed approach employs
whole HRCT images.

• In the hybrid deep learning network model, the first
stage involved effective lung segmentation with lung
anomalies using an improved U-Net++ technique with
a multi-scale feature extraction module using HRCT
images. By removing the undesirable background from
HRCT images, lung segmentation enables this effective
network model to concentrate on the ILD properties of
the lung.

• After the lung regions are segmented, the deep features
are extracted using the RAPNet. The segmented lung
images from various ILD classes were also used to refine
the RAPNet.

• Consolidation, micronodules, ground glass, fibrosis,
emphysema, and normal are among the six ILD classes
that were finally classified using the MobileUNetV3
using the in-depth features from RAPNet.

• The lung segmentation is effectively performed using
improved U-Net++, and the deep feature extraction
is accurately performed using RAPNet, improving ILD
classification performance overall.

• A recent existing deep learning network model is used
to compare the performance of the suggested algorithm.

The implemented methodology is explained in Section III.
Section IV presents the experimental results and discussions,
and the conclusions of the present research are provided in
Section V.

II. LITERATURE PRIOR WORKS
For Segmentation and Classification, we review some recent
deep-learning and machine-learning techniques for Intersti-
tial Lung Diseases in this section.

A. MULTI-CLASSIFICATION OF LUNG CANCER USING CT
IMAGES
To enhance ILD classification performance, Small kernel
DenseNet (SK-DenseNet), an upgraded version of DenseNet,
was presented by Guo et al. [20]. The high-level pathological
features are extracted using the SKDenseNet network based
on the HRCT feature’s characteristics for ILD classifica-
tion. Micronodules, fibrosis, ground glass, emphysema, and
healthy tissue are the primary patterns that classify ILDs. The
research showed that when feature patterns are small, utiliz-
ing a small convolution kernel helps to increase recognition
effectiveness.

Sukanya et al. [21] developed an effective CNN model
for ILD classification using HRCT images. The medical
image classification is performed by using CNN because,
at the same time, it performs both feature extraction and
classification, producing excellent results. TheCNNhas three
convolutional layers: a dense layer, a maximum pooling layer,
and a leaky ReLU activation layer. Five outputs in the final
Fully Connected (FC) layer correspond to the considered
classes: Fibrosis, Micro Nodules, Normal, Emphysema, and
Ground Glass (GG).

B. DETECTION AND CLASSIFICATION OF LUNG NODULES
IN CT IMAGES
Khan et al. [22] used nodule mining with VGG-SegNet
support to facilitate automated lung nodule detection. The
developed deep features are used to classify lung CT images,
and the handcrafted features are successively concatenated
with these features, including PyramidHistogram of Oriented
Gradients (PHOG), and Grey Level Co-Occurrence Matrix
(GLCM) for improving the disease detection accuracy.

The LdcNet was proposed by Tran et al. [23] for long
nodule detection. This approach solves the difficulty of clas-
sifying pulmonary nodule candidates as nodule or non-nodule
in CT images. In this research, three convolutional blocks are
used for feature extraction, and Classification is done using
fully connected layers.

Khehrah et al. [24] established a fully automatic approach
to detect nodules from lung CT scans. From the foundation,
the lung region is automatically separated by generating a
grayscale histogram of the CT image. Morphological opera-
tors are used to refine the results. The parenchyma’s internal
structures are then removed. A threshold-based technique
is provided to separate possible nodules from other struc-
tures, such as blood vessels and bronchioles. These nodule
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FIGURE 1. Schematic diagram of the proposed approach.

candidates’ various statistical and shape-based properties are
extracted to create nodule feature vectors, which are then
categorized using SVMs.

A combined deep-learning algorithm was proposed by
Wang et al. [25]. First, image clipping, normalization, and
segmentation are used to preprocess CT images, and the range
of negative and positive samples is balanced by increasing the
positive samples. The characteristics of candidate lung nod-
ule samples are learned using CNNs and residual networks,
which are then imported into extended short-term memory
networks accordingly. The network parameters are then con-
tinuously optimized during the training phase to produce the
model with the best performance.

The summary of related prior works on lung cancer clas-
sification using different CT image lung cancer datasets.
Better results are obtained by the majority of current research
on ILD classification and segmentation; however, there are
certain challenges, such as (i) The model may crash if the
memory load becomes too high since model training requires
a large number of images; hence a large amount of computer
memory is needed, (ii) take longer to train and involve a more
complicated method, and (iii) The quality of the classified
image is not good. To address these issues, we present a novel,
efficient hybrid deep learning network model in this study.

III. PROPOSED METHODOLOGY
To screen for probable disease, the majority of the ILD
classifiers now in use manually identify regions of interest
(ROI). Two deep learning network models used for ILD clas-
sification are connected by the hybrid deep learning network
model described in this research. The proposed method’s
schematic diagram is displayed in Figure 1. It accepts input
from all HRCT images and outputs the ILD class label.
From the HRCT images, the segmentation is done in the first
stage using an improved U-Net++ model for segmenting the
lung region. From the first stage’s segmented lung HRCT
images, another deep learning-based RAPNet model was
used to extract the features. Additionally, in the second stage,
ILDs have been classified using the features produced by the

RAPNet model using the memory-efficient network model
MobileUNetV3.

The hybrid deep learning network model employed in the
proposed strategy has been briefly described in the following
sentences.

A. SEGMENTATION
The well-known U-Net architecture, which is frequently
employed in medical image segmentation tasks, is extended
by Unet++. To enhance the original U-Net architecture,
Unet++ adds several dense, nested skip links between the
encoder and decoder blocks. Better feature reuse is made
possible by these skip connections, which also aid in address-
ing the issue of vanishing gradients that can arise in deep
networks. The defective area of ILD is precisely segmented
in the present research using the Improved U-Net ++ model.

The modified version of U-Net++ is called Improved U-
Net ++. With a custom loss function, this research builds
a custom U-Net++ model for the segmentation problem.
Because of the dataset’s small size, the class imbalance
is addressed by the specially designed loss function. The
traditional U-Net++ model does not solve the class imbal-
ance problem; consequently, to address the class imbalance
issue, we have added a custom loss function to enhance
the structure of U-Net++ during segmentation. U-Net++

enhances U-Net by utilizing DenseNet’s dense block con-
cepts. Compared to the original U-Net, U-Net ++ includes
Deep supervision, dense skip connections, and redesigned
skip pathways.

Redesigned skip pathways: A new skip connection archi-
tecture makes up the U-Net ++. These redesigned skip
pathways connect the semantic gap between the decoder and
encoder. Skip connection reduces the feature map’s seman-
tic gap between the encoder and the decoder. Semantically
disparate feature maps are fused in the U-Net encoder and
decoder due to the direct feature map connection. Combining
the previous layers’ convolutional layers with the output of
the matching up-sampled low, dense block is what U-Net++

does. This aids in quickly optimizing the encoder’s feature
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FIGURE 2. Improved U-Net++ architecture.

maps by bringing them closer to feature maps that are waiting
in the matching decoder.

Dense skip connections: The U-Net ++ contains dense
skip connections modelled after DenseNet to implement skip
paths among the encoder and decoder. This enhances the
gradient flow and segmentation accuracy. A deep skip con-
nection also aggregates previous feature maps and delivers
them to the appropriate node.

Deep supervision: The architecture’s performance and
speed are balanced by adjusting the model complexity with
the help of deep supervision in U-Net ++. The output from
each segmentation branchmust be averaged for a CNNmodel
to be correct. Figure 2 displays the proposed segmentation
network model.

When a tiny portion of the image’s total pixels are the
pixels that need to be separated, class imbalance is evident.
Utilizing dice coefficient and cross-entropy, a custom mixed
loss function is used in the proposed segmentation network
to solve the problem. (We use the flexibility provided by
binary cross entropy and dice loss to smooth the gradient
curve during training.)

Lmixed = α ∗ LBCE
(
y, y′

)
− LDice

(
y, y′

)
(1)

where.

LBCE
(
y, y′

)
=

(
ylog

(
y′

)
+ (1 − y) log

(
1 − y′

))
(2)

Ldice =
2 ∗ y ∗ y′ + 1
y+ y′ + 1

(3)

Here, the inconsistencies between samples are balanced
using a constant α, the correct value is depicted as y and
the prediction value as y’. We set α to 0.5 for segmentation
to observe the best results. At a dropout rate of 0.1, the
model worked as well as possible. Our improved U-Net++

model significantly enhances the loss function by boosting
segmentation performance.

B. FEATURE EXTRACTION
For deep feature extraction, the stage 1 segmented lung image
was processed byRAPNet. The network extracts various deep
features relating to classification at each layer. To prevent
gradient vanishing and enable the training of considerably
deeper networks than those previously employed, RAPNet is
used. Using refined attention pyramid networks (RAPNets),
we created an effective multi-scale building extraction tech-
nique in this research. RAP-Net mainly focuses on specific
regions of interest at different scales, improving the discrimi-
native power of features. Refined attention can help themodel
better understand the semantic content of an image by empha-
sizing important features and suppressing irrelevant ones.
We constructed a pyramid pooling module, deformable con-
volution, atrous convolution, combined attention mechanism,
and encoder-decoder structure to enhance the effectiveness
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of feature extraction. The convolutional block attention mod-
ule is also used to extract salient multi-scale features. The
multi-scale features are fused by adopting the refined feature
pyramid structure to obtain the final extraction results in the
decoding path. For feature extraction, attention mechanism
(AM), pyramid pooling module (PPM), deformable convolu-
tion (DC), and atrous convolution (AC) are included in the
feature extraction network model.

In the feature extraction network, the encoder-decoder
structure is the core network. RAPNet comprises a decoding
path, encoding path, and lateral connections with CBAM.
ResNet101, a cutting-edge feature extraction architecture,
serves as the framework for the encoding path. As per the
output feature map’s dimensions, ResNet101’s convolutional
layers are divided into five stages, designated conv1, conv2,
conv3, conv4, and conv5, and the final outputs of the final
residual block in conv2, conv3, conv4, and conv5 are repre-
sented by C2,C3,C4,C5. In the decoding path, the feature
map’s channel dimension is decreased using 1 × 1 convolu-
tional layers.

The big feature size is maintained, and the receptive field
is increased by applying the AC with rates of 2 and 4 to each
stage’s three 3 × 3 convolutional layers (conv4 and conv5,
respectively). Because of this, feature maps in conv4 and
conv5 provide output that is 1/8 of the input image rather than
1/16 and 1/8 of the input image rather than 1/32, respectively.
The loss of spatial information can be reduced by feature
fusion, which is more advantageous with higher feature sizes.

This DC fuses the neighboring similar pixel’s structural
information, and buildings with various shapes are extracted
more effectively by adding this DC to residual blocks.
Between feature channels, the AC is then implemented in
the residual block’s stages conv2, conv3, conv4, and conv5 to
discover the distinctions and provide important characteris-
tics with a lot of weight, which can boost prominent features
and cut out background noise. It can improve conspicuous
features and remove background noise.

In the proposed model, the feature maps are refined layer
by layer by embedding the CBAM, unlike the FPN structure.
The CBAM processed the feature maps C2,C3,C4,C5 are
indicated as M2,M3,M4,M5. As a result, several features
with a wealth of geographical and semantic data are pro-
cessed to provide significant features that can be fused.

The context information is gathered by applying the PPM
to the conv5 stage’s last residual block and a global average
pooling operation. C ′

5 refers to the feature map C5 that PPM
processed.

Then, M2,M3,M4,M5 the refined feature maps from the
appropriate levels are concatenated in the decoding network,
and the lateral connection’s fused feature maps are indicated
{P2,P3,P4,P5}. By concatenating P3,P4, and a dense con-
nection, we also improve the feature pyramid structure and
create the fusion feature map P2. With rich semantic and spa-
tial data, this method allows for the acquisition of multilayer
fused feature maps for multi-scale building extraction. Rather
than element-wise addition in FPN, concatenation operation

has been employed for dense and lateral connections between
up-sampled feature maps.

The final fused feature map’s up-sampling process pro-
duces the results of the building extraction. It is identical in
spatial size to the input image’s original version.

C. CLASSIFICATION
The MobileUNetV3 classifier is a viable choice because it
produces high classification performance, as the proposed
approach usedmultiple deep features retrieved fromRAPNet.
From RAPNet, the MobileUNetV3 classifier receives the
deep features obtained for ILD classification. The proposed
classification MobileUNetV3 model effectively classifies
the input images as Consolidation, Micronodules, Normal,
Ground glass, Fibrosis, and Emphysema.

To benefit from the strong feature extraction capabili-
ties of MobileNetV3, the suggested system integrates the
MobileNetV3 architecture with the UNet model for mul-
tiple ILD classifications, hence the name MobileUNetV3.
The main contribution of our study effort here concerns the
optimal way to merge these two models. MobileUNetV3
architectures aim to strike a balance between model effi-
ciency and classification accuracy. MobileUNetV3 has a
smaller model size than larger, more complex architectures.

Figure 3 depicts the architecture of the proposed Mobile-
UNetV3 model, together with the various building elements
and the input feature maps. The image size is reduced
by applying the down-sampling operation to the selected
MobileUNetV3 layers on the encoder part. The decoder part
uses transposed convolution and up-sampling for each image
classification.

The model’s input image is an MRI slice with a dimension
of 244 × 244. The UNet model’s encoder structure sends
the input image to MobileNetV3. With 64 bands, the image
size to 112 × 112 is changed by layer 16, for example. 56 ×

56 with 64 bands is the new image size introduced by layer
20. The image size is changed by layer 38 to 28× 28 with 78.
Following that, each layer of MobileNetV3 is concatenated
with the preceding output layer and up-sampled using the
UNet decoder. The output of Layer 93 is concatenated with
Layer 214, which performed the first up-sampling process.
The output is then obtained using a de-convolution layer,
a Softmax activation function, and a transposed convolution
layer.

The proposed MobileUNetV3 model efficiently classifies
the input images into multiple lung disease classifications
with high accuracy. There is also a list of all the parame-
ters, both trainable and untrainable. When working with tiny
datasets, 8,045,347 parameters are present in the classifica-
tion model, which is simple to train and less likely to overfit.

By categorizing each pixel according to the class that has
the highest output probability, the channels are localized and
distinguished in the proposed architecture Based on cross-
entropy (CE) loss, the MobileUNetV3 model is effectively
trained by optimizing the loss function and it is denoted by
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FIGURE 3. The proposed MobileUNetV3 model architecture.

Lce. The training set’s Lce loss is calculated as follows:

Lce = −
1
N

∑N

i=1

∑C

k=1
1 (yi = k) ln [p (y = k|x)], (4)

The number of classes is depicted as C, and the number
of training samples is represented as N. Also included is
p (y = k|x) the element x’s class k prediction probability.
A value of yi is the true label of sample x.
UNet++’s parameter number can change depending on

depth, width, and other architectural decisions. However,
because of its complex design and extensive skip connections,
it usually has a lot of parameters. For instance, depending on
how it is configured, a normal UNet++ model may include
millions of parameters, ranging from tens of millions to over
a hundred million.

VGG network models are well-known for their uniform
architecture and simplicity, particularly the deeper variations
like VGG16 and VGG19. There are about 138 million param-
eters in VGG16 and 144 million in VGG19. Because of their
depth and completely connected layers, these models are
rather massive and memory-intensive.

Because of their success in deep learning tasks,
ResNet models—in particular, ResNet50, ResNet101, and
ResNet152—have become increasingly well-known. Over
25.6 million parameters make up ResNet50, 44.6 million

parameters make up ResNet101, and over 60 million parame-
ters make up ResNet152. ResNet models are notable for their
effective training and memory utilization because they use
residual connections despite being deeper than VGGmodels.

In our proposed research, we have used theMobileUNetV3
model for Interstitial Lung Diseases classification, it is a
lightweight and efficient model for classification. Compared
to the other models listed above, it usually has a substantially
smaller number of parameters. The number of parameters of
the classification models is 8,045,347 parameters. However,
MobileUNetV3 models are generally designed to have fewer
parameters while maintaining competitive performance in
image classification tasks.

IV. RESULTS AND DISCUSSION
This section compares the suggested technique to currently
employed state-of-the-art methods by examining the various
performance measures used to assess the method. The impact
of cost-sensitive learning on classification performance is
demonstrated through experimental data.

The Multi-class ILD classification structures, including
Micronodule, Consolidation, Emphysema, Ground glass, and
Fibrosis, are effectively classified and identified extensively
and systematically in this research. The IRCT images dataset
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TABLE 2. Database description.

was classified and segmented with hybrid deep learning mod-
els. The MobileUNetV3 model categorizes disorders that fall
under multiple ILD classes. The defective region of ILD
images is segmented by developing an Improved U-Net++

model, with 30% of the dataset used for validation and 70%
for training. Results were obtained using a PC with an i5
processor with the Python platform. The performance of deep
learning networks for classification is measured using various
techniques.

A. DATABASE DESCRIPTION
The present research makes use of the publicly accessible
MedGIFT database. A complete set of 1946 ROIs was offered
from 108 HRCT imaging series. 17 different ILD patterns
are comprised in this research, each measuring 512 × 512.
The five most common health and ILD pattern combinations
are considered in the present research. Since the database is
multi-pattern, there is a chance that multiple patterns will
appear in a single slice. Table 2 includes statistical infor-
mation on the trend, as mentioned earlier. The MedGIFT
database is used to obtain the total number of picture slices
for each type of pattern.

B. PERFORMANCE METRICS
F-score, precision, accuracy, and recall are performance met-
rics used to assess classification performance.

Recall =
TP

TP+ FN
(5)

Precision =
Tp

TP+ FP
(6)

F1 − Score =
2TP

2TP+ FP+ FN
(7)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(8)

For ILD classification, the number of true positives is
represented as TP. Similarly, the true negative is depicted as
TN, the false positive as FP, and the false negative as FN.

C. PARAMETER SETTINGS
In this research, segmentation and classification stages can
be trained separately in a sequential fashion. This method
involves first training the segmentation network (improved
UNet++) to separate the input images into relevant lung

TABLE 3. The optimized hyperparameters of the classification networ.

regions. Following the training of the segmentation network,
the retrieved lung regions are input into a different classifi-
cation network (MobileUNetV3), which uses the segmented
regions to carry out classification tasks.

For training and testing purposes, the data is divided
into 70% training and 30% testing. We presented a hybrid
deep learning-based approach in this research paper for the
segmentation and classification of interstitial lung diseases.
Because Adam Optimizer is one of the best SGD algorithms
and combines the best features of Ada-Grad and RMS-Prop,
it is used to fine-tune the parameters in each network step dur-
ing training. During training, it may handle noise and sparse
gradients. Optimizing the proposed hybrid network’s hyper-
parameters yields the best performance outcomes. In Table 3,
the optimized parameter settings are provided.

D. EXPERIMENTAL RESULTS
A generated ILD database has been used to show the per-
formance analysis of the proposed approach. As a result
of discussions with computer scientists, research physicians,
and radiologists throughout the project’s four years, anno-
tated lungHRCT slices are now available in this database. For
the analysis, consolidation, micronodules, fibrosis, ground
glass, emphysema, and normal pictures from the six classes
considered in the study were used. Utilizing the data augmen-
tation method, around 4000 HRCT slices were used to train
the network. The training dataset size is increased using data
augmentationmethods, including flip up-down, flip right, and
flip left.

In the second stage, deep features were extracted using
improved U-Net++ mapping to the six ILD classes on seg-
mented images labelled normal, consolidation, micronodules,
ground glass, fibrosis, and emphysema. The results of the pro-
posed approach’s experiment are shown in Table 4. To reduce
the over-fitting on training for image recognition, augmenta-
tion is performed with more images. Also, an effort has been
made to protect the enhanced images’ labels. The 224 × 224
× 3 CT scans that were originally 512 × 512 × 3 have been
reduced throughout the augmentation procedure. RAPNet has
received these images for feature extraction.When the feature
layer selection is made correctly, the classifier’s performance
will improve at this stage. Earlier network layers ’ weights
were frozen because they weren’t updated throughout the
fine-tuning phase. Table 5 contains the proposed classifier’s
confusion matrix.

VOLUME 12, 2024 50451



S. R. Vinta et al.: Segmentation and Classification of ILDs Based on Hybrid Deep Learning Network Model

TABLE 4. Experimental results of the proposed approach.
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TABLE 4. (Continued.) Experimental results of the proposed approach.

TABLE 5. Proposed model’s confusion matrix.

The statistical consistency of the proposed approach is
analyzed by randomly selecting 30 different cycles of HRCT
images. Table 5 shows a 95% confidence interval (CI) for the
network model’s 30-cycle confusion matrices. This research
shows the mean values and variances considered for the six
ILD classes and the 95% confidence interval shown in this
table.

The interactions between the six ILD classes are shown
in Table 6. F-score, recall, and precision values are 98.13%,
98.05%, and 98.65%, respectively. The proposed network
model’s classification performance has been much enhanced
for multiple ILD classifications. For the training and vali-
dation datasets, the accuracy and cross-entropy loss perfor-
mance are shown in Figures 4 and 5.
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FIGURE 4. Accuracy is plotted against the iterations for both training and validation.

FIGURE 5. Cross-entropy loss is plotted against the iterations for both (a) training and (b) validation.

The training and validation accuracy rates were relatively
high, at 99.10% and 98.40%. The six classes’ ROC curves are
shown in Figure 6, and Table 6 contains their AUC values.
The classifier has been appropriately trained, as shown by
the ROC plots and AUC values, and accurate classification
results have been obtained.

E. TIME COMPLEXITY ANALYSIS
Table 7 displays the estimated processing time for this
research, an essential component in the image retrieval pro-
cedure. The entire time process consists of each image’s
processing, training, and testing times. Reading the image is
the initial stage in the processing time, followed by segmenta-

tion, feature extraction, and classification. Similarly, the time
needed to train the entire dataset is represented by the training
time for each network. Each network’s prediction determines
the only testing time. However, compared to state-of-the-
art techniques, this research displayed a processing time of
about 10 seconds. The mean power used for calculating every
sample was noted as 25.656 W.

F. MODEL COMPLEXITY
Additionally, we looked at both the computing and trans-
mission costs associated with the proposed approach. The
floating point operations (FLOPs), storage consumption, and
parameters are used to quantify the computing cost of the
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TABLE 6. Proposed approaches’ interactive performance analysis.

TABLE 7. The entire image processing time of the research.

TABLE 8. Model complexity.

method. The transmission cost of the approach is also given
in Table 8. According to the table, it can be used in lung dis-
ease classification processes and requires less computational
work.

G. PERFORMANCE COMPARISON
In this section, we compare the categorization outcomes of
our suggested approach with outcomes from earlier stud-
ies using IRCT images. The performance of the proposed
approach is analyzed regarding F1-score, recall, precision,
and accuracy. Table 9 represents the comparison of the pro-
posed approach vs. existing approaches.

The effectiveness of the presented approach for ILD cat-
egorization and segmentation is compared to that of earlier
research in the literature in Table 5. For the categorization
of HRCT images, Pawar and Talbar [26] introduced the
LungSeg-Net model. This approach yields 96.25% accuracy
in classifying fibrosis, ground glass, reticulation, consol-
idation, emphysema, and nodules. Agarwala et al. [27]
provide research on deep learning-based techniques for three-
class ILD categorizations. Employing HRCT images, they
defined multiple-layer CNN with 86% accuracy. To accu-
rately classify the HRCT images into fibrosis, emphysema,
consolidation, micro-nodule, GGO, and normal lung, Agar-
wala et al. [28] employedGoogleNeural Network, combining
batch normalization with each activity layer. A VGG-SegNet
was developed by Khan et al. [22]; this framework obtains
97.83% accuracy for categorizing binary data. The accuracy
of the Custom CNN model used by Lakshmi et al. [29] for
classifying multi-class ILD classifications is 91.22% accu-

FIGURE 6. ROC plots of the proposed network model for the six ILD
classes.

rate. Compared to earlier deep learning models, the proposed
hybrid deep learning model performs better, successfully
classifies the various ILDs, and segments the defective HRCT
image region. The proposed hybrid deep learning technique
has two main benefits: it does not cause over-fitting and does
not negatively impact network performance because of the
categorization and segmentation processes.

H. EXTERNAL CLINICAL VALIDATION
For clinical validation, we gathered information on Interstitial
Lung Diseases frommultiple sources. We collected data from
100 patients with lung disease to validate and evaluate the
proposed framework for the classification of the disease. Con-
solidation, Micronodules, Normal, Ground glass, Fibrosis,
and Emphysema are among the Interstitial Lung Diseases for
which we gathered the multi-class classification of HRCT
images. Three imaging professionals carefully examined the
input data and combined it with pathology data to arrive at
the final diagnosis. Once training was finished, the data were
loaded into the MobileUNetV3 model after segmentation
and feature extraction. The proposed hybrid system produced
diagnostic results, such as the classification of lung disease
into multiple classifications. The results were contrasted with
the ground truth findings identified by experts. All lung can-
cer detection systems’ precision, recall, F1-score, accuracy,
and AUC were evaluated. For clinical validation, the pro-
posed hybrid system achieves a performance measure above
90%. Second, to compute the TPR and FPR, we categorized
all of the labelled data from the test collection into TP and FP
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FIGURE 7. ROC curve of proposed hybrid deep learning system in
diagnosing lung diseases for clinical validation.

outcomes at various probability levels. This made it possible
for us to keep a closer eye on and evaluate the results of the
hybrid deep learning system’s detection and classification.
Figure 7 displays the ROC curve for the proposed diagnostic
system based on the proposed methodology. When the AUC
approaches 1, there is a discernible improvement in diagnos-
tic effectiveness. When the AUC is between 0.5 and 0.7, it is
not very accurate; between 0.7 and 0.9, it is very accurate; and
above 0.9, it is very accurate. The accuracy of the test findings
was shown by the AUC of 0.9731, which was determined
using the trapezoidal rule. The clinical validation shows
that the hybrid deep learning model (improved UNet++ -
MobileUNetV3) has outstanding diagnostic abilities.

Furthermore, the proposed model allowed for a very accu-
rate diagnostic. During our test, our proposed hybrid deep
learning system automatically analyzed each data set in
roughly 0.2 seconds. Given that each patient usually pos-
sesses fifteen features, the proposed method completes an
automated diagnostic in three seconds as opposed to eight
minutes for an imaging specialist. Based on the clinical data,
the proposed hybrid deep learning system has an acceptable
level of clinical viability. Consequently, our proposed AI
diagnosis technique outperformed the conventional diagnos-
tic approach in terms of effectiveness and accuracy.

V. CONCLUSION
An innovative and efficient hybrid deep learning network
model is suggested for screening ILD using whole HRCT
images. The method’s effectiveness has been enhanced by
increasing the deep learning algorithms’ accuracy at every
level. From the HRCT images, the improved U-Net++ is
employed in the initial stage of lung segmentation to remove
the undesired background and enable the subsequent step to
extract ILD, which precisely features deep feature extraction.
The segmented lung images were utilized using RAPNet. The
enhanced MobileUNetV3 uses deep learning characteristics

to categorize six ILD classes: consolidation, micro-nodules,
ground glass, fibrosis, emphysema, and normal. The sug-
gested algorithm’s effectiveness has been contrasted with
existing deep learning-basedmodels. The proposed technique
outperforms previous algorithms that take into considera-
tion five ILD classes and outperforms an identical entire
image-based algorithm by a significant margin. The proposed
approach highlights the possibility of enhancing overall effi-
ciency by selecting the most efficient CNN approach for a
particular task and increasing accuracy at every level of the
functions. The proposed method achieves an accuracy rate of
99.10% for various classifications of ILD disorders.

The proposed approach has a drawback because the dimen-
sion of combined characteristics is wider. It may be possible
to minimize this set of features in the future by using a feature
reduction strategy.
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