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ABSTRACT In distributed systems, the method for data storage is crucial. Previous data storage work use
the replication or Erasure Coding method to store data. Such single storage method leads to the excessive
storage overheads for cold data with low access frequency or the low reading performance for hot data
with high access frequency. Nowadays, the research on the hybrid storage has become a hot topic of
concern for many scholars. Existing hybrid storage works take into account data reading performance and
the storage overheads, and use the replication and Erasure Coding methods to store the hot data and cold
data respectively. However, in the scenarios of sufficient disk space or low disk space, these fixed data
storage methods will lead to the relatively low system data reading performance or the excessively low
disk space of the system. In this paper, we propose HSM, a hybrid storage method based on the heat
of data and global disk space utilization. HSM fully considers the system’s requirements for the data
reading performance and storage overheads under different global disk space utilization scenarios, and
adaptively selects appropriate storage methods for data whose heat is different through data deletion, data
reconstruction, and data archiving. The experiment results show that when system disk space is sufficient,
HSM reduces data reading time by up to 18%; when system disk space is low, although increasing storage
overhead by up to 7%, HSM reduces cross-rack data transfer traffic by up to 20% and cross-rack data transfer
time by up to 15% compared with ERP in the process of changing the storage methods.

INDEX TERMS Distributed storage system, hybrid storage, erasure coding, replication.

I. INTRODUCTION

Now we live in a big data age [1]. With the widespread use
of distributed systems and the development of information
technology, the big data technology is increasingly widely
used in various industries [2]. On the other hand, the explosive
growth of data volume has also put tremendous pressure on
storage systems [3]. Large-scale distributed clusters, such
as Google File System [4] and Hadoop [5], are usually
composed of many independent low-reliability commercial
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components, and unexpected failures of components are com-
mon. How to improve reliability, availability and reading
performance of large-scale data, reduce the storage overheads
of data are major challenges for distributed systems in the
big data scenario. A typical way is to use three-way replica-
tion redundancy technology, which provides fault tolerance
by storing multiple replicas of the same data on different
nodes. When the amount of data is small, the replication
technique is simple to implement. However, in large data
centers, Large-scale data makes storing multiple replicas a
quite expensive solution, which requires twice the storage
overheads.
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Therefore, as an alternative, Erasure Coding has been intro-
duced by many distributed storage systems, like Ceph [6],
Azure [7] and Hadoop Distributed File System [8]. Among
multiple Erasure Coding families, Reed-Solomon Code is
the most widely utilized coding schemes, providing fault
tolerance closer to that of replication technologies but with
lower storage requirements. An RS code usually has two
parameters, n and m, which represent that an RS code encodes
n into m parity chunks, so that n data chunks and m parity
chunks form a stripe. Although Erasure Coding can reduce
storage costs than replication, they significantly increase disk
I/O and network bandwidth occupation when systems reads
popular unavailable data than replication.

At present, in a distributed system, a single data storage
method has been difficult to meet the storage and reading
requirements of data with different heat, and may aggravate
the disk space tension of the system. In order to improve the
storage efficiency and reading performance, existing works
design new hybrid storage methods [9], [10], [11], [12], [13],
[14]. For example, EC Fusion [11] is a hybrid storage of the
RS Code and the minimum-storage regenerating Code, MSR
Code. It dynamically selects the appropriate code based on
the workload of the application. For write-intensive work-
loads, RS code is used to reduce computational overheads and
storage costs. For read-intensive application workload, using
MSR code can improve the recovery efficiency. Similar to the
above the hybrid storage methods, EC Fusion does not fully
considering the heat of data, which may use the code with the
low parallel reading efficiency to store high access frequency
hot data, leading to poor parallel data reading performance.
Some works begin to consider this reality. For example, the
encoding-oriented replica placement policy [15], ERP, cold
data with low access frequency is archived and stored from
replication to RS code, which saves the storage overheads
of cold data with low access frequency and maintains high
parallel reading efficiency of the hot data which is still stored
in replication. However, when disk space is abundant, these
fixed data storage methods may still use Erasure Coding to
store data, reducing the efficiency of parallel data reading.
In the other hand, when disk space is tight, they may con-
tinue to use multiple replicas to store data, exacerbating the
problem of low disk space.

In order to solve the problem of low parallel data reading
performance and low disk space, in this paper, we pro-
pose HSM, a hybrid storage method based on the heat and
global disk space utilization. Under different global disk
space utilization scenarios, HSM weighs the requirements
of the system for data reading performance and storage
overheads, and adaptively selects appropriate storage meth-
ods for data with different heat through data deletion, data
reconstruction or data archiving, so as to increase the par-
allel reading performance of hot data, reduce the storage
overheads of cold data and cross-rack data transmission
time and traffic in the process of changing data storage
methods.
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Our contributions are summarized as follows:

o We present HSM, a hybrid storage method based on
the heat of data and global disk space utilization. It can
adaptively select appropriate storage methods for data
with different heat under the system with different global
disk space utilization, greatly improve parallel data read-
ing performance and reduce the storage overheads for
system with low disk space.

« We conduct a group of experiments to evaluate HSM.
The results show that compared with ERP and RS Codes,
when system disk space is sufficient, HSM reduces
data reading time by up to 18%. When system disk
space is low although increasing storage overhead by
up to 7%, HSM reduces cross-rack data transfer traf-
fic by up to 20% and cross-rack data transfer time
by up to 15% in the process of changing the storage
methods.

The rest of this paper is summarized as follows. In Section II,
the background and some preliminary work are introduced.
Section III introduces the latest works. Section IV describes
the design of HSM in detail. Section V evaluates the perfor-
mance of HSM. Section VI summarizes this work.

Il. BACKGROUND
In this section, we briefly review the basic properties of
replication and the Erasure Coding, which are the basis of
our storage method.

A. REPLICATION

Replication is one of the first fault-tolerant methods used to
tolerate hard disk failures. It can copy one data u + 1 times
and store the data to u + 1 different storage node, so as to
tolerate data failures caused by up to u storage node fail-
ures. When a storage node fails, the complete data can be
obtained directly from other nodes where the data replication
is stored. Replication storage is simple to implement, and
effectively ensure the excellent efficiency of reading data. But
the replication storage may bring the additional u times space
overheads, reduce the utilization of the system resources and
increase power consumption.

B. ERASURE CODING

This paper focuses on a famous Reed-Solomon (RS) code.
Compared with replication storage, Erasure Coding storage
provides similar fault tolerance, but the storage cost is greatly
reduced. An RS code usually has two parameters, n and m,
which represent that an RS code encodes n normal chunks
into m parity chunks, so that n normal chunks and m parity
chunks form a stripe. Any remaining n chunks can be decoded
to repair the original chunk, so that at most m data chunk
failures can be tolerated. Figure 1 presents the details of the
matrix coding process of a RS(5, 3) code. Here, data chunks
and parity chunks are organized into fixed-size units called
chunks.
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FIGURE 1. Encoding process of an RS (5, 3) code.

lIl. RELATED WORK

Now there are many works on adaptive hybrid storage meth-
ods, including hybrid storage methods based on multiple
types or the same type of Erasure Coding and hybrid storage
methods based on Erasure Coding and replication. Next,
we briefly review the latest scientific research achievements
of hybrid storage as follows.

To keep high storage efficiency and reliability with low
recovery costs, Xie et al. proposed a encoding and decod-
ing algorithm, AZ Code [12]. Based on the MSR code
and LRC codes, AZ Code utilizes a specific MSR code to
generate a local parity check chunk, and utilizes a typical
RS code to generate a global parity check chunk. However,
the data redundancy is slightly larger. In order to reduce the
high repair bandwidth and storage overheads of stable nodes,
Jin-Ping proposed a LRC-RS [16] hybrid coding method.
LRC-RS uses the LRC coding to store data in high trusted
nodes, and uses the RC coding with low code rate to store
data in low trusted nodes by classifying nodes according to
confidence level. But it also adds some of the complexity of
encoding and decoding.

Zhang et al. proposed a hybrid cloud-scale chunk stor-
age system called Ursa [17]. Ursa directly stores primary
replicas on SSDs and replicates backup replicas on hard
disk drives (HDDs). To make up for the performance gap
for random writes between SSDs and HDDs, Yiming Zhang
et al. design an adaptive journal, through transforming small
backup writes into journal appends, which are then asyn-
chronously replayed and merged to backup HDDs. Then,
in order to efficiently index the journal, they design a novel
range-optimized merge-tree structure. Ursa have slightly
higher data redundancy because they do not adequately con-
sider erasure coding methods.

EC-Fusion [11] proposed by Qiu et al. is an efficient
hybrid erasure code storage framework in cloud storage sys-
tems, which combines RS and MSR codes. According to the
application workloads, EC-Fusion dynamically selects the
appropriate code. For write-intensive workloads, RS code is
used to reduce computational overhead and storage costs. For
read-intensive application workload, using MSR code can
improve the recovery efficiency, which make it possible for
them to solve the problem that front and back office work-
loads can simultaneously and efficiently process in parallel.
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Wei et al. proposed a hybrid fault-tolerance scheme based
on potential replicas, called HFPR [18], for solving the
problem that mobile distributed systems contend with incon-
sistent network signals and relatively low bandwidth in weak
network environments. In order to disperse network transmis-
sion pressure and reduce network transmission, HFPR stores
data with the Erasure coding redundancy and then gradually
increases data redundancy by reserving potential replicas.
However, HFPR is similar to Ursa.

To save the storage overheads of cold data and maintain
high parallel reading efficiency for hot data with high access
frequency, Xu et al. proposed an encoding-oriented replica
storage method, ERP [15]. ERP archives the cold data which
makes the storage method of the cold data change from repli-
cation to Erasure Coding. At the same time, the hot data is still
stored by the replication. In the process of data archiving, for
the help of their chunk placement method, ERP reduces the
cross-rack data transmission time and traffic.

In the above existing hybrid storage methods, whether
based on the hybrid storage methods of Erasure Coding and
replication, or the internal hybrid coding of Erasure Coding,
or the hybrid storage methods of multiple Erasure Coding,
they failed to fully consider the heat of data and global
disk space utilization of the system. This makes the data
with low access frequency adopt the storage methods with
high storage redundancy [19], [20], resulting in the waste of
storage resource, or the data with high access frequency use
the inappropriate storage methods, resulting in poor parallel
read performance [21].

IV. THE DESIGN OF HSM

For improving the storage efficiency and parallel read ability
of distributed systems, we first analyze the distribution of the
access frequency in this section. Then, we define the expres-
sion of heat to better analyze the differences of the access
frequency on data in the system. Next, we introduce the
design concept of HSM. Finally, we introduce the algorithm
implementation of HSM in detail.

A. HEAT CALCULATION AND CLASSIFICATION

Zipf law is an experimental law proposed by G.K.Zipf, and
it is used to describe the law of word frequency distribution.
According to Zipf law, in a particular natural language corpus,
the frequency of words is inversely proportional to its ranking
in the frequency table, i. e., the product is a constant. The
available formula represents that:

fxr=0C 1

This frepresents the frequency of word occurrence, and r
represents the frequency ranking. The product of the two is
approximately a constant C, but the constant C is not a fixed
constant and floats up and down around a central number.
This means that a few words appear very frequently, while
most words appear relatively infrequently.

According to the Zipf law, the top few words in the corpus
appear much more frequently than other words. For example,
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the first word is about twice as frequent as the second word,
while the second word is about twice as frequent as the fourth
word. This distribution is also vividly known as the two-eight
law, that 20% of the words in the corpus account for 80% of
the occurrence frequency, and there is a serious polarization.

Zipf law not only applies to the field of linguistics, but
also similar frequency distribution laws can be observed in
other fields. For example, in distributed storage systems, the
access frequency of clusters’ files also follows this priori
rule [22]. These files are divided into several chunks during
the storage and stored in distributed systems in the form of
chunks. Therefore, the data mentioned in this paper refers
to chunks of the data, including the heat of data, which also
refers to the heat of chunks. Since the access frequency of
files is different and each file contains chunks which have the
same access characteristics as the file, the chunks also have
different access characteristics. According to this rule, most
of the data access is concentrated on a few popular chunks,
while most chunks have relatively low access frequency.
Typically, about 80% of the access is concentrated on 20% of
the data in the entire data set. Therefore, based on this access
rule, we can define the heat of the data in the cluster. Define
the top 20% of the most popular data as hot data, and the
remaining 80% of the data as cold data. Hot data occupy most
of the data access relative to cold data. In order to speed up
reading performance in distributed systems, HSM selects the
storage method with high parallel data reading performance
for hot data.

B. DESIGN CONCEPT

In order to solve the above-mentioned problems of low data
reading performance and low disk space, this section first
introduces the design of HSM for the data heat, then analyzes
the design of HSM for the global disk space utilization, and
finally introduces a data layout which reduces the cross-rack
transmission traffic when the storage method of data need to
be changed.

1) THE DESIGN FOR THE HEAT

In the replication method scenario, when a large number of
read requests are made on the same chunk, the requests can be
directed to multiple replica nodes to increase the parallel read
efficiency and thus alleviate hot-spot issues. When applying
an access data chunk, we can select the nearest replica for it to
reduce the data transfer time. In the case of the Erasure Cod-
ing, when data loss occurs, data reading will bring additional
decoding calculation overheads. Therefore, for the parallel
data reading performance, the replication storage method is
often better than the Erasure Coding storage method. On the
other hand, compared to the replication, the Erasure Coding
has less storage cost because it only needs to encode a few
chunks to ensure its reliability. In a distributed system, only a
few hot data can be frequently accessed in a short time, while
other cold data may have only a small amount of access in a
long time. If we only use the common Erasure Coding method
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to store data, it may affect the parallel reading performance
of the hot data. On the contrary, if only the replication is
used to store the data, this may greatly increase the storage
overheads of the cold data. Therefore, we use the replication
storage method to store the hot data, which can improve the
parallel reading performance of the hot data, while the cold
data only needs to be stored at a lower storage cost to reduce
data storage overheads. At the same time, the heat of data will
change. When the heat of the data decreases or increases, the
data storage method should also be able to change with low
overheads for the system read performance and data storage
overheads.

2) THE DESIGN FOR THE GLOBAL DISK SPACE UTILIZATION

When the global disk space utilization of the distributed
system is low and the system has sufficient storage space,
we give priority to data reading performance. When the global
space utilization is moderate, we weigh read performance and
storage space utilization, giving priority to improving the read
performance of the hot data and reducing the storage over-
heads of the cold data. When the global space utilization is
high, we give priority to alleviating storage space constraints.
By archiving cold data, the data stored in the replication is
converted into the Erasure Coding method to reduce storage
overheads.

3) THE DESIGN IN THE LAYOUT OF DATA

When the heat of data changes from hot to cold or vice versa
and the global disk space utilization changes in intervals, the
data storage method would change accordingly. In the process
of changing data storage methods, operations such as data
archiving and data reconstruction will generate intra-rack and
cross-rack data transmission traffic. Since cross-rack traffic
is more scarce than intra-rack traffic [3], we focus on cross-
rack traffic. In order to reduce the cross-rack transmission
traffic required to change the data storage method, we adopt
a specific data layout method to store the chunks, which
makes the chunks that may need to be encoded to store into a
main rack during the data archiving process, thus avoiding the
situation that transferring chunks to this main rack cross racks
and then encoding data. At the same time, in order to reduce
the cross-rack traffic generated by subsequent data recovery,
the Erasure Coding layout after data archiving will maximize
the advantages of partial decoding, which is beneficial to
subsequent aggregate recovery.

C. ALGORITHM

We divide the rack into a main rack and some secondary
racks, as shown in Figure 2. First of all, considering that
the main rack subsequently performs operations such as
data encoding and data reconstruction, and these operations
require network bandwidth, so the rack with the best network
bandwidth performance is selected as the main rack, and the
1¢ replica of the data is stored in the main rack. Then, the
27 and 3" replica chunks of the data are stored together
on each secondary rack in the order of the replica numbers.
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FIGURE 2. Examples of the data storage with HSM.

In order to maintain node-level fault tolerance, the 2" and
3" replica chunks of the same data are stored in the same
secondary rack on different nodes. In the process of storing
replicas on the main rack and the secondary rack, in order to
balance the storage load, the replicas are preferentially stored
on data nodes with low storage load in the rack.

We define data popularity as the number of times data is
accessed by users per unit time. The available formula is
simply expressed as

H= - @)

Among them, H represents the popularity value of the
data, N represents the number of accesses of the data, and
T represents the time. According to Zipf law, 20% of the data
has 80% of the visits, so the data with the top 20% of user
visits are defined as hot data. Define the data with the bottom
80% of user access times as cold data.

In the process of data storage, the global disk space utiliza-
tion and the popularity of the chunks will change. At this time,
we need to weigh the system’s requirements for parallel data
reading performance and storage overheads under different
global disk space utilization scenarios, and adaptively choose
data storage methods.

As shown in Algorithm 1, when the global disk space
utilization is less than or equal to 30%, the system storage
space is sufficient. Between data storage overheads and par-
allel reading performance, we give priority to parallel data
reading performance. At this time, whether it is hot data or
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Secoﬁdary racks

cold data, we all use the three-way replication method with
good parallel data reading performance to store the data.

In terms of experimental conclusion that new data is often
hot data [23], when storing new data, the new data stored in
the three-way replication method.

When the amount of data stored in the system begins to
increase and the global disk space utilization is greater than
30% and less than or equal to 60%, the storage space is no
longer sufficient. Therefore, while ensuring that the system
has high data reading performance, we must also consider
reducing the data storage overheads. Firstly, we rank the
popularity of data and define hot data and cold data. Because
hot data has a very high frequency of data access compared
to cold data. In order to achieve high read performance of hot
data, we continue to use the three-way replication method to
store hot data. On the other hand, in order to save storage
overheads, we use the two-way replication method to store
cold data. In the process of changing the storage method from
the three-way replication method to the two-way replication
method, data deletion is performed, and the 3rd replica chunks
of the cold data in the secondary rack is deleted. If there
is a change from cold data to hot data, we reconstruct the
data, copy 2" replica chunks of the data as the 3™ replica
chunks, and store it on other low-load nodes in the same rack.
When storing new data, the new data stored in the three-way
replication method.

When the global disk space utilization is greater than 30%
and less than or equal to 60%, if we delete data to save storage
overheads, there is a possibility that the global disk space
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utilization will experience a large interval change, causing the
global disk space utilization to be less than or equal to 30%.
In order to prevent the data storage method from continuously
oscillating, a ““P” mark is set for the data stored in two-way
replication method after data deletion. When the data marked
with “P” is stored in a system where the global disk space
utilization is less than or equal to 30%), its data storage method
is not change to the three-way replication method due to the
global disk space utilization of the system or the change from
cold data to hot data. It still uses the two-way replication
method for storage.

When the global disk space utilization is higher than 60%,
the storage space is extremely low. Between the storage over-
head and parallel data reading performance, we give priority
to storage overhead. We firstly rank the popularity of the data,
use the two-way replication method to store the hot data, and
use the Erasure coding method to store the cold data. When
the hot data is stored from the three-way replication method
to the two-way replication method, data deletion will be
performed to delete the 3™ replica chunks of the hot data
in each rack. In the storage process of cold data changing
from the two-way replication method to the Erasure Coding
method, the data will be archived to form an Erasure Coding
stripe, which is applied to RS(n, m). If there is a situation
where hot data stored by the three-way replication method
becomes cold data, data deletion will be performed firstly,
and then data archiving will be performed. Next, if there is
the cold data stored by the Erasure coding method becomes
hot data, the data is changed from the Erasure coding method
to the two-way replication method. This process requires data
reconstruction. We copy all 2™ replica chunks of the data
as 1st replica chunks, and stores them on the different low-
load nodes of the original main rack. In this process of data
reconstruction of a RS(n, m) stripe which changes to two-way
replication method, T}, is the cross-rack data transfer traffic
and n is from RS(n, m).

Tre=n 3)

Because new data is often hot data, it is stored in two-way
replication method. Similarly, in order to prevent the data
storage method from constantly oscillating, we set an “E”’ to
mark the data that changes the data storage method after data
deletion and data archiving. When the data marked with “E”
is stored in a system where the global disk space utilization
is greater than 30% and less than or equal to 60%, its data
storage method will not change due to the global disk space
utilization of the system or the change from cold data to hot
data.

In the process of data archiving, we need chunks to form
the parity chunks and normal chunks part of the stripe.
In order to reduce the cross-rack traffic caused by encoding,
we have chosen a specific data layout method to store all
the 1% replica chunks that may participate in encoding in
the main rack. This avoids the need to transmit data to the
machine and then encoding. Therefore, the parity chunks
encoded by 1% replica chunks constitute the parity chunks
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part of the Erasure Coding stripe. These parity chunks need
to be saved on different nodes of the same main rack. After the
encoding is completed, we delete these 1% replica chunks of
the main rack which participates in encoding. The 2™ replica
chunks of these data whose 1% replica chunks participates in
encoding then forms the normal chunks part of the stripe.

In order to maximize the advantages of partial decoding
and reduce the cross-rack data transmission traffic generated
by subsequent data recovery, the layout of stripes after data
archiving should follow the layout principles: In order to
maximize the advantages of partial decoding, we should place
as many chunks of the same stripe as possible on the same
rack. But for node fault tolerance, any two chunks of the same
stripe are not distributed to the same node. At the same time,
in order to obtain fault tolerance of m nodes, at most m chunks
of the same stripe are placed on the same rack. Finally, for
the uniform distribution of chunks, the numbers of chunks of
a same stripe in any two racks differ by at most 1. N(n, m) =
{%1 is the number of racks which store chunks of the same
stripe.

n+m

Nn,m)= | 1 =k 4

For short, we call the ith stripe Si, the ith rack Ri and
the ith data Di. As shown in Figure 2, the six racks of
{RO...R5} need to store the ten chunks {DO...D9}. At this
time, the global disk space utilization is less than or equal
to 30%, and the disk space is sufficient. For the parallel
data reading performance, the three-way replication method
with good reading performance is selected for data storage.
First, we compare the network bandwidth performance of
the six racks, and select RO with the best network bandwidth
performance as the main rack to store the 1% replica chunk.
Then we store the 2" replica chunks and 3" replica chunks
of {DO0...D9} in RI to R5 in order.

When the number of stored data begins to increase and the
global disk space utilization is greater than 30% and less than
or equal to 60%, we rank the popularity of the data and find
that { DO, D5} is hot data and the remaining data is cold data.
we use a three-way replication method to store {DO, D5},
a two-way replication method to store the remaining cold
data, and performs data deletion, deleting 3™ replica chunks
of the cold data in {R2...R5}.

When the global disk space utilization is greater than 60%,
storage space is extremely low. we rank the popularity of data
and find that {DO0, D5} is hot data and the rest of the data is
cold data. For storage overheads, we use two-way replication
method to store hot data { D0, D5}, and the 3rd replica chunks
of {D0, D5} in R1 is deleted. For other cold data, we archive
data and use the Erasure coding method to store it. In order
to maximize the advantages of partial decoding, a specific
Erasure coding layout idea is followed. For RS(4,2), { D1, D6,
D2, D7} and {D3, D8, D4, D9} as the normal chunks parts of
the two stripes. Next, we encode the datain {D1...D9} in the
RO, and generate the parity chunks parts {PO, P1} and {P2,
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FIGURE 3. Total read time for HSM, ERP and RS(4,2) under the different global disk space utilization scenarios.
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Algorithm 1 A Hybrid Storage Method Based on the Heat
and Global Disk Space Utilization

Input: the data of the system
Output: storage_mode

if global disk space utilization <= 30%
if the data has flag ‘P’
return;
else
Apply 3Replica();
if 30% < global disk space utilization <= 60%
if the data has flag ‘E’
return;
if the data changes from hot to cold
10: Apply 3to2Replica(); Add flag ‘P’;
11: else if the data changes from cold to hot
12: Apply 2to3Replica();
13: if global disk space utilization —60%
14:  if the data changes from hot to cold

VRN ERD =

15: if the data is 3Replica

16: Apply 3to2Replica(); Add flag ‘E ’;
17: else

18: Apply 2toECO; Add flag ‘E’;

19:  else if the data changes from cold to hot
20: Apply ECto2Replica();

P3}. And then when the encoding is completed, we delete
{DI...D9} in the RO.

V. PERFORMANCE EVALUATION
In this section, we present extensive experiment results to
evaluate the performance of the storage method HSM.

A. EXPERIMENTAL ENVIRONMENT

System configuration: we use one server with ten-core
2.40 GHz Intel(R) Xeon(R) Gold 5115 CPU, 256G memory,
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Dell PERC H730P integrated RAID hard disk, total storage
space 1T, running Ubuntu 16.04.1. We configure KVM on
this server and create seven new virtual machines, each with
8G memory, 5GB RAM, and 50GB SCSI hard disk and
running Ubuntu 16.04.1. We use one virtual machine as a
control terminal and use six virtual machines to simulate six
racks. Each virtual machine has four processes to simulate
four nodes. The bandwidth of the switch is 1Gbps. And we
use the 128MB chunks in this experiment.

In order to verify various performance indicators of HSM,
we select ERP (Encoding-oriented Replica Placement Policy)
and RS(4,2) for comparative experiments. Among them, ERP
uses different storage methods for data based on data popu-
larity, which is similar to HSM, and RS(4,2) is widely used
in the paper experiments.

B. EXPERIMENTAL DESIGN

In this section, we compare the parallel read performance and
the storage overheads of HSM, ERP and RS(4,2) through the
time of data reading and the storage overheads. Then we use
cross-rack transmission traffic and transmission time during
the data reconstruction and data archiving to compare the
transmission overheads of HSM and ERP in the process of
changing data storage methods.

In order to test the performance of HSM in different global
disk space utilization (Gdsu) scenarios, we store chunks in
virtual machines with the fixed disk space size to make the
global disk space utilization of the system reach 10%, 40%,
and 70%. In this way, we simulate three different interval sce-
narios of global disk space utilization (Gdsu) <= 30%, 30%
< global disk space utilization (Gdsu) <= 60%, global disk
space utilization (Gdsu) > 60%. And three groups of control
experiments are set up under these three scenarios. At the
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FIGURE 5. Total storage overheads for HSM, ERP and RS(4,2) under the different global disk space utilization scenarios.

same time, in order to test the impact of the amount of stored
data on the experiment, we store 50, 100, and 150 chunks in a
rack composed of 6 virtual machines. Because the maximum
amount of data in these three groups of control experiments is
150 chunks and the size of a chunk is 128MB, the global disk
space utilization occupied by it when stored using the three-
way replication method with the maximum storage overhead
is about 18%. In this way, the global disk space will not
change when storing the data, so that the range of disk space
utilization does not affect the data storage method. Because
80% of accesses focus on 20% of the entire data set, based
on this access rule, we define 20% of the data as hot data and
the remaining 80% of the data as cold data. Since RS(4,2) is
widely used in experiments, when archiving data, we set the
Erasure coding stripe to RS(4,2).

C. ANALYSIS OF EXPERIMENTAL RESULTS

1) PARALLEL READ PERFORMANCE ANALYSIS

We test the parallel reading performance of HSM, ERP and
RS(4,2) based on data reading time. Because HSM has dif-
ferent data storage methods under different global disk space
utilization scenarios, we firstly test the data reading perfor-
mance of HSM, ERP, and RS(4,2) under different global
disk space utilization scenarios. As shown in Figure 3(a),
Figure 3(b) and Figure 3(c), when the global disk space
utilization is less than or equal to 30%, compared with
ERP and RS(4,2), HSM reduces by up to 16 % and 18%
data reading time. When the global disk space utilization is
greater than 30% and less than or equal to 60%, the read
performance advantage of HSM decreases. Compared with
ERP and RS(4,2), HSM reduces the data read time by up
to 11% and 13% respectively. When the global disk space
utilization is greater than 60%, HSM no longer has a read
performance advantage compared with ERP. Compared with
RS(4,2), HSM reduces data read time by up to 6%. The reason
is that the access parallelism of the replication method is
higher than the Erasure Coding method. HSM uses a three-
way replication method to store data when the global disk
space utilization is less than or equal to 30%, so HSM is better
than ERP and RS in data reading performance (4,2). However,
with the increase of global disk space utilization, HSM needs
to consider storage overhead and change the data storage
method. The data is stored from a three-way replication
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method to a two-way replication or Erasure Coding method,
so that HSM reduces the parallel read performance.

In addition, we also verify the impact of storing differ-
ent amounts of data on parallel read performance under the
same global disk space utilization scenario. As shown in
Figure 4(a) and Figure 4(b), in two scenarios where the global
disk space utilization is less than or equal to 30% and the
global disk space utilization is greater than 30% and less
than or equal to 60%, with the increase of the amount of
data, compared with ERP and RS(4,2), the advantage of read
performance in HSM becomes larger and larger. Because the
access hot-spot problems of ERP and RS(4,2) will become
more serious when the amount of data increases and data
read requests are excessively concentrated on the racks that
store hot data, which may create more network and disk
I/O blocking. On the contrary, HSM distributes data read
requests to many racks that store replicas of data for reducing
congestion. As shown in Figure 4(c), when the global disk
space utilization is higher than or equal to 60%, HSM changes
the data storage method, which also causes a lot of network
and disk I/O blocking when reading data, so that the parallel
read performance advantage is not obvious.

2) STORAGE OVERHEAD ANALYSIS

Then, we compare HSM with ERP and RS(4,2) based on
the data storage overheads. Because HSM has different data
storage methods under different global disk space utilization
scenarios, we also test the storage overheads of HSM, ERP,
and RS(4,2) under different global disk space utilization sce-
narios. As shown in Figure 5(a), Figure 5(b) and Figure 5(c),
when the global disk space utilization is less than or equal
to 30%, due to sufficient disk space, HSM gives priority
to parallel data reading performance and uses the three-way
replication method to store data. Therefore, compared to ERP
and RS(4,2), HSM increases storage overhead by up to 88%
and 100% respectively. However, when the global disk space
utilization is greater than 30% and less than or equal to 60%,
the disk space is no longer sufficient. For ensuring high data
reading performance, HSM should consider reducing the data
storage overheads. HSM changes the storage method from the
three-way replication method to two-way replication method
for cold data, so the storage overhead is greatly reduced.
Compared with ERP and RS(4,2), HSM only increases the
storage overhead by up to 38% and 47% respectively. When
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the global disk space utilization is higher than 60%, HSM
gives priority to storage overhead and changes the storage
method from the two-way replication method to the Erasure
Coding method for the cold data, and changes the hot data
from the three-way replication method to the two-way repli-
cation method, which greatly reduces the storage overheads.
Compared with ERP, HSM no longer has a storage overhead
disadvantage. Compared with RS(4,2), HSM only increases
storage overhead by up to 7%.

3) TRANSMISSION OVERHEAD BY CHANGING THE DATA
STORAGE METHODS ANALYSIS

In this experiment, we test the cross-rack data transmis-
sion overheads of HSM and ERP based on the cross-rack
data transmission traffic and data transmission time in the
process of changing the storage methods. When the global
disk space utilization is greater than 60%, we set 20% of
the cold data stored in the Erasure Coding method as the
data which requires data reconstruction based on Zipf law.
Then we count the data reconstruction cross-rack transmis-
sion traffic and cross-rack data transmission time of the
HSM and ERP in the process of changing storage methods.
During the experiment, RS(4,2) isn’t involved in operations
such as data archiving and data reconstruction. The storage
method remains unchanged in RS(4,2) throughout the entire
storage process and RS(4,2) isn’t involve cross-rack data
transmission. Therefore, no relevant experiment for RS(4,2)
in this section.The experimental results are shown in Figure 6
and Figure 7. Compared with ERP, HSM reduces cross-rack
data transmission traffic by up to 20% and cross-rack data
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transmission time by 15%. With the amount of data increases,
HSM improves cross-rack data transmission. The advantage
of rack data transfer time will also be more obvious. In order
to maximize the advantage of partial decoding, HSM stores
the two parity chunks replicas in the same main rack in the
RS(4,2) stripe, which generated by the data encoding in the
main rack. Therefore, compared with ERP, HSM increases
the cross-rack traffic during data reconstruction, but reduces
cross-rack traffic for transferring parity chunks replicas to
storage in other racks. As shown in Figure 7, in the pro-
cess of cross-rack data transmission, with the increase of
the cross-rack transmission traffic, the blocking of cross-rack
data transmission will become more obvious. At the same
time, because HSM has less cross-rack data transmission
traffic than ERP, the cross-rack data transmission congestion
is lighter in HSM. Due to the limitations of the experimen-
tal equipment and the time constraints, this work did not
experiment with systems with different disk storage/RAM
configurations and measure their impact on the final results
which is a limitation of the current work and a goal for future
work.

VI. CONCLUSION

In order to solve the problems of existing data storage meth-
ods such as low parallel data reading performance when disk
space is sufficient and the excessive data storage overheads
when disk space is low, in this paper we propose a hybrid stor-
age method based on the heat of data and global disk space
utilization, called HSM. HSM weighs the system’s require-
ments for parallel data reading performance and the storage
overheads under different global disk space utilization sce-
narios, and adaptively selects appropriate storage methods
for the data which have different heat through operations
such as data deletion, data reconstruction, or data archiving.
It can increase the parallel reading performance for the hot
data and reduce the storage overheads for the cold data.
Firstly, we introduce Zipf law and define the popularity of
the data based on Zipf law. Secondly, we introduce in detail
the principles and algorithms of the hybrid storage method
based on the heat and global disk space utilization. It is
designed to effectively improve the parallel reading efficiency
of distributed systems, alleviate global disk space constraints,
and reduce cross-rack data transmission traffic and time in
the process of changing the storage methods. Experimental
results show that compared with ERP and RS(4,2), when
disk space is sufficient, HSM reduces data reading time by
up to 18%. When disk space is low, HSM increases storage
overhead by up to 7%, but in the process of changing the
storage methods, HSM reduced cross-rack transfer traffic by
20% and cross-rack transfer time by 15%.
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