
Received 22 February 2024, accepted 24 March 2024, date of publication 29 March 2024, date of current version 4 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3383313

Parallel Quantum Rapidly-Exploring
Random Trees
PAUL LATHROP 1,2, (Student Member, IEEE), BETH BOARDMAN 2,
AND SONIA MARTÍNEZ 1, (Fellow, IEEE)
1Department of Mechanical and Aerospace Engineering, University of California at San Diego, San Diego, CA 92092, USA
2Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Corresponding author: Paul Lathrop (pdlathrop@gmail.com)

This work was supported by Los Alamos National Laboratory and is approved for release under LA-UR-23-31988v3.

ABSTRACT In this paper, we present the Parallel Quantum Rapidly-Exploring Random Tree (Pq-RRT)
algorithm, a parallel version of the Quantum Rapidly-Exploring Random Trees (q-RRT) algorithm. Parallel
Quantum RRT is a parallel quantum algorithm formulation of a sampling-based motion planner that
uses Quantum Amplitude Amplification to search databases of reachable states for addition to a tree.
In this work we investigate how parallel quantum devices can more efficiently search a database, as the
quantum measurement process involves the collapse of the superposition to a base state, erasing probability
information and therefore the ability to efficiently find multiple solutions. Pq-RRT uses a manager/parallel-
quantum-workers formulation, inspired by traditional parallel motion planning, to perform simultaneous
quantum searches of a feasible state database. We present symbolic runtime comparisons between parallel
architectures, then results regarding likelihoods of multiple parallel units finding any and all solutions
contained with a shared database, with and without reachability errors, allowing efficiency predictions to
be made. We offer simulations in dense obstacle environments showing efficiency, density/heatmap, and
speed comparisons for Pq-RRT against q-RRT, classical RRT, and classical parallel RRT. We then present
Quantum Database Annealing, a database construction strategy that uses a temperature construct to define
database creation over time for balancing exploration and exploitation.

INDEX TERMS Sampling-based motion planning, quantum computing, parallel computing.

I. INTRODUCTION
Quantum computing algorithms have shown promise in
accelerating the search for solutions when applied to
computationally intensive, complex problems. More effi-
cient solutions have been found and proven with quantum
computing in fields such as pure science simulations [2],
cryptography [3], and machine learning [4].
With respect to robotics and motion planning, quantum

algorithms have also been found to increase speed and
efficiency. The heart of quantum advantage is derived from
quantum parallelism and the ability to perform simultaneous
computations on superpositions of states, which motivated
our work in [1]. To aid in sampling-based motion planning,

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Liu .

the key efficiency bottleneck is the search for dynamically-
reachable, obstacle-free states to connect to the search
tree. Unstructured databases of possible next states can be
searched simultaneously with Quantum Amplitude Ampli-
fication (QAA) to efficiently find an amenable state, but
the quantum measurement process forces information loss
through the collapse of the superposition. Although all
database states are searched in parallel, the process can only
return one state. In this work we are motivated by efforts
in traditional motion planning to parallelize sampling-based
planners for efficient path generation using multi-core
computers and GPUs, and the ability of quantum algorithms
to perform parallel computations. We seek to explore ways
for quantum motion planning algorithms to allow multiple,
parallel quantum computers to more efficiently search a
database of states and return multiple possible solutions.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

47173

https://orcid.org/0000-0002-6374-7510
https://orcid.org/0000-0001-8152-5578
https://orcid.org/0000-0001-6756-1484
https://orcid.org/0000-0002-2797-0264

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

A. LITERATURE REVIEW
In this section, we provide an overview of quantum comput-
ing as it applies to robotic applications, non-quantum efforts
to parallelize sampling-based motion planning algorithms,
the use of annealing and temperature constructs as they
applies to motion planning, and how this is related to our
efforts to increase the efficiency of q-RRT.

Quantum algorithms have been applied to a range of
robotic and motion planning-related applications. They have
been used to solve generalized optimization problems [5],
estimate stochastic processes [6], and provide speedup to
Monte Carlomethods [7]. They have also performed quantum
searches [8] of physical regions [9], found marked elements
of a Markov chain [10], and searched more abstract spaces
such as a search engine network [11]. A more detailed
overview on how quantum computing has been applied to
robotics, along with open questions, can be found at [12].
Quantum computing has also been used to improve motion

planning specifically. Quantum reinforcement learning [13]
has increased the speed and robustness (when compared to
classical, non-quantum algorithms) of robotic reinforcement
learning algorithmswhen learning optimal policies in gridded
environments [14], [15]. An additional use of quantum
computing for robotic trajectory planning is addressed
in [16], which uses a Quantum Evolutionary Algorithm to
search for optimal trajectories with a population dynam-
ics/mutation quantum algorithm. Lastly, the review [17]
examines quantum control algorithms, and the topic of
feedback control accomplished using quantum computing.
The work at hand is distinct from the state of the art of
quantum computing as applied to motion planners, as we
apply such methods to sampling-based planners, which
have the advantage of providing fast solutions in high
dimensional environments alongside providing probabilistic
completeness guarantees [18]. Besides our previous q-RRT
algorithm, quantum computing has not, to the best of
our knowledge, been applied to sampling-based planning
algorithms. A further overview on how quantum computing
has been applied to motion planning and robotics can be
found in [1].
In the field of non-quantum motion planning, sampling-

based planning algorithms such as Probabilistic Roadmaps
(PRMs) [19] and Rapidly-exploring Random Trees (RRT)
[20] have taken the forefront due to their efficiencies in
high-dimensional planning spaces and ability to handle
complex robot dynamic constraints [21], such as robotic
grasping tasks, autonomous vehicle planning, and UAV
navigation. RRTs and PRMs have been extended in many
ways to improve their sampling speed, exploration ability,
and collision-checking subroutine. RRT* is an important
extension regarding path optimality through rewiring [22].
An overview of sampling-based motion planning can be
found in the textbook [18]. Three ways to increase motion
planning efficiency are the use of quantum computing,
the use of parallel algorithms and architectures, and the

use of sampling strategies. In this work we consider
the combinations of the three approaches through parallel
quantum computing and database construction strategies,
which is akin to sampling strategies in classical algorithms.

Motion planning algorithms have been written for parallel
tree creation [23] and parallel computation with GPUs [24].
In [23], local trees are built in parallel to explore difficult
regions, and guidelines on when to create and grow
local trees are made. In [24], the authors parallelize
the collision-checking procedure using GPUs to increase
optimal planning speed in high-dimensional spaces. The
work [25] outlines Parallel RRT and Parallel RRT*, which
uses lock free parallelism and partition based sampling
to provide superlinear speedup to RRT and RRT*. The
work [26] compares parallel versions of RRTs on large
scale distributed memory architectures, including or-Parallel
RRT (multiple simultaneous individual RRT’s) and two
methods of collaborative single RRT, Distributed RRT and
Manager-Worker RRT. Thework [26] also includes a succinct
literature review regarding parallel motion planning and
Parallel RRT. For comparison purposes, in the work at
hand we consider a class of Manager-Worker Parallel RRTs,
focusing on the parallelization of the collision-checking
procedure of RRT. This is justified by the findings in [26],
which concludes that for variable expansion cost cases,
where the communication load is insignificant compared to
the computation load, Manager-Worker RRT outperforms,
or nearly matches, Distributed RRT in studied passage,
corridor, and roundabout environments.

The work [27] discusses parallel quantum computing
architectures and control strategies for distributed quantum
machines, noting that multiple few-qubit devices may
be more technologically feasible than single many-qubit
devices. In this work, we consider parallel quantum comput-
ers to be multiple simultaneous identical quantum devices
governed by a classical device in order to perform parallel
computation.

A second extension to increase the efficiency of q-RRT
relies on database construction, where we employ a method
inspired by simulated annealing. Simulated annealing [28]
is an optimization technique that relies on decreasing a
temperature parameter to find global maxima and minima
of a nonconvex optimization problem, which is somewhat
robust to local features. Temperature acts as a guide to
the probability of accepting a worse state, allowing an
optimizer to explore past local features while eventually
settling on estimates of global optima when temperature falls.
An overview can be found at [29] and [30].

Although a temperature construct is mainly used in the
context of optimization, similar annealing ideas have also
been applied to motion planning, and we intend to apply
them to guiding the exploration vs exploitation trade-off of
the planning algorithm. In a manner somewhat reminiscent
of annealing, the work [31] uses a dynamic reaction-diffusion
process to propagate, then contract, a search area for

47174 VOLUME 12, 2024

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

a goal location. Additionally, the covariant Hamiltonian
optimization for motion planning (CHOMP) method [32]
uses gradient techniques to improve trajectories and solve
motion planning queries. CHOMP uses simulated anneal-
ing to avoid local minima in trajectory optimization and
not to guide sampling-based motion planning itself. The
work [33] uses simulated annealing to balance exploitation
of Sampling-Based A* (SBA*) and exploration of Rapidly-
exploring Random Tree* (RRT*). As cooling occurs, the
probability of choosing the exploration strategy drops and the
probability of choosing the exploitation strategy increases.
Similarly, the transition based RRT [34], [35] method uses
a temperature quantity inspired by simulated annealing to
define the difficulty level of transition tests to accept higher
cost configurations in an effort to explore a configuration
space. Similar to this work, we use a temperature quantity
to guide the level of exploration, but because we are using
quantum computing with q-RRT to performmotion planning,
temperature factors into database construction rather than
individual samples themselves.

In [1], we introduced how quantum computing meth-
ods can be applied to sampling-based motion planning
in two ways, a full path database search and an RRT-
based single-state database search q-RRT. The Quan-
tum Rapidly-Exploring Random Trees algorithm, q-RRT,
uses Quantum Amplitude Amplification (QAA) to search
databases of possible reachable states. A focus of our
work [1] was in estimating solution likelihood (so QAA
could be performed an optimal number of times) through
the use of random square lattice environments and numerical
simulations. We chose this approach over quantum counting
in an effort to keep oracle efficiency high. In the work at
hand, we shift focus to address a particular shortcoming
of using quantum computers and qubits: these approaches
suffer from the limits of quantum mechanics. When qubit
measurement decoheres a superposition into a definite state,
information is lost. Additionally, qubits cannot be copied,
as this is akin to quantum measurement. We study how
quantum devices, working in parallel, can efficiently solve
motion planning problems, while generalizing environments
away from random square lattices. Instead of focusing on how
many solutions exist within a database (which can be found
with the Quantum Counting Algorithm (QCA)), we focus
on how multiple solutions can efficiently be found from a
single database. This work is based on Chapter 6 of the
first author’s Ph.D. thesis [36], with additional analysis and
editing.

B. CONTRIBUTIONS
The main contributions of this work are the following.
• Creation of a parallel quantum computing variation to
q-RRT, called Parallel q-RRT (Pq-RRT), which uses a
parallel quantum computing structure to allow multiple
solutions from a single database in general obstacle
environments;

• Symbolic runtime analysis of shared and unshared
database formulations of a Manager-Worker parallel
architecture;

• Characterization of key probability values for multiple
quantum workers searching a shared database, with and
without false positive and false negative oracle errors in
order to minimize efficiency loss;

• Creation of a construction strategy for quantum-search
databases, called Quantum Database Annealing, which
uses a temperature construct to select sample distances
and balance exploration vs exploitation;

• Demonstration (through simulation) of the increased
efficiency of Pq-RRT over q-RRT, as compared to the
efficiency increase of Parallel RRT over RRT;

• Simulations of faster tree exploration with Quan-
tum Database Annealing as compared to standard
uniform-sampling database construction.

II. ORGANIZATION AND NOTATION
In Section III-A, for reference purposes we provide a working
definition of q-RRT from [1]. In Sections III-B and III-D,
we define Parallel q-RRT then key probability results
for Pq-RRT, respectively. In Section III-E, we define the
database construction strategyQuantumDatabase Annealing.
In Section IV-A, we provide runtime and efficiency results
for q-RRT and Pq-RRT as compared to RRT and Parallel
RRT. In section IV-B, we provide heatmaps of q-RRT’s
node placement speed over RRT, and in Section IV-C we
provide narrow corridor results for q-RRT. In Section IV-D,
we provide tree comparisons between Quantum Database
Annealing and standard database construction.

A. NOTATION
The set of natural numbers is denoted as N, and similarly,
R is the set of real numbers, while C is the set of complex
numbers. For d, p ∈ N, we use Rd to refer to d-dimensional
real vector space, and by x ∈ Rd a vector in it. Lastly, the
Euclidean norm in Rd is identified with ∥ · ∥2.

B. QUANTUM COMPUTING BASICS
We briefly introduce quantum computing basics and how we
use quantum algorithms to solve motion planning problems.
We defer a more in depth introduction of quantum computing
basics to [1] and a comprehensive circuit-level discussion
to [37]. Let |z⟩ refer to the quantum state represented by
the qubit z. Quantum computers encode information in basic
units called qubits, given as the superposition of two basis
quantum states, |0⟩ and |1⟩. The set {|0⟩ , |1⟩} defines a basis
of quantum states. Qubits maintain probability amplitudes
(relative measurement likelihoods) α and β. A qubit |9⟩ can
exist in a superposition of |0⟩ and |1⟩, of the form |9⟩ =
α |0⟩+β |1⟩ with α, β ∈ C, |α|2+|β|2 = 1. Multiple qubits
come together to form a memory storage unit called a qubit
register. The measurement process involves the collapse of
the state |9⟩ (described by a superposition) to a base state

VOLUME 12, 2024 47175

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

{|0⟩ , |1⟩} (described by a definite classical state) according
to probabilities α2 and β2 (known as the Born rule).
Quantum algorithms perform fast parallel computations

on superpositions in a process known as quantum par-
allelism [15]. This manipulates the amplitudes α and β

of the system, which cannot be known explicitly, as any
measurement collapses the qubit. Previously we leveraged
quantum parallelism to create a new algorithm for solving
motion planning problems.

Our Quantum Rapidly-Exploring Random Tree (q-RRT)
algorithm [1] uses Quantum Amplitude Amplification
(QAA) with a Boolean oracle function X that evaluates
reachability of states. QAA uses an oracle X to increase the
probability of measuring a selected (‘good’) state 9 (such
that X (9) = 1). The QAA precise definition, mechanism of
action, and discussion can be found at [38], page 56. Similar
to [1], we take advantage of QAA to quantum search a size-N
unordered database for oracle-tagged items inO(N 1/2) oracle
calls, whereas non-quantum search algorithms require O(N)
calls.

III. PARALLEL QUANTUM RRT AND QUANTUM
DATABASE ANNEALING
In Section III-A, we outline the q-RRT Algorithm from [1],
followed by a presentation of the Parallel Quantum RRT
Algorithm in Section III-B, and then probability results for
Pq-RRT in Section III-D. Lastly, in Section III-E, we present
the Quantum Database Annealing strategy.

A. QUANTUM RRT ALGORITHM
The q-RRT algorithm from our previous work [1] is a
tree-based search algorithm based on RRTs [39]. Quantum
RRT uses QAA on a database of possible parent-child pairs
to admit reachable points to the tree. In this work, q-RRT
returns a path (as opposed to the full tree in [1]) and has the
end condition of finding a goal. The line-by-line algorithm
can be found at [1], and because of q-RRT’s similarities with
Pq-RRT Manager (Alg. 1) and Pq-RRT Worker (Alg. 2),
we omit the line-by-line and instead reference lines of the
latter two enumerated algorithm descriptions.

The q-RRT Algorithm takes as input an initial state x0 and
a goal state xG in a compact configuration space C ⊆ Rd ,
a number of qubit registers n, and a quantum oracle function
X . It returns a dynamically feasible obstacle free path γ .
The q-RRT algorithm adds nodes to graph T until there is a
node within distance δ of the goal xG. To add a node, q-RRT
creates a 2n sized database D of random possible nodes and
the nearest parent in T to the random node, as shown in
Alg. 1 on lines 4-8. A 1−to−1 mapping F is created between
database D and qubit |9⟩ (shown in Alg. 2, line 1). Then,
the qubit is initialized and an equal superposition between
states set (shown in Alg. 2 on lines 2 and 3 respectively).
LetW be theWalsh-Hadamard transform, the operator which
maps a qubit to an equal superposition of all qubit states.
On lines 4-6 of Alg. 2, the operator Q performs QAA to
amplify the probability amplitudes of correct states as defined

by oracle X , which tests the reachability of random samples
to the nearest proposed parent P of the existing graph T ,
thus ensuring that T is fully reachable. For an analysis into
selecting imax we refer readers to [1].

Measurement is performed and the correct database
element selected in Alg. 2 on line 7. After measurement is
performed, the quantum state has collapsed into a definite
state and no further information (beyond the definite state)
can be gained from the qubit. Lines 14-16 of Alg. 1 allow
a node placed within δ of xG to be admitted to T as xG,
ending the algorithm. The path is returned after successful
loop execution on Alg. 1, line 19.

B. PARALLEL QUANTUM RRT
In this section, we define the Parallel Quantum RRT
(Pq-RRT) algorithm as a manager (Alg. 1) worker (Alg. 2)
formulation. The Pq-RRT algorithm performs reachability
tests using a parallel pool of quantum computers, and is
a direct extension of q-RRT inspired by parallel motion
planning. The manager algorithm assigns work to the parallel
pool and adds results to the tree T . The assigned work
consists of each quantum worker performing a reachability
check on a database D using QAA with a quantum oracle,
and returning a single database element. The specific
parallelization architecture is chosen for a few reasons.
We consider scenarios where generally worker runtime cost
dominates the message passing cost (as per [26]). This rules
out such architectures as disjoint workers independently
searching for a solution by growing separate trees, which
have relatively little message passing but are much less
runtime-efficient in finding a solution.

In the chosen manager-worker scheme, instead of dis-
cretizing a search space to allow workers to each grow a
separate part of a tree, each worker is tasked with adding
a single element to the tree (anywhere). This removes the
idleness aspect of workers, as workers do not have to be
actively listening for tree updates and do not rely on the
work of others to perform their own search. Additionally,
because of the probabilistic nature of the quantum search
process, the parallel quantum routine generally can have
all workers complete work simultaneously. This feature is
not possible in non-quantum parallel architectures, as each
worker is performing a stochastic search for a solution,
which generally takes differing times between workers. In the
quantum architecture, however, the runtime to amplify a
database is much more consistent, and if each quantum
worker is performing the same number of amplifications
before measurement, they should complete a search nearly
simultaneously. The key difference lies in the goal of the work
performed. A solution does not need to be deterministically
found for work to be completed (as in the non-quantum case).
Work is instead completed when a solution is more likely to
be found, which can be standardized for runtime across the
workers.

Alg. 1, the manager algorithm, has the same inputs and
outputs as q-RRT. The worker algorithm, Alg. 2, admits as

47176 VOLUME 12, 2024

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

inputs the current tree T , the number of qubit registers n,
the quantum oracle function X , and a copy of the shared
database D, and returns a selected element of the database
[xadd,P].

Algorithm 1 Pq-RRT Manager, Shared Database
Input: x0, xG n, oracle X
Output: Path γ

1: Init p-worker pool
2: Init tree T with root at x0
3: while xG /∈ T do
4: for i = 1 to 2n do
5: t = random point
6: P = closest parent of t in T
7: D(i) = [t; P]
8: end for
9: [xadd,P](k) = Worker(T , n,X ,D), for k ∈ p

10: for k = 1 to p do
11: if [xadd,P](k) /∈ T then
12: Add [xadd,P](k) to T
13: end if
14: if ∥xadd(k)− xG∥ < δ then
15: xadd(k) = xG
16: end if
17: end for
18: end while
19: Return path γ from T

Algorithm 2 Pq-RRT Worker, Shared Database
Input: T , n,X ,D
Output: [xadd,P]
1: Enumerate D via F : {0, 1}n → D
2: Init n qubit register |z⟩ ← |0⟩⊗n

3: |9⟩ ←W |z⟩
4: for i = 1 to imax do
5: |9⟩ ← Q(X) |9⟩
6: end for
7: [xadd,P]← F(measure(|9⟩))
8: Return [xadd,P]

Two versions of this parallel formulation are possible,
shared and unshared database. The fundamental difference is
whether parallel pool workers create a database or perform
QAA on copies of the same database D, which is created by
the manager. For the shared database version, as shown in
Fig. 1, in Alg. 1 Lines 4-8 the manager creates the database
D and passes copies to each worker k ∈ p, as shown by the
inputs to Alg. 2. In this way, the workers would ‘‘share’’ and
search (copies of) the same database. The manager ignores
additional identical solutions returned by different workers,
which is a fast process given that the workers essentially are
returning an index to a database element.

For an unshared database, as shown in Fig. 2, the database
construction step is performed within the worker algorithm

FIGURE 1. A graphical depiction of the shared database quantum parallel
RRT algorithm. The manager (Alg. 1) creates a database and passes copies
to the quantum workers (Alg 2).

FIGURE 2. A graphical depiction of the unshared database quantum
parallel RRT algorithm. The manager prompts p classical workers to
create p different databases, which are passed to p quantum workers to
find solutions, which are returned to the manager.

(Alg. 2), which can be a classical worker until QAA is
performed.

The advantage of the shared database approach is an
increase in database-use-efficiency due to extracting multiple
possible reachable states per database construction. This
aligns with the main motivation behind this work, which is
to mitigate the probability information loss due to quantum
measurement. Because quantum computers are reducing the

VOLUME 12, 2024 47177

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

time spent on the computationally intensive portion of the
algorithm (state collision/reachability checks), steps such
as database construction will become a larger proportion
of algorithm runtime, so it is advantageous to have high
database-use-efficiency, which we analyze next. However,
the shared database approach can be less oracle-call efficient
(compared to unshared database), with fewer reachable
states are admitted per oracle call because repeated identical
solutions are discarded. This is shown in Section IV-A Fig. 9,
and we discuss how important that efficiency loss is and how
to mitigate it in Section III-D.

C. RUNTIME ANALYSIS
We consider runtime and computational cost comparisons of
the shared and unshared database formulations to character-
ize database-use efficiency and discuss potential trade-offs.

Since databases are made from parent–child connections,
adding an element to a database requires a tree search. Let the
cost of randomly generating a possible node be τ0 (generally
small), and let the unit search cost of finding a parent be τs
(generally computing some distance metric). Then, when the
tree has M nodes, building a database of size 2n (where n is
the number of qubits in use) has cost CD(M),

CD(M) = (τ0 + τsM)2n.

Remark 1: We note that this search cost of τsM can be
minimized through a spatial tree discretization scheme where
only partial local tree searches are necessary, but generally
this cost still scales as a function ofM .
Let the message passing costs of passing a node between

manager and worker be τν . Then, the cost of passing an
M -node tree is Mτν and the cost of passing a 2n-sized
database is 2n+1τν .
Remark 2: The +1 appears in the exponent of the

database-passing cost due to database elements being a
parent–child pair, but this can be reduced to be an index rather
than node.

Let the cost of one application of QAA be τQ. Since
optimal amplification is achieved by π

4
√
2n/m applications

of QAA, we define the optimal amplification cost as CQ,

CQ =

⌊
π

4

√
2n

m

⌋
τQ,

where m is the number of solutions within the database.
Remark 3: In general, for traditional (non-quantum)

sampling-based planning algorithms, costs like τQ are much
larger than τ0,s,ν . Connection costs far outweigh sampling
and tree-traversal costs. Additionally, the function is floored,
as QAA can only be applied a discrete number of times.

In the following, we derive two types of costs: runtime and
total cost. Runtime cost, for p-core parallel algorithms, is the
analog to computation time, where centralized components
are counted fully and decentralized components (that run in
parallel) are discounted by a factor of p. Total cost has two
analogous scenarios: total power consumption and sequential

algorithm runtime (to accomplish the same task), where
decentralized components lose the p-fold discount factor.
Terms in Props. 1 and 2 are presented in the order with which
they are incurred when the algorithm is running.
Proposition 1: The runtime cost of the unshared database

algorithm shown in Fig. 2, with p workers, is,

CRun
Unsh = p

M∑
k=1::p

kτν+
M
p
2nτ0+2n

M∑
k=1::p

kτs+
M
p
CQ+Mτν,

(1)

and the total cost is,

CTot
Unsh = p

M∑
k=1::p

kτν+M2nτ0+2np
M∑

k=1::p

kτs+MCQ+Mτν,

(2)

where the notation
∑M

k=1::p refers to the sum from k = 1,
stepping by p, to M , while k < M .
For the runtime cost in Eq. (1), the first term, p

∑M
k=1::p kτν ,

is the message passing cost of the current tree, of growing
size, being sent to the p workers. Since the tree is growing
by p nodes each iteration, the message passing cost is made
of a sum and must be incurred p times, as the tree must
be sent to each worker each iteration. The second term,
M
p 2

nτ0, is the random sampling cost incurred in database
construction by each worker, and since this process is
distributed, at runtime the M multiplier is scaled by 1

p . The

third term, 2n
∑M

k=1::p kτs, is the parent search cost, which
grows as the tree grows by p nodes each iteration. The fourth
term, M

p CQ, is the cost of applying QAA (and testing for
reachability), and is distributed at runtime (divided over p).
The last term, Mτν , is the cost of sending all M found nodes
back to the manager.

To attain the total cost in Eq. (2), the distributed terms
of Eq. (1) (terms 2, 3, and 4) are multiplied by p to find
sequential runtime cost.
Proposition 2: The runtime cost of the shared database

algorithm shown in Fig. 1, with p workers, is,

CRun
Sh =

M
p
2nτ0 + 2n

M∑
k=1::p

kτs +M2n+1τν +
M
p
CQ +Mτν,

(3)

and the total cost is,

CTot
Sh =

M
p
2nτ0 + 2n

M∑
k=1::p

kτs +M2n+1τν +MCQ +Mτν,

(4)

where the notation
∑M

k=1::p refers to the same as previous.
For the runtime cost in Eq. (3), the first term, Mp 2

nτ0, is the
random sampling cost incurred by the manager in database
construction, which occurs M

p times in the shared database

case. The second term, 2n
∑M

k=1::p kτs, is the parent search

47178 VOLUME 12, 2024

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

cost, which is identical to term 2 of Eq. (1). The third term,
M2n+1τν , is the message passing cost of sending each worker
a database (for a total of M passes). The fourth term, Mp CQ,
is the cost of applying QAA and is distributed at runtime.
The last term, Mτν , is the cost of sending all M found nodes
back to the manager. To attain the total cost in Eq. (4), the
distributed term of Eq. (3) (term 4) is multiplied by p to find
sequential runtime cost.

There are two main cost differences between the unshared
and shared database formulations in creating an M -node
tree. In both the runtime cost, in Eq. (1), and the total cost,
in Eq. (2), the unshared algorithm incurs a message passing
cost of p

∑M
k=1::p kτν in passing the growing tree (from 1 toM

nodes) to p workers. In Eq. (3) and (4), the shared algorithm
incurs a message passing cost ofM2n+1τν instead, in passing
the database to workers (M times). The other terms in the
runtime costs between the versions are identical. Whether the
difference in message passing costs favors one scheme over
the other is dependent on the relative sizes of M and 2n. For
small trees and large databases, the unshared databasemethod
incurs a smaller cost. For large trees and small databases, the
shared database method incurs a smaller cost.

The second difference is in the total cost. In Eq. (2), the
unshared algorithm incurs a total database creation cost of
M2nτ0+2np

∑M
k=1::p kτs to create anM node tree. In Eq. (4),

the shared algorithm incurs a total database creation cost of
M
p 2

nτ0+2n
∑M

k=1::p kτs, effectively giving a p-fold reduction
in total database creation cost. We refer to this as increased
database efficiency, since an M -node tree is created with
fewer database constructions.

In Fig. 3, we compare runtime costs of the two architectures
when weights are assigned to each cost. As noted above,
at runtime, the cost difference comes in message passing
either the tree or the database, so the ratio of number of
desired nodesM to total database size is plotted against cost.
We show cost curves for the 8 and 32 core cases for both
architectures to further understanding on how costs scale with
number of cores. As is expected, 32-core cases minimize
costs across the entire plotted domain for both architectures.
Additional cores seem to minimize the unshared database
cost to a greater extent than the shared database cost. At small
tree sizes relative to the database, the unshared architecture
minimizes cost, and the curves appear to converge as the end
tree size eclipses the database. The visualization is possible
through the log scaling of the cost, but this scaling obscures
the fact that the shared formulation actually becomes lower
cost at high ratios of M

2n .
In Fig. 4, we depict a semilog plot of the cost differential

between the shared and unshared architectures over the same
domain of ratios of tree to database size. For smaller final
trees, the unshared formulation maintains a cost advantage,
but the advantage skews strongly to the shared database as the
tree size grows. This effect is obscured in Fig. 3 by the loglog
nature of the scaling and apparent equal performance on the
upper end of the domain. The cost differential over the entire

FIGURE 3. A comparison in loglog space of the cost differences between
the unshared and shared database architectures as the relative final tree
size M varies with respect to database size 2n.

FIGURE 4. The differential cost between the shared and unshared
database architectures as the relative final tree size M varies with respect
to database size 2n.

domain appears relatively similar between 1, 8, and 32 core
cases.

A key assumption in the above analysis is that for both
algorithm architectures, in each iteration, the p cores add p
nodes to the tree. For both architectures this is overlooking
the fact that the database cannot be optimally amplified,
as applying an operator can only be done an integer number
of times, and the optimal amplification number is exactly
defined using an irrational number (π). Furthermore, even if
optimal amplification was possible, in general there is still
a nonzero probability of measuring a ‘bad’ (unamplified; as
defined by the oracle) element, which should not be admitted
to the tree (and can be caught with a final deterministic
check). This simple fact eliminates the possibility that in each
iteration, the p cores can always add p nodes to the tree.

VOLUME 12, 2024 47179

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

A further complication for the shared database setup is
that nodes may find identical solutions, further lowering
efficiency. In the following section we explore to what extent
this is likely, and guidelines for minimizing this effect to
allow high database use efficiency.

A different possible solution is to use a partitioned
‘‘shared’’ database, where a single larger database is passed
to each worker with a partition rule such that each
worker searches different and non-overlapping portions of
the database. This would eliminate the repeated solution
problem, but is more database efficient (if each partitioned
database is considered part of one database), but would
require larger databases and is functionally equivalent to the
unshared database architecture, with the manager creating
databases rather than the workers. A larger database with
more solutions also helps to eliminate the repeated solution
problem. We also note that although classically connection
costs τQ ≫ τ0,s,ν , this may no longer be the case when
quantum computers are used to determine reachability.

D. PQ-RRT PROBABILITY RESULTS
In this section, we characterize p parallel quantum workers
finding multiple solutions when Pq-RRT is operating in a
shared database setup. Since all the workers are indepen-
dently analyzing the same 2n-sized database D, with m
oracle-marked solutions, in general multiple workers may
arrive at the same solution. This represents an efficiency
loss to the shared database setup, so in what follows we
characterize the worst and best case events. The worst case
event is all workers arriving at the same solution, which has
the runtime performance as non-parallel q-RRT but is p-times
less oracle call efficient. The best case event is each worker
finding a different solution, which has no runtime or oracle
call efficiency loss, and ends with p solutions. Only when
p ≥ m can all solutions be found in a single parallel pass.
To build fast solutions, an understanding of the effects of
choices of p (and to some extent m) is necessary to maximize
efficiency.

We assume that the database is optimally amplified
according to imax applications of Q, where imax is given by,

imax =
π

4

√
2n/m ;

see [40]. We note that our connectivity analysis on estimating
database correctness in [1] can be applied to the section at
hand in order to attain optimal amplification (to maximize
chances ofmeasuring a solution). In what follows, letG be the
event that a good state, as defined by the oracle, is measured
by a worker after imax iterations of Q.

1) WITHOUT ORACLE ERRORS
Lemma 1: Let there be a parallel quantum process with p

workers and a shared 2n-sized database with m solutions. The
probability that all p workers find the same solution is,

P(same solution) = P(G)pm1−p, (5)

where P(G) is the total probability of event G,

P(G) = sin2((2imax + 1)θ),

and where θ is defined such that sin2(θ) = m
2n .

Proof: To attain this result, we observe that after imax
iterations of Q, all m solutions have equal probability of
measurement given by P(G)/m. The probability that all p
workers measure a particular solution i is,

P(particular solution) =
(

P(G)
m

)p

,

and this is multiplied by m to generalize to finding any
same solution, yielding Eq. (5). The total good measurement
probability and the definition of θ can be found at [38]. □
Lemma 2: For m ≥ p and m, p ∈ N, the probability that

all workers find different solutions is given by,

P(different solutions) =
P(G)pm!
mp(m− p)!

, (6)

Proof:This result follows fromm permute p (the number of
possible ways p objects can be selected, without replacement,
from m possibilities) over the total number of possible
outcomesmp. This is scaled by the likelihood that all workers
find a correct solution, P(G)p, to yield Eq. (6). □
For the worst case scenario in Eq. 5, as m → ∞,

P(same solution) → 0. This makes intuitive sense: as the
number of available solutions increases, the likelihood of all
workers finding the same solution decreases as a function
with power 1 − p, where p ≥ 2, as it is only sensible to
conjecture about the parallel behavior of 2 or more workers.

For the best case scenario in Eq. 6, as m → ∞,
P(different solutions) → P(G)p. This also makes intuitive
sense: as the number of solutions increases, the likelihood of
all workers finding different solutions approaches the total
likelihood of all workers finding a solution. We note that for
m ≥ p and m, p ∈ N:

lim
m→∞

m!
mp(m− p)!

= 1.

The number of solutions m should be as large as practicable
to reduce efficiency loss through oracle overlap.
Lemma 3: For p ≥ m, the expected number of workers p,

to find all m solutions within D in one pass, is given by,

E(p) =
mHm
P(G)

,

where Hm is the mth harmonic number. Equivalently, E(p)
p2

also describes the expected number of passes at a single
database that the set number of workers p2 must make to find
all solutions.
Proof: We reach this result from the application of the

Coupon Collector’s problem [41], with a minor modification,
to the independent quantum computing worker processes.
Briefly, the coupon collector’s problem concerns questions
about the ‘‘collect all coupons from cereal boxes to win’’
contest. In this context, solutions in the database represent

47180 VOLUME 12, 2024

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

coupons (to be found with a certain probability), and
number of workers represents (the expectation of) how
many cereal boxes must be opened to find one of each
solution/coupon. The result takes into account that workers
may return the same solution. This application is scaled by
the total probability of correct solutions, P(G), to account
for the proportion of the time when a good solution is not
measured. □
Lemma 3 allows a parallel (and repeated) architecture

to be chosen based upon knowledge of m, such as from
our connectivity analysis on estimating database correctness
in [1]. Additionally, this leads to the database construction
tool described in the following section that allows the
proportion m/2n to be made larger or smaller. We remark
that in general, it is possible to calculate the probability of
n workers coinciding on the same exact solution, as it relates
to the multinomial distribution.

2) WITH ORACLE ERRORS
We also consider the case where the oracle is making repeated
false positive and false negative errors. Let the probability that
a state is marked by the oracle incorrectly as good be given
by q ∈ [0, 1] (false positive), and let the probability that a
state is marked by the oracle incorrectly as bad be given by
v ∈ [0, 1] (false negative). Let the number of ground-truth
solutions in the database tagged by the oracle as a solution be
m1 ≤ m. Let the number of actual ground truth solutions in
the database, which were mistakenly tagged by the oracle as
bad be m2, such that,

q =
1− m1

m
, v =

m2

2n − m
,

as shown in Fig. 5.
First, we derive the likelihood that a single worker finds

a real solution. Let G∗ be the event that a real, ground truth
solution (not according to the oracle) is measured for addition
to the tree after optimal amplification with QAA.
Lemma 4: The total probability of measuring real, ground

truth solutions is,

P(G∗) =
m1

m
P(G)+

m2

2n − m
(1− P(G)).

Proof: We attain this result by adding the probability of
measuring a correctly tagged good solution, m1

m P(G) to the
probability of measuring an incorrectly tagged bad solution,
m2

2n−m (1− P(G)). □
The following lemma is a modification of Lemma 1 to

include oracle errors.
Lemma 5: The probability that all p workers find the same

ground truth solution, adjusted for oracle mistakes, is,

P(same solution) = m1

(
P(G)
m

)p

+ m2

(
1− P(G)
2n − m

)p

.

(7)

Proof: This result follows from the addition of the
probability of all p workers measuring a particular correctly

FIGURE 5. A graphical depiction of the false positive and false negative
regions of a database with good and bad tags by an oracle. Of the m good
tags, m1 are true good tags, with a false positive probability of q. Of the
2n − m bad tags, m2 are actually good elements, with a false negative
probability of v . After optimal QAA, the probability of a tagged-as-good
state being measured is P(G).

tagged good solution,
(

P(G)
m

)p
, and the probability of all

p workers measuring a particular incorrectly tagged bad
solution,

(
1−P(G)
2n−m

)p
. Each of these is multiplied by m1 and

m2 respectively, to consider any real solution, then added
together to yield Eq. (7). □
For the worst case scenario in Lemma 5, again, as m →
∞, P(same solution) → 0. The following lemma is a
modification of Lemma 3, adjusted for oracle false positive
errors.
Lemma 6: The expected number of workers p to find all

m1 ground truth solutions, when false positive oracle errors
are taken into account, is given by,

E(p∗) =
m1Hm1
m1
m P(G)

,

where Hm1 is the m1
th harmonic number.

Proof: This result follows similarly to Lemma 3, with
m1 rather thanm, and where the expectation from the Coupon
Collector’s Problem is scaled by the proportion of the time
that a ground truth good solution is found, m1

m P(G). □
Remark 4: Oracle false negative errors, when considered

in Lemma 6, transform the problem into a simple version of
the Weighted Coupon Collector’s Problem [42] (also known
as McDonald’s Monopoly), with some ‘‘rare coupons’’ to
find (represented by the m2 false negative solutions), and
some ‘‘common coupons’’ (represented by the m1 real
positive solutions). In reality, after optimal amplification, the
probability of measuring the m2 good solutions incorrectly
tagged as bad, m2

2n−m (1−P(G)), is small, and additionally we
care more about finding correctly identified good solutions
than determining incorrectly tagged bad solutions from a
database.

E. QUANTUM DATABASE ANNEALING
In this section, we define the Quantum Database Annealing
(QDA) strategy, shown in Alg. 3. QDA builds databases with

VOLUME 12, 2024 47181

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

elements constrained to a certain distance from the parent
node, as defined by a temperature matrix H and iterator h.
The QDA strategy is an alternative to standard database
construction and is inspired by the optimization technique
simulated annealing and our investigations into oracle call
constraints in [1]. It represents a possible way to guide
database construction to achieve a particular algorithmic
goal, such as approximately selecting m (with regard to
the previous section), or in this case, initial fast expansion
via spread node placement followed by increasing density
through closer node placement.

In a broad sense, sampling strategies for motion planning
have been explored since the beginning, with strategies
such as medial axis sampling, boundary sampling, Gaussian
(obstacle) sampling, goal biasing, and hybrid schemes [21].
QDA is distinct from current classical computing approaches
because the initial goal in this quantum formulation is to
make sample connections less likely. When paired with a
large database, QDA exploits quantum computing’s ability to
quickly find unlikely solutions, resulting in a motion planner
that can explore very quickly when measured on oracle calls.

QDAfirst samples according to a uniform distribution over
the configuration space C . The nearest (Euclidean distance)
existing node to the sample is chosen as the parent. Next, the
resulting parent-child relationship is constrained to be within
a ball of radiusH (h) (with iterator h) while maintaining child-
sample direction. The resultant pair is added to the database.
An alternative is to sample initially over a disc or boundary
at a distance constrained by H (h).
In the beginning, with high temperature (when H (h) is

large), QDA will build a large database of further away and
therefore less likely solutions. This allows further reachable
solutions to be found quickly as compared to q-RRT and
RRT.As the path planning problem continues (as h increases),
the temperature (H (h)) may drop to account for the addition
of new nodes and to increase the ratio of good solutions in
the database. The database size 2n may also drop throughout
the problem to increase efficiency, as when there are more
solutions, smaller databases function as well as larger. When
no additional information is known to guide sampling region,
an alternative but similar sampling method in very large
bounded configuration spaces is to build extremely large
databases of unlikely solutions in an attempt to span long
obstacle free channels quickly.

The differences between q-RRT and q-RRT with QDA,
Alg. 3, lie in the latter algorithm’s lines 2, 7, and 21. Alg. 3
line 2 is where the temperature arrayH is defined and iterator
h initialized. On Alg. 3 line 7, the temperature constraint is
carried out by modifying the random point t with respect
to P, the closest parent of t in T . On Alg. 3 line 21, the
iterator h is incremented to allow different temperatures on
future database constructions. In the defined formalism, the
database size 2n is set and not decreased.

This approach to guided sampling is distinct from efforts
within guided sampling in non-quantum literature. Generally,
the point of guided sampling is to make the search for

Algorithm 3 q-RRT with Quantum Database Annealing
Input: x0, xG n, oracle X
Output: Path γ

1: Init tree T with root at x0
2: Define temperature array H , index h = 0
3: while xG /∈ T do
4: for i = 1 to 2n do
5: t = random point
6: P = closest parent of t in T
7: Constrain t to disc of dist. H (h) from P
8: D(i) = [t; P]
9: end for

10: Enumerate D via F : {0, 1}n → D
11: Init n qubit register |z⟩ ← |0⟩⊗n

12: |9⟩ ←W |z⟩
13: for i = 1 to 2 do
14: |9⟩ ← Q(X) |9⟩
15: end for
16: [xadd,P]← F(measure(|9⟩))
17: if ∥xadd − xG∥ < δ then
18: xadd = xG
19: end if
20: Add [xadd,P] to T
21: h++
22: end while
23: Return path γ from T

additional states and solutions easier. Additionally, there
is no reason (until the introduction of quantum computers
to motion planning) to construct databases of possible
solutions, the algorithms always progress by testing one
possible state at a time. With QDA, however, we design a
guided sampling schemewith a polar opposite goal to existing
efforts: making the solution process more difficult. This is
because we are able to exploit the quantum advantage, and by
making the solution process more difficult, we are able to find
‘better’ solutions in the sense of solutions that allow vigorous
(and provable with respect to metrics such as reachability and
safety) expansion into an environment. When constructing
databases, we also think of guided sampling in a different
lens.

IV. RESULTS AND DISCUSSION
In this section, we show tree creation comparison results
within two dimensional obstacle environments for Pq-
RRT, q-RRT, Parallel RRT, and RRT. Direct comparisons
highlighting the simulated quadratic runtime advantage of
q-RRT over standard RRT are shown in detail in our previous
work at [1]. Unless otherwise stated, results are presented
comparing algorithm performance for solving the same
problem in the same randomized obstacle environments. Both
Pq-RRT and Parallel RRT are implemented with eight cores
(workers). Both quantum algorithms use databases of size 28,
and the classical versions of the algorithms (RRT and Parallel

47182 VOLUME 12, 2024

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

RRT) replace the database construction and quantum search
process with single reachability tests. The specific version
of Parallel RRT is a Manager-Worker formulation (outlined
in [26] under Manager-Worker RRT), where a manager
processes the tree and assigns single-node expansion work to
workers, as expansion is the computationally expensive part
of planning.

All path planning simulations are run with Matlab
v2022b on an eight core MacBook Pro with M2 chip.
Quantum states and algorithms are simulated with the Matlab
Quantum Computing Functions library [40]. A selection of
Matlab code is available at github.com/pdlathrop/PQRRT.
This implementation was chosen over IBM’s Qiskit and
over actual experimental quantum devices in order to:
maintain comparability with our previous work regarding
q-RRT, enable full back-end probability amplitude control
for verification and testing, allow integration with classical
computing functions and parallel structures, and permit
relatively large qubits and long runtimes. All algorithms
use the following arbitrary dynamics and reference tracking
controller to test reachability for node admittance to the tree,

x(t + 1) = Ax(t)+ Bu(t) , x(0) = xparent,

A =
[
−1.5 −2
1 3

]
, B =

[
0.5 0.25
0 1

]
,

u(t) = −Kx(t),

K =
[
1.9 −7.5
1 7

]
.

The constant gain matrix K can be any matrix such that the
closed loop system is stable.

A. NODE PLACEMENT AND ORACLE CALLS
In this section, we highlight the advantages and disadvantages
of q-RRT and Pq-RRT over RRT and Parallel RRT in being
able to add nodes to the tree.We show performance compared
to runtime in seconds, which we call wall-clock time to
highlight that this is the ‘‘real’’ runtime of the simulations,
and then to number of oracle calls, which functions as the
projected runtime improvement if algorithms are run on
quantum devices. For performance metrics, we consider two
quantities: number of oracle calls and number of nodes.
Number of oracle calls is the metric for comparing howmuch
Parallel q-RRT is able to speed up computation as compared
to q-RRT. For all other comparisons, number of nodes is
the chosen metric, as it signifies on a functional level the
ability of each algorithm to search for a solution. Each point
in Fig. 6- 9 represents one 30-node tree creation, chosen to
showcase average performance.

First, in Fig. 6 we show the wall-clock speed of Pq-RRT
and q-RRT in being able to perform oracle calls to analyze the
amount of computation speedup achieved. Next, we compare
the wall clock speed of the two classical algorithms (in
Fig. 7) and the two quantum algorithms (in Fig. 8) to study
the relative performance gain in parallelizing the quantum
routines compared to classical parallel advantage. Lastly,

FIGURE 6. Comparison of the wall-clock speed (in seconds) of q-RRT, and
shared database Pq-RRT in performing oracle calls or reachability tests.

in Fig. 9, we change to an oracle call (our quantum time
surrogate) vs node creation comparison to show the efficiency
of the quantum algorithms in admitting nodes to the tree. The
performance advantage of Pq-RRT is inferred to combine the
advantage shown over q-RRT in Fig. 8 and the advantage
shown over the classical algorithms shown in Fig. 9.

Figure 6 depicts the wall-clock speed of q-RRT and
parallel q-RRT in performing oracle calls. Pq-RRT performs
oracle calls in less time than q-RRT, as it more efficiently
uses multiple workers to retrieve information from created
databases. The relationship between oracle calls and time
is approximately linear (as expected), and with a linear fit
(using linear least squares), Pq-RRT shows a smaller slope
(0.20) compared to q-RRT (3.52), with slope referring to
seconds per oracle call. A lower (or shallower) slope is
more efficient, as for a fixed number of nodes, a lower time
(y-value) corresponds with increased efficiency. A classical
computing shortcut is used which allows Pq-RRT to be
17.6 times more efficient in performing work. In quantum
computing simulation, a single created database is analyzed
for reachability once, then amplified once, and each worker
then measures a solution. This shortcut would not be possible
on a quantum device, as qubits, once they are created,
cannot be copied, so each worker would need to perform
the reachability analysis separately. This would change the
expected slope difference to be approximately 8 times less
than 17.6 (as 8 cores are used), for a total work (oracle call)
efficiency gain of 2.2.

Figure 7 depicts the wall-clock speed of RRT and Parallel
RRT in admitting nodes to the graph, as opposed to
performing oracle calls. The same data for q-RRT and
Pq-RRT is shown in Fig. 8. This comparison factors in
differing node-admission oracle call efficiencies. The parallel
versions of both algorithms, Parallel RRT and Pq-RRT, each
are on average more time efficient than the non-parallel
versions in admitting reachable states to the tree.

The intuition behind slope in Figures 7 and 8 is seconds
per node, with a shallower slope meaning more efficient.

VOLUME 12, 2024 47183

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

FIGURE 7. Comparison of the wall-clock speed (in seconds) of RRT and
parallel RRT in admitting reachable states to the tree.

FIGURE 8. Comparison of the wall-clock speed (in seconds) of q-RRT and
Pq-RRT in admitting reachable states to the tree.

Pq-RRT (slope 3.17) in particular shows greater improvement
over q-RRT (slope 25.3) than Parallel RRT (slope 0.58) over
RRT (slope 1.23), as is evidenced by a larger difference in
slope (8.0-fold efficiency increase compared to 2.1-fold),
as calculated with a linear fit and linear least squares.
The quantum algorithms, when measured by real time, lag
behind both non-quantum RRT versions because they are
not benchmarked on quantum computers (see the y-axis
label differences between Fig. 7 and Fig. 8). The quantum
computing simulations are performed via large arrays on
classical devices. On a quantum device, we expect the
run-time to be analogous to oracle calls, as discussed next.

Figure 9 depicts the oracle call efficiency of all four
algorithms in admitting reachable states to the tree as a
function of the number of oracle calls it takes. This figure is
analogous to expected run-timewhen the quantum algorithms
are executed on a quantum device. Slopes are found with a
linear fit using linear least squares and represent the number
of oracle calls per node, again with a shallower slopemeaning
more efficient. The efficiency advantage of q-RRT (slope

FIGURE 9. Comparison of the oracle call efficiency of RRT, parallel RRT,
q-RRT, and Pq-RRT in admitting reachable states to the tree.

7.6) and Pq-RRT (slope 10.7) in admitting reachable states is
shown over RRT (slope 21.5) and Parallel RRT (slope 19.4).
The q-RRT algorithm is more efficient than Pq-RRT due
to the fact that multiple workers can simultaneously return
the same solution from a database (as explored in Props. 1
to 6), and repeat solutions are discarded. However, Pq-RRT
is capable of making simultaneous oracle calls with different
workers, so for parallel vs not parallel time comparisons we
refer the reader to Fig. 7 and Fig. 8.

The conclusions of the above analysis are the following:
Pq-RRT is more time-efficient than q-RRT in performing
work and placing nodes, Pq-RRT shows a greater time
efficiency increase over q-RRT than Parallel RRT does over
RRT, and q-RRT is slightly more oracle-call-efficient than
Pq-RRT, but both quantum algorithms are more oracle-call-
efficient than the classical algorithms.

B. EXPLORATION SPEED
The results of this section are extensions to our results
in [1] between q-RRT and RRT, showing q-RRT’s ability to
explore quickly and in a generalized environment. We show
a heat-map of state space nodes placed within a certain
number of oracle calls. Oracle calls are chosen as a substitute
to time because the quantum computer simulation performs
slowly on classical devices. Actual runtime is expected to be
analogous to the number of oracle calls, as reachability tests
for the local planner consume the majority of the algorithm
runtimes. Each algorithm is tested over 100 trials. Each trial
is cut off after a certain number of oracle calls to show each
algorithm’s speed of node placement. Let oracle efficiency be
the ratio of total nodes placed over total oracle calls. In each
figure, the red circle refers to a goal zone.

Figure 10 depicts the initial exploration speeds, from 0 to
10 oracle calls, of RRT and q-RRT. Each path planning
problem is cut off after 10 oracle calls and a heatmap is
created of the total node placement in the state space over
100 trials. The q-RRT method shows much faster initial
node placements over RRT, admitting 372 nodes with an

47184 VOLUME 12, 2024

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

FIGURE 10. Comparison of initial exploration speeds (up to 10 oracle
calls) of RRT and q-RRT. Data is shown as a state space heat-map of node
placements over 100 trials of each algorithm in the shown obstacle
environment. A goal zone is shown as a red ring in the bottom right, and
the heatmap color key is shown on the right of the graph.

oracle efficiency of 31.2%. The q-RRT method has more
than a thousand total oracle calls due to the inclusion of
a finalizer line before nodes are admitted to the tree. RRT
admitted 125 nodes with an oracle efficiency of 12.5%. Node
placement is more dense both in the initial node pocket and
along lines exploring outward between obstacles away from
the initial node.

Figure 11 depicts the middle-time exploration speed,
from 0 to 20 oracle calls, of RRT and q-RRT. Similarly,
each path planning problem is cut off after 20 oracle calls
and a heatmap created from the total node placement of
each algorithm over 100 trials. The q-RRT method shows
much faster and more full middle-time node placement,
admitting 650 nodes with an oracle efficiency of 31.0%. RRT
admitted 231 nodes with an oracle efficiency of 11.6%. Node
placement is more ‘‘full’’ in the initial pocket, and is much
more dense along lines exploring out between obstacles from
the initial node.

Figure 12 depicts the ‘‘late-time’’ exploration speed, from
0 to 40 oracle calls, of RRT and q-RRT. Heatmap creation
is again similar to previous. The q-RRT method has admitted
more nodes in nearby pockets, and has a more dense spread of
nodes in further away regions, admitting 1091 nodes with an
oracle efficiency of 26.0%, compared to RRT, which admitted

FIGURE 11. Comparison of middle-time exploration speeds (up to
20 oracle calls) of RRT and q-RRT. Data is shown as a state space
heat-map of node placements over 100 trials of each algorithm in the
shown obstacle environment.

526 nodes with an oracle efficiency of 13.2%. The average
oracle efficiency of q-RRT has dropped somewhat compared
to the initial and middle time exploration, and this is due to
the fact that, as the existing tree grows, new random points are
more likely to be reachable to the existing graph. This serves
to allow RRT to catch up in terms of efficiency, and q-RRT’s
created database, on average, has allowed more solutions.
The quantum version of the algorithms thrive (in comparison)
in situations where there are few solutions. Heatmaps for
Pq-RRT were also created for 10, 20, and 40 oracle call cases
as shown in Fig. 10- 12. The Pq-RRT heatmaps were omitted,
as results were largely similar between q-RRT and Pq-RRT.
This is similar to findings in Fig. 9 that, when compared over
oracle calls (quantum time surrogate), Pq-RRT’s advantage is
not apparent, as Pq-RRT is able to make simultaneous oracle
calls.

C. NARROW CORRIDOR EXPLORATION
The ability of motion planning algorithms to find paths
through narrow corridor environments serves as a benchmark
for the ability to find difficult solutions in narrow spaces.
In Figs. 13 and 14 we show, through a heatmap, the ability
of q-RRT to find passage through a narrow corridor when
compared to RRT. The figures depict a heatmap of node
placements of 50 trials of each algorithm in the overlaid

VOLUME 12, 2024 47185

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

FIGURE 12. Comparison of late-time exploration speeds (up to 60 oracle
calls) of RRT and q-RRT. Data is shown as a state space heat-map of node
placements over 100 trials of each algorithm in the shown obstacle
environment.

environment, where each method is cut off after 25 oracle
calls to analyze ability to quickly place nodes in the narrow
corridor. Obstacles are depicted in black, and are distributed
randomly on both sides of the narrow corridor, which is
created by 2 large obstacles.

The q-RRTmethod placed 47 nodes in the narrow corridor,
compared to RRT’s 14 nodes. Results are presented with no
guided sampling or known-goal direction to guide sampling.
The q-RRT algorithm is quicker to find paths into narrow
corridors toward possible goal locations.

D. QUANTUM DATABASE ANNEALING
We compare the abilities of Quantum Database Annealing
and standard q-RRT database construction to create trees
that spread across larger configuration spaces with a large
number (6025) of obstacles. In this formulation, Quantum
Database Annealing is initially creating databases of points
at a distance between 2.7 and 4.2 units from current nodes,
then dropping that range to between 0.8 and 2.0 units to fill
in the space around the initially spread tree. On the other
hand, q-RRT with standard database construction is sampling
across the entire configuration space C . Both algorithms are

FIGURE 13. A heatmap of q-RRT’s node placement in a narrow corridor
environment (up to 25 oracle calls) over 50 trial runs, with 47 nodes in
the channel. Obstacles are depicted in black, and a color key of node
placements is shown to the right of the graph.

FIGURE 14. A heatmap of RRT’s node placement in a narrow corridor
environment (up to 25 oracle calls) over 50 trial runs, with 14 nodes in
the channel.

using databases of size 29. Fig. 15 depicts a 16-node tree
with initial fast expansion made with Quantum Database
Annealing, and Fig. 16 shows continued node addition to a
48-node tree with lower temperature to fill in the area around
the initial spread tree. Fig. 17 depicts the standard q-RRT
created 16-node tree in the same environment, to compare
against Fig. 15. Obstacles are depicted as small black
rectangles, the root node of each tree is shown as a black
circle, nodes in each tree are shown as red circles, and parent
child connections are shown as black lines.

The resulting trees differ in how spread they are for the
same number of oracle calls (the quantum analog of runtime).
Quantum Database Annealing initially creates nodes an
average of 3.68 units away (with the above temperature

47186 VOLUME 12, 2024

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

FIGURE 15. A 16 node tree created with quantum database annealing
with high temperature, showing fast initial exploration. The root node is a
black circle and tree nodes are red circles. Parent-child relationships are
shown via black lines, and 6025 obstacles are depicted as small black
rectangles.

setting) from their parent and standard q-RRT creates nodes
an average of 1.70 units away from their parent. For a
fixed number and size of obstacles, it should be noted
that sampling parameters affect the average distance in the
q-RRT tree, and different average distances can be obtained
by varying the size of the database. For uniform sampling
over C , as the database becomes larger, the average distance
drops, as nodes are more frequently found near existing
nodes. For equal-sized large databases, in the same amount of
(quantum) time, QDA is able to create trees with more spread,
as only further away nodes are admitted to the database. The
temperature construct allows a balance between exploration
and density of nodes, enabling a version of q-RRT that can
connect distant regions of a configuration space very quickly
before back-filling with lower temperature.

The proposed formulation combines QDA with q-RRT
(in replacement of standard uniform database construction)
in an effort to show comparisons with the most basal
algorithm possible. Both Pq-RRT and QDA are strategies to
increase the efficiency of q-RRT, but in different ways, and
compared over different metrics. We expect the strategies
to be complementary because while Pq-RRT increases
speed through decreasing seconds per node, QDA increases
speed through allowing higher-quality and more exploratory
nodes themselves. In this way, a parallel formulation may
allow faster node placement, and QDA may simultaneously
allow the placed nodes to explore more quickly. Optimal
integration to consider non-uniform temperatures between
parallel threads, message passing issues, and possible spa-
tial database decomposition represents a further research
direction. We reserve showing complementary behavior and
modifying QDA to allow additional parallel synergy for
future work.

FIGURE 16. A 48 node tree created with quantum database annealing
with initial high temperature, then a dropping temperature, showing how
temperature can be used to fill in the area around a spread tree. The root
node is a black circle and tree nodes are red circles. Parent-child
relationships are shown via black lines, and 6025 obstacles are depicted
as small black rectangles.

FIGURE 17. A 16 node tree created with q-RRT (with standard database
construction) in the same 6025 obstacles environment.

V. CONCLUSION
To generalize and extend q-RRT, we provide analysis
in more general obstacle environments, a formulation of
q-RRT with parallel quantum computers, and a database
building strategy based on simulated annealing. The Parallel
Quantum RRT algorithm uses parallel quantum computers
in a manager-worker formulation to provide simultane-
ous measurements of a shared database, allowing more
time-efficient tree construction with a higher exploration
speed. We also provide key probability results for parallel
quantum computers searching the same database in order to
predict parallel architecture efficiency. Quantum Database
Annealing uses a temperature construct to guide database
construction, providing trees that initially spread more

VOLUME 12, 2024 47187

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

quickly compared to those created with standard database
construction, followed by back-fill behavior at lower temper-
atures. To support these claims, we provide analysis in the
form of efficiency and run-time results, heatmaps for speed-
of-exploration results, narrow corridor environment results,
and database construction comparisons. Future work includes
testing combinations of Pq-RRT with QDA as a construction
strategy, and expanding on methods of database construction
to allow parallel architectures to explore environments faster
than Pq-RRT with QDA. Future work also includes creating
path planning algorithms that rely on alternate quantum
algorithms to QAA.

REFERENCES
[1] P. Lathrop, B. Boardman, and S. Martínez, ‘‘Quantum search

approaches to sampling-based motion planning,’’ IEEE Access, vol. 11,
pp. 89506–89519, 2023.

[2] F. Tacchino, A. Chiesa, S. Carretta, and D. Gerace, ‘‘Quantum computers
as universal quantum simulators: State-of-the-Art and perspectives,’’ Adv.
Quantum Technol., vol. 3, no. 3, Mar. 2020, Art. no. 1900052.

[3] S. Pirandola, U. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck,
D. Englund, T. Gehring, C. Lupo, and C. Ottaviani, ‘‘Advances in quantum
cryptography,’’ Adv. Opt. Photon., vol. 12, no. 4, pp. 1012–1236, 2020.

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
‘‘Quantum machine learning,’’ Nature, vol. 549, no. 7671, pp. 195–202,
2017.

[5] M. Cerezo, A. Arrasmith, R. Babbush, S. Benjamin, S. Endo, K. Fujii,
J. McClean, K. Mitarai, X. Yuan, and L. Cincio, ‘‘Variational quantum
algorithms,’’ Nat. Rev. Phys., vol. 3, pp. 625–644, Aug. 2021.

[6] D. Abrams and C. Williams, ‘‘Fast quantum algorithms for numerical
integrals and stochastic processes,’’ 1999, arXiv:quant-ph/9908083.

[7] A. Montanaro, ‘‘Quantum speedup of Monte Carlo methods,’’ Proc.
Roy. Soc. A, Math., Phys. Eng. Sci., vol. 471, no. 2181, Sep. 2015,
Art. no. 20150301.

[8] R. Portugal, Quantum Walks and Search Algorithms, vol. 19. New York,
NY, USA: Springer, 2013.

[9] S. Aaronson and A. Ambainis, ‘‘Quantum search of spatial regions,’’ 2003,
arXiv:quant-ph/0303041.

[10] F. Magniez, A. Nayak, J. Roland, and M. Santha, ‘‘Search via quantum
walk,’’ SIAM J. Comput., vol. 40, no. 1, pp. 142–164, Jan. 2011.

[11] E. Sánchez-Burillo, J. Duch, J. Gómez-Gardeñes, and D. Zueco, ‘‘Quan-
tum navigation and ranking in complex networks,’’ Sci. Rep., vol. 2, no. 1,
pp. 1–8, Aug. 2012.

[12] C. Petschnigg, M. Brandstötter, H. Pichler, M. Hofbaur, and B. Dieber,
‘‘Quantum computation in robotic science and applications,’’ in Proc. Int.
Conf. Robot. Autom. (ICRA), May 2019, pp. 803–810.

[13] K. Rajagopal, Q. Zhang, S. Balakrishnan, P. Fakhari, and J. Busemeyer,
‘‘Quantum amplitude amplification for reinforcement learning,’’ in
Springer Handbook of Reinforcement Learning and Control. New York,
NY, USA: Springer, 2021, pp. 819–833.

[14] D. Daoyi, C. Chunlin, and L. Hanxiong, ‘‘Reinforcement strategy using
quantum amplitude amplification for robot learning,’’ in Proc. Chin.
Control Conf., Jul. 2006, pp. 571–575.

[15] D. Dong, C. Chen, H. Li, and T. Tarn, ‘‘Quantum reinforcement learning,’’
IEEETrans. Syst., Man, Cybern., B, Cybern., vol. 38, no. 5, pp. 1207–1220,
Oct. 2008.

[16] L. Ming, ‘‘An adaptive quantum evolutionary algorithm and its application
to path planning,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2015,
pp. 2067–2071.

[17] N. B. Dehaghani, F. L. Pereira, and A. P. Aguiar, ‘‘Quantum control
modelling, methods, and applications,’’ Extensive Rev., vol. 2, no. 1,
pp. 75–126, Nov. 2022.

[18] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[19] N. M. Amato and Y. Wu, ‘‘A randomized roadmap method for path and
manipulation planning,’’ in Proc. IEEE Int. Conf. Robot. Autom., vol. 1,
1996, pp. 113–120.

[20] J. Barraquand, L. Kavraki, J. Latombe, T. Li, R.Motwani, and P. Raghavan,
‘‘A random sampling scheme for path planning,’’ in Proc. Robot. Res., 7th
Int. Symp. New York, NY, USA: Springer, 1996, pp. 249–264.

[21] M. Elbanhawi and M. Simic, ‘‘Sampling-based robot motion planning: A
review,’’ IEEE Access, vol. 2, pp. 56–77, 2014.

[22] S. Karaman and E. Frazzoli, ‘‘Sampling-based algorithms for optimal
motion planning,’’ Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
Jun. 2011.

[23] M. Strandberg, ‘‘Augmenting RRT-planners with local trees,’’ in Proc.
IEEE Int. Conf. Robot. Autom., 2004, pp. 3258–3262.

[24] J. Bialkowski, S. Karaman, and E. Frazzoli, ‘‘Massively parallelizing the
RRT and the RRT*,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2011, pp. 3513–3518.

[25] J. Ichnowski and R. Alterovitz, ‘‘Parallel sampling-based motion planning
with superlinear speedup,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2012, pp. 1206–1212.

[26] D. Devaurs, T. Siméon, and J. Cortés, ‘‘Parallelizing RRT on large-scale
distributed-memory architectures,’’ IEEE Trans. Robot., vol. 29, no. 2,
pp. 571–579, Apr. 2013.

[27] R. Parekh, A. Ricciardi, A. Darwish, and S. DiAdamo, ‘‘Quantum algo-
rithms and simulation for parallel and distributed quantum computing,’’
in Proc. IEEE/ACM 2nd Int. Workshop Quantum Comput. Softw. (QCS),
Nov. 2021, pp. 9–19.

[28] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, May 1983.

[29] R. Eglese, ‘‘Simulated annealing: A tool for operational research,’’ Eur. J.
Oper. Res., vol. 46, no. 3, pp. 271–281, 1990.

[30] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory
and Applications. Dordrecht, The Netherlands: D. Reidel, 1987.

[31] A. Vázquez-Otero, J. Faigl, and A. Munuzuri, ‘‘Path planning based on
reaction-diffusion process,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2012, pp. 896–901.

[32] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, ‘‘CHOMP: Covariant
Hamiltonian optimization for motion planning,’’ Int. J. Robot. Res., vol. 32,
nos. 9–10, pp. 1164–1193, Aug. 2013.

[33] S. M. Persson and I. Sharf, ‘‘Sampling-based A* algorithm for robot path-
planning,’’ Int. J. Robot. Res., vol. 33, no. 13, pp. 1683–1708, Nov. 2014.

[34] L. Jaillet, J. Cortés, and T. Siméon, ‘‘Transition-based RRT for path
planning in continuous cost spaces,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2008, pp. 2145–2150.

[35] L. Jaillet, J. Cortés, and T. Siméon, ‘‘Sampling-based path planning
on configuration-space costmaps,’’ IEEE Trans. Robot., vol. 26, no. 4,
pp. 635–646, Aug. 2010.

[36] P. Lathrop, ‘‘Motion planning algorithms for safety and quantum
computing efficiency,’’ Ph.D. dissertation, Dept. Mech. Aerosp. Eng.,
Univ. California, San Diego, CA, USA, 2023.

[37] J. Preskill, ‘‘Lecture notes for physics 229: Quantum information and
computation,’’ California Inst. Technol., vol. 16, no. 1, pp. 1–8, 1998.

[38] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, ‘‘Quantum amplitude
amplification and estimation,’’ Contemp. Math., vol. 305, pp. 53–74,
Oct. 2002.

[39] J. J. Kuffner and S. M. LaValle, ‘‘RRT-connect: An efficient approach to
single-query path planning,’’ inProc. IEEE Int. Conf. Robot. Autom., vol. 2,
2000, pp. 995–1001.

[40] C. Fox, ‘‘Quantum computing functions (QCF) for MATLAB,’’ Robotics
Res. Group, Oxford Univ., Oxford, U.K., Tech. Rep., 2003.

[41] P. Neal, ‘‘The generalised coupon collector problem,’’ J. Appl. Probab.,
vol. 45, no. 3, pp. 621–629, Sep. 2008.

[42] P. Berenbrink and T. Sauerwald, ‘‘The weighted coupon collector’s
problem and applications,’’ in Proc. Int. Conf. Comput. Combinatorics.
New York, NY, USA: Springer, 2009, pp. 449–458.

PAUL LATHROP (Student Member, IEEE)
received the B.S. degree in aerospace engineering
from the University of Maryland, College Park,
MD, USA, in 2019, and the Ph.D. degree in
aerospace engineering from the University of Cali-
fornia at San Diego, in 2023. His research interests
include safety and uncertainty in robotic motion
planning algorithms and quantum computing and
its intersection with motion planning.

47188 VOLUME 12, 2024

P. Lathrop et al.: Parallel Quantum Rapidly-Exploring Random Trees

BETH BOARDMAN received the B.S. and M.S.
degrees in aeronautics and astronautics from the
University of Washington, Seattle, WA, USA, in
2010 and 2012, respectively, and the Ph.D. degree
in aerospace engineering from the University of
California at San Diego, USA, in 2017. She
has been a Research and Development Engineer
with Los Alamos National Laboratory, since
2018. She is currently the Team Leader of the
Cyber-Physical and Robot Innovations Team,

Automation, Robotics, and Control Group. She is also the LANL Robotics
and Automation Summer School Program Leader. Her research interests
include robotics and automation.

SONIA MARTÍNEZ (Fellow, IEEE) received the
Ph.D. degree in engineering mathematics from
Universidad Carlos III de Madrid, Spain, in May
2002. She was a Visiting Assistant Professor of
appliedmathematics with the Technical University
of Catalonia, Spain, from 2002 to 2003, and a Post-
doctoral Fulbright Fellow with the Coordinated
Science Laboratory, University of Illinois Urbana–
Champaign, from 2003 to 2004, and the Center
for Control, Dynamical Systems andComputation,

University of California at Santa Barbara, from 2004 to 2005. She is currently
a Professor of mechanical and aerospace engineering with the University of
California at San Diego, San Diego, CA, USA. She is the coauthor (together
with F. Bullo and J. Cortés) of Distributed Control of Robotic Networks
(Princeton University Press, 2009). She is the coauthor (together with M.
Zhu) ofDistributed Optimization-Based Control of Multi-Agent Networks in
Complex Environments (Springer, 2015). Her research interests include the
control of networked systems, multi-agent systems, nonlinear control theory,
and planning algorithms in robotics. She is the Editor-in-Chief of the recently
launched CSS IEEE OPEN JOURNAL OF CONTROL SYSTEMS.

VOLUME 12, 2024 47189

