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ABSTRACT This study proposes a new method for the detection of facial expressions of pain using a
3D profiler that combines a multiple-input-multiple-output (MIMO) radar system with a machine learning
(ML) model (ML-MIMO radar profiler). It offers a solution for pain detection of facial expressions in a
non-invasive, non-intrusive, and cost-effective manner. The ML-MIMO radar profiler employs six radars
behind a lens to monitor changes in six facial regions and build a 3D facial profile with real-time facial
activity information. A dielectric lens was used to ensure an optimal beam size to effectively illuminate each
facial region. Signal processing is performed using dynamic time deformation to determine the longitudinal
distance and a discrete stationarywavelet transform to filter the signal and improve accuracy. The information
from the 3D profiler was compared with the facial action coding system (FACS) to determine actual
facial expressions. A machine learning algorithm was trained to learn action units from the FACS and
compare them with the information provided by the ML-MIMO radar profiler, thereby performing facial
expression classification. In this study, we analyzed four facial expressions: hapiness, sadness, anger, and
pain. Identification and classification were performed using a machine-learning model based on multilayer
perceptrons. The results revealed 92% accuracy of the system for pain expression, whereas expressions of
happiness, sadness, and anger were detected with 88, 86, and 87% accuracy, respectively.

INDEX TERMS 3D radar profiler, contacless, detection, facial expressions, machine learning, MIMO radar,
multilayer perceptrons, pain detection, radar, sensing.

I. INTRODUCTION
Facial expressions are a crucial aspect of human communi-
cation. They offer a window into a person’s emotional state,
personality, and intentions [1], [2]. Facial expressions can
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be particularly useful in cases where communication barriers
exist, such as with babies, non-verbal individuals, or those
with cognitive disabilities [3], [4]. By analyzing facial
expressions, healthcare professionals can gather detailed
information about a patient’s pain, enhance diagnostic
accuracy, and improve treatment outcomes. Furthermore,
the study of facial expressions has implications for the
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diagnosis and treatment of psychopathologies such as depres-
sion, post-traumatic stress disorder, and autism spectrum
disorder [5], [6], [7].

Automatic facial expression recognition techniques can
utilize computer vision [8], time-of-flight sensors [9],
structured light sensing [10], and infrared [11] for the
accurate interpretation and categorization of human facial
expressions [12]. Despite their benefits, in this context,
the motivation of this study is to introduce a machine-
learning multiple-input multiple-output (ML-MIMO) radar
profiler that offers high-resolution 3D depth measurements,
compactness, light resistance, temperature tolerance and
cost-effectiveness.

The proposed ML-MIMO radar profiler aims to capture
facial movements from the face profile in a more comfortable
and hygienic manner than other methods [13], [14]. As a
cost-effective system, the ML-MIMO radar profiler provides
3D spatial high-resolution information and reveals details
and movements that may be missed by 2D cameras [15].
ML-MIMO radar profiler performs well under low-light
conditions [16] and respects privacy by not capturing facial
images [17].
In clinical settings, early and accurate pain assessment is

vital for effective management and intervention, enhanced
quality of care, and reduced patient distress. Pain assessment
typically employs a scale in which patients rate their pain
level [18]. Pain detection techniques include self-reporting,
observer-based, and physiological measurements [19], [20],
[21]. Self-reporting methods, such as visual analog, numer-
ical rating, and verbal rating scales, are common but
depend on each patient’s subjective pain experience [22],
[23], [24]. Observer-based methods involve observing pain-
related behaviors, such as facial expressions and body
movements, but these depend on inter-rater reliability and
observer bias [25]. Physiological measurements, such as
EEG, EMG, and MRI, offer objective pain measures but
require specialized equipment [26], [27]. Alternatively, the
Facial Action Coding System (FACS) provides a potentially
more objective, contactless, and non-invasive method based
on facial expressions [28], [29], [30]. However, FACS
decoding in a clinical environment can be laborious and
requires trained personnel, which underscores the need for
automated FACS decoding methods [31].
Therefore, this study introduces a compact, cost-effective

ML-MIMO radar profiler, specifically engineered for the
non-invasive detection of pain-related facial expressions,
utilizing FACS. The proposed system strategically places
six radars behind a dielectric lens, enabling the tracking
of three-dimensional changes across six distinct facial
regions. These tracked variations were then used to iden-
tify specific action units (AUs) associated with pain.
To account for individual differences and improve accu-
racy over time, a machine learning model was integrated
into the system. This model adapts to unique user char-
acteristics, thereby enhancing the precision of the pain
detection.

The objectives of this study were as follows: a) to bridge
the gap in contactless, compact, and low-cost 3D technology
for pain detection from facial expressions. b) Present a
MIMO radar system that tracks the longitudinal profile
variation of six facial areas linked to specific AUs, aiding in
the identification of pain expressions. c) Utilize a machine
learning model for the accurate tracking and analysis of
AU dynamics, providing insights into changes in facial
expressions.

Compared with other state-of-the-art technologies, such as
time-of-flight, structured light, computer vision, and infrared
systems [32], offers several unique differences.

• Detailed 3D facial profile capturing from face depth
measurements.

• Non-contact and Real-time Monitoring make it less
intrusive and more comfortable for the patient.

• Incorporation of a machine-learning model to adapt to
individual differences enhance its accuracy over time.

• Cost-effectiveness and compactness.
Although some technologies can mitigate privacy concerns,
they often require complex setups and are not always
cost-effective.

The remainder of this paper is organized as follows.
Section II provides a detailed Literature Review related to
this study. Section III introduces the proposed materials
and methods, including radar-based system architecture, data
acquisition and signal processing, andmachine learning algo-
rithms for facial expression recognition. Section IV presents
the measurement results and performance evaluation metrics
of the machine learning model. Finally, Section V concludes
the study by summarizing the findings, highlighting their
contributions, and outlining potential avenues for future
research.

II. THEORETICAL BACKGROUND
The Facial Action Coding System (FACS), developed by
Ekman and Friesen in 1978 [33], is a comprehensive,
anatomically based system for evaluating human facial
expressions. They describe all visually discernible facial
movements, termed Action Units (AUs), which correspond
to the activation of one or more facial muscles [34]. The
system includes 12 AUs for the upper face and 18 AUs for
the lower face [35]. FACS is instrumental in coding both
basic emotions: anger, disgust, fear, happiness, sadness, and
surprise; and complex expressions such as pain [36]. This
precise approach allows for detailed study of facial expres-
sions, providing significant insights into human emotions and
reactions.

Facial expressions of pain, which have been studied
for over three decades, are characterized by specific AUs.
LeResche [37] described a pain expression involving a
furrowed brow (AU4), tightened skin around the eyes (AU6),
horizontally stretched open mouth (AU20), and a deep
nasolabial groove (AU9). Craig and Patrick [38] identified six
facial actions indicative of pain: cheek lifting (AU7), upper lip
raising (AU10), lip corner stretching (AU12), lip separation
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(AU20), mouth opening, and eyelid closing (AU6). Further
research [39] has associated increased brow-lowering (AU4)
with pain intensity. Prkachin et al. studies [40], [41] found
significant increases in four facial actions–brow lowering
(AU4), orbit tightening (AU6, AU7), upper-lip raising/nose
wrinkling (AU9, AU10), and eye closure (AU43)–across four
stimuli (cold, pressure, ischemia, and electric shock).

Altough pain can be detected by monitoring four AUs,
this preliminary system evaluates at least eight AUs (AU04,
AU05, AU06, AU07, AU09, AU10, AU15, and AU43),
enabling the identification of other expressions, such as
happiness, sadness, and anger, in addition to pain. Table 1 lists
the AUs associated with the facial expressions of interest in
this study.

TABLE 1. Involved AUs for the studied facial expressions.

III. ML-MIMO RADAR SYSTEM METHODOLOGY
This section describes the methodology used in this study to
identify pain using the ML-MIMO radar profiler, based on
measurements of the longitudinal 3D profile of the face. The
involved AUs define six facial regions for individual radar
pointing: upper left (UL) and right (UR) encompassing the
eyes and eyebrows; middle left (ML) and right (MR) focusing
on the cheekbones; and lower left (LL) and right (LR)
concentrating on the mouth corners, as depicted in Fig. 1.
Each radar measures instantaneous longitudinal variations in
a determined region of the face. The six radars collectively
determine a facial expression based on a set of activated
action units over a single time slot. Signal processing and
machine learning configurations are further discussed in this
section.

FIGURE 1. ML-MIMO radar profiler configuration. The variable dfl is the
face to lens distance and dla represents the lens diameter.

A. RADAR SECTORIAL ILLUMINATION
Six radars, each composed of two antennas (transmitter and
receiver), were arranged in a 3 × 2 matrix positioned behind

a focusing lens at a distance dla = 15mm. A dielectric lens
was used to define the beam width and the pointing angle to
illuminate each of the six facial regions. The pointing angle
of each beam was set based on the physical position of the
single antenna behind the lens. A displacement in the z-axis
points to the upper, middle, and lower regions of the face,
whereas the displacement in the y-axis allows the right and
left regions of the face to be reached. The activation of each
radar is sequential in time-division mode.

The lens provides both the transverse and longitudinal
resolutions of the beamwidth. In this regard, each radar
illuminates through the lens with a half-power beamwidth
(HPBW), whose −3 dB angle is computed as (1θ)−3dB =

λfc
(0.8)dln

, where λfc is the wavelength at the carrier frequency,
dln is the diameter of the lens, and 0.8 is the correction
factor owing to the lens geometry. The transversal resolution
of the radar is δtrns = dfl · (1θ )−3dB, where dfl is the
observation distance. The ML-MIMO radar profiler was
placed at a distance dfl = 35 cm from the face, resulting
in δtrns ≈ 20mm. The longitudinal resolution, on the
other hand, is computed as δlong =

c0
2ḂW

, where c0 is
the speed of light in free space and BW is the bandwidth.
In this case, δlong = 25mm. Under these considerations,
the radar-lens configuration maintains the performance of
the system in range of 35 cm ± 10 cm and a variation angle
of ±10◦.

A basic numerical study was performed using an iterative
spectral algorithm [42] to study the effect of the non-planar
shape of the face on incident illumination. Consistent with a
previous analytical study, an illuminated region on the order
of a circle of 20mm diameter may be observed, as shown in
Fig. 2, resulting in a radar S21 parameter propagation radar-
face-radar of −50 dB compatible with a radar sensitivity
of −90 dBm.

FIGURE 2. Numerical simulation of the transmitted signal in the XZ-plane.

B. MIMO RADAR OPERATION
Each radar operates based on the principle of frequency-
modulated continuous wave (FMCW) technology and works
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within the ISM band at 120GHz. It exhibits a phase noise
of −90 dBc/MHz, enabling minimal frequency fluctuations
during high-frequency operations, and consumes a low power
of 380 mW. The six radars were integrated into a single chip
housing six antennas for transmission and six for reception.
A microcontroller interfaces these radars with a computer,
facilitating the reception of magnitude and phase.

Each radar sequentially transmits a signal at 120GHz that
sweeps across a 6GHz bandwidth. The individual trigger
signal of each radar controlled the function of the time-
division mode. This activates an individual Phase-Locked
Loop (PLL), generating a frequency ramp from fc to fc+BW.
The radar front-end detects the signals across the frequency
range of each ramp.

The transmitted S txn and received Srxn signals are then
multiplied and passed through a low-pass filter to obtain the
intermediate frequency signal:

sIFn =AIF exp
[
j
(
4π

BW
trmp

(d0+!dfl(t))
c

t+4π
(d0 + dfl(t))

λfc

)]
,

(1)

where AIF is the amplitude, BW is the bandwidth, d0 is the
initial distance from the radar front end to the face surface,
dfl(t) is the face surface displacement due to the activation of
the facial muscles during the execution of a facial expression
over time, and the subscript n is used to identify each of the
six regions.

The longitudinal variation dfl(t) can be calculated from,

dfl =
c0 |1f |
2(df /dt)

, (2)

where 1f is the measured frequency difference and (df /dt)
is the frequency shift per unit of time, which is defined for
the ramp time as

trmp = tsmp ∗ (Nsmp + 55)/(ADCclk ), (3)

where tsmp is the sampling time, Nsmp is the number of
samples, 55 samples represent a fixed overhead in the
protocol, and ADCclk is the sampling speed of the analog-
to-digital converter (ADC), which is equal to 27MHz.

In this application, longitudinal facial movements are
determined from changes in the phase of the received signal
using the interferometric distance measurement approach.
The resolution of the system was determined by the ADC
velocity.

Using Eq. 1, it is possible to calculate the smallest changes
in frequency and phase that the ML-MIMO radar profiler
can measure. For example, consider a change of 100µm; the
minimum frequency and phase changes that the ML-MIMO
radar profiler can detect are 519.9Hz and 28.8◦, respectively.
Measurements were performed using standard laboratory
equipment. After these measurements were taken, a Fast
Fourier Transform (FFT) was applied to each measured
instantaneous IF signal. This process creates a slow-time
matrix that shows the signal spectrum, as illustrated in Fig. 3.
This matrix is then processed for feature extraction.

FIGURE 3. FMCW radar operating principle for longitudinal measurement
of facial factions.

C. SIGNAL PRE-PROCESSING
The radar system continuously measured the instantaneous
distances of the six regions of the face and stored them in
six individual slow-time matrices. Dynamic Time Warping
(DTW) algorithms and wavelet denoising techniques, such as
the discrete stationary wavelet transform (DSWT) are used to
eliminate noise and enhance the quality and precision of data.

1) FACE MOTION MEASUREMENT BY DTW ADAPTATION
Dynamic TimeWarping (DTW) has been employed to assess
the temporal variations between multiple instantaneous
time-series measurements of facial action units. DTW is a
well-established algorithm for time-series analysis, particu-
larly for measuring the similarity between sequences with
varying lengths or temporal distortions [43]. By applying
DTW to the collected facial action unit data, a quantitative
measure of dissimilarity or distance between each pair of
time series was obtained. This analysis provides a robust
framework for elucidating subtle temporal changes in units,
which is essential for a more comprehensive characterization
of facial dynamics and expressions. The basic steps involve
creating a distance matrix with two consecutive signals, and
finding the optimal path through this matrix. Given two
consecutive measurements of a single region,

sIFn,i(t) = sIFn,1(t), s
IF
n,2(t), . . . , s

IF
n,Nsmp (t) (4)

and

sIFn,j(t + 1t) = sIFn,1(t + 1t), sIFn,2(t + 1t), . . . ,

sIFn,Nsmp (t + 1t); (5)

where n indicates each of the six individual radar signals,
Nsmp is total number of samples; and i and j indicates
the actual sample of the respective signal. At this point,
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the goal is to find the optimal alignment by minimizing
the accumulated distance between corresponding elements.
The distance matrix DDTW [i, j] represents the local distance
or similarity between sIFn,i(t) and sIFn,j(t + 1t). DDTW is
computed using the sum of squared differences (Euclidean
metrics) [44]. Subsequently, an accumulated cost matrix
CDTW of size (Nsmp + 1) × (Nsmp + 1) is initialized and
populated using dynamic programming, as shown in Fig. 4.
In this study, the possible match number was determined
using the Delannoy number, which describes the number of
paths from position (1,1) to (Nsmp,Nsmp). The computation
of each cell involves minimizing the cumulative cost by
considering the distances and adjacent cells in CDTW [45],
leading to the following expression for CDTW :

CDTW [i, j] = DDTW [i, j] + min(C [i− 1, j− 1] ,

C [i− 1, j] ,C [i, j− 1]) (6)

This iterative process fills the matrix CDTW by calculating
the cumulative cost for each cell, ensuring optimal alignment.
Fig. 4 shows the CDTW generated for two consecutive
measurements using a single radar. Finally, the optimal
path obtained by backtracking from CDTW

[
(Nsmp,Nsmp)

]
to

CDTW [0, 0] reveals the alignment between sequences and
determines the DTW distance as the motion variation of two
instantaneous distance measurements.

FIGURE 4. a) Dynamic Time Warping (DTW) alignment of two 256-Nsmp
time series of longitudinal distance to the upper right region of the
face,the blue line shows the shortest path. b) Distances alignment
between two sequential measurements.

Figure 5(a) shows the results of applying the DTW
algorithm to radar signals on the upper right and left when
a person opens and closes their eyes for 180 s. The peaks in
the figure correspond to flashes. The signal was then filtered
using a Discrete Stationary Wavelet Transform (DSWT) to
isolate the signal corresponding to the facial movements that
were being identified.

The Discrete Stationary Wavelet Transform (DSWT)
has been used to clear the signal and effectively remove
oscillations while preserving the relevant signal information.
The DSWT is a robust signal-processing method adapted
in this study for feature extraction [46], [47]. The DSWT
is a variation of the discrete wave transform that dissects a
signal into a collection of wave coefficients at different scales
and positions, allowing the analysis of the signal frequency

FIGURE 5. (a) Time variation signal of a single region, left side of the
upper region (blue) and right side of the upper region (red). (b) DSWT of
the original time distance computed using DTW. The blue line correspond
to DWT and the red one to the DSWT.

components and extraction of significant characteristics.
In this study, the DSWT was implemented using a level 5
stationary wavelet transform with the Haar wavelet [48],
[49]. The universal Donoho-Johnstone threshold [50] is then
determined based on the first-level detail coefficients, which
are used for hard thresholds. Finally, the signal was obtained
by inverting the standing wave transform into threshold
coefficients. Figure 5(b) shows the DTW and DSWT signals.
Each eyeblink is identified in the filtered signal (red line).

Figure 6 shows the flicker measurement results for the
six regions of the face. The activity was mainly performed
in the upper right and left regions. The middle regions had
minimal interaction owing to the possible movements of
the cheekbones when closing the eyes. The lower regions
remained almost constant because there was almost no
motion detection in the mouth.

D. FACIAL EXPRESSION IDENTIFICATION
The pre-processed information from the six radars was
analyzed together within the same time slot. Figure 7
illustrates the AU identification process. First, a 1 × 6 array
was formed using the measured facial expression information
of the six radars for the same time slot, which is represented
by mfek , where k is the time slot counter. A binary value
was then assigned to identify the activation of a particular
action unit. This binary matrix is then correlated with the
matrix of Encoded Facial Expressions (EFE) that is created
with the data of all the action units of the four facial
expressions, which is the aim of this study. The initial
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FIGURE 6. Blinking eye measurement result using ML-MIMO radar
profiler.

FIGURE 7. Facial expression identification proccess.

tests were conducted manually using mathematical software.
Subsequently, a machine learning model was trained and
tested to identify AUs and classify facial expressions.

E. MACHINE LEARNING MODEL
A machine-learning model was trained to optimize the
identification and classification of facial expressions in two
stages. Initially, multi-classification identifies the action
units, followed by facial expression identification through a
joint analysis of these units. The dataset for the multilabel
classification stage comprises pre-processed signal values
from the ML-MIMO radar profiler, which are used to

configure a Multilayer Perceptron (MLP) via the Keras deep
learning library.

MLP, a class of artificial neural network, has shown
potential for facial expression detection, particularly for
smaller datasets because of the lower adjustment require-
ment [51]. CNNs are commonly used for image processing
tasks, including facial expression recognition [52]. SVMs
handle high-dimensional data well and avoid overfitting
using hyperplanes [53] but may struggle with complex, non-
linear patterns common in facial expression detection [54].
Decision trees are interpretable, but can overfit andmiss com-
plex patterns. DBNs can model complex, high-dimensional
distributions and reduce data redundancy [55]; however, their
training can be computationally expensive and slower than
that of MLPs [56]. In terms of computational time, CNNs
typically consume the most, followed by DBNs, Multilayer
Perceptrons MLPs, and finally SVMs consume the least,
especially for smaller datasets.

The designed MLP had six inputs for each radar dataset,
four outputs for the identified action units, and three densely
connected layers. It uses ReLU activation for the hidden
layers and Softmax activation for the output layer. The node
count of the output layer aligns with the binary value of
a particular AU’s presence or absence, employing sigmoid
activation to predict class probabilities. The model training
utilized the binary cross-entropy loss function and Adam
optimizer with a batch size of 64 for efficiency and stability.

IV. RESULTS
The testing stages of the ML-MIMO radar profiler included
measuring the facial expressions of ten volunteers, five
women and five men) who were seated in front of the
MIMO radar system. For the preliminary test, they wore an
inmovilizer that fixed the face at 35 cm, apart from the lens of
the radar system. The volunteers performed facial activities
including facial movements and facial expressions. To help
each participant feel more comfortable with the requested
facial expressions, a screen was placed in front of them to
show the facial expressions required in each experiment.
Before participating in the experiment, all participants were
informed of the study’s purpose, procedures, potential risks,
and benefits, and signed consent was obtained. This process
was followed to ensure that the rights and welfare of
participants were protected throughout the study.

Each experiment began by taking the scattering reference
level of each subject through face measurements using the
ML-MIMO radar profiler, when the subject maintained a
neutral expression in a relaxedmanner. This approach ensures
accuracy and provides a solid foundation for subsequent
analysis.

A. BLINKING EYES AND OPEN MOUTH
The first experiment measured the sensitivity of the radar in
detecting blinking eyes and mouth opening. Each volunteer
was asked to maintain a relaxed position and perform only
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the blinking action to avoid moving another part of their face.
The test consisted of three measurement repetitions in which
the person blinks its eyes for one minute with an interval
of 3 s between blinks. Before beginning a new repetition,
the person takes a 20-second break to avoid data corruption
due to muscle exhaustion. Each blink is indicated using a
beep. After a 5-minute break, a new test was performed
at the same time intervals, but this time the participant
was asked to raise his eyebrows. The ML-MIMO radar
profiler recorded the activities of the six regions, as shown
in Fig. 8, where it is possible to show that the upper right
and upper left regions exhibit greater activity. In particular,
different patterns of blinking and raising the eyebrows
were identified. This allowed us to differentiate between
the four action units in the eye region: AU4, AU6, AU7,
and AU43.

FIGURE 8. Blinking eye and raised eyebrows experiment.

In the second part of the experiment, the focus was
on measuring the signals produced by two specific mouth
actions: an open mouth and a smile (semi-open mouth
and clenched teeth). Fig. 9 shows the results. Once more,
the system successfully discerns these two actions, thereby
identifying two other units of action: AU9 and AU10.

B. PAIN FACIAL EXPRESSION MEASUREMENTS
This study assessed, four facial expressions: Happiness,
Sadness, Anger, and Pain. Participants were asked to emulate
the same facial expression for 10 s, with a 10 s break to
complete for 3min. Between each new facial expression,
there was a 10min break. The expressions were evaluated
in the following order: Happiness, Anger, Sadness, Pain.
Figure 10 shows the measurements of happiness and sadness,
with the units of action represented by the participants.

FIGURE 9. Smile and open mouth measurements.

FIGURE 10. (a) Happiness and sadness measurement of the three left
regions of the face. (b) Pain facial expression measurement.

A facial expression is formed from the set of signals of
the six regions in the same time interval; therefore, if a cut
lasting 10 s is made along the x-axis, it is possible to identify
the instantaneous facial expressions performed. This set of
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FIGURE 11. (a) Total number of identified AUs for each category. (b) Total
number of measurements including multiple AUs.

measured AUs was correlated with the database in Table 1 to
determine the current facial expressions.

C. MACHINE LEARNING MODEL EVALUATION
The dataset was compiled during two separate data-collection
campaigns held on different days. To ensure day-to-day
accuracy in the datasets of different campaigns, standardized
procedures were used daily for data consistency. The
system was calibrated daily for accurate readings and the
environmental conditions were controlled for uniformity.
Regular quality checks rectify any discrepancies, and sta-
tistical methods are used to account for variability, thereby
confirming the reliability and validity of the dataset.

The first campaign included measurements of the facial
expressions of ten participants in 3 s repetition intervals for
3min. This resulted in 90 samples for each expression. Four
facial expressions, including pain, were considered, resulting
in a model training dataset comprising 630 facial expression
samples. The second campaign included resampling of the
first campaign and a set of random orders of the four
expressions at the same time intervals. This resulted in a
total of 1890 samples. The model was defined using an MLP
network with six input features: measurements of each radar,
six output classes that were the AUs identified in each test,
and two binary tags that represented the presence or absence

TABLE 2. Evaluation metrics of the MLP model. Precision, recall, and
F-score has been computed for each individual face expressione
(happiness, sadness, anger, and pain).

FIGURE 12. (a) Accuracy and performance of the model. (b) Confusion
matrix for the four facial expression tested.

of the action unit. Figure 11(a) and 11(b) show the number
of samples identified for each AU and the number of samples
with multiple AUs.

To evaluate the model’s performance and robustness
comprehensively, a rigorous assessment was conducted using
repeated k-fold cross-validation with 10 folds and three
repetitions, ensuring reliable estimations of the model’s
effectiveness. Additionally, a hyperparameter tuning stage
was deployed, focusing on optimizing the learning rate and
hidden layer sizes to enhance the classification accuracy and
generalization capabilities of the model, thereby fine-tuning
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the model architecture for optimal performance in radar
signal classification.

Considering the stochastic nature inherent in the learning
algorithm, it is recommended that neural network models be
iteratively assessed within the same dataset, particularly with
smaller datasets. Reporting the average performance across
multiple iterations is advisable in such cases. The evaluation
metrics used to assess the performance of the model included
a) accuracy, measuring the proportion of correct predictions
to total predictions; b) precision, gauging the accuracy of
positive predictions; c) recall (sensitivity), indicating the ratio
of correctly identified actual positives; and d) F1-score, the
harmonic mean of precision and recall. A confusion matrix
was also developed to show the true/false positive/negative
counts. All computed metrics are reported in Table 2, and
the accuracy, loss, and confusion matrices are shown in
Fig. 12(a) and 12(b).

V. CONCLUSION
The novelty of the solution presented in this research lies in
the combination of a MIMO RADAR system and a machine
learning model into a face profiler, enabling high-resolution
depth measurement of facial expressions for accurate pain
detection in a non-invasive, non-intrusive, and cost-effective
manner. The ML-MIMO radar profiler showed promising
results in identifying facial expressions of pain with an
accuracy of 92%. The system also measured other facial
expressions, such as happiness with an accuracy of 88%,
sadness with an accuracy of 86%, and anger with an
accuracy of 87%. These results demonstrate the potential of
MIMO Radar systems and machine learning algorithms for
non-invasive pain detection and facial expression recognition.
The use of a lens in a MIMO Radar system has improved the
focusing and pointing of the system, which has contributed to
the high accuracy of the model.

This non-invasive approach offers several advantages
over traditional methods that rely on visual imagery or
electroencephalography. The radar technology is unaffected
by lighting conditions or headwear, making it suitable for use
in various settings.

In order to increase the robustness of the system, future
studies should focus on improving the accuracy of the MIMO
radar system and expanding the dataset to include a wider
range of expressions and demographic data. In addition,
exploring other machine learning techniques could poten-
tially improve the performance of expression recognition
systems.

REFERENCES
[1] A. Awasthi and M. K. Mandal, Understanding Facial Expressions

in Communication: Cross-cultural and Multidisciplinary Perspectives.
Cham, Switzerland: Springer, 2015.

[2] M. Balconi, The Neuropsychology of Nonverbal Communication: The
Facial Expressions of Emotions. Berlin, Germany: SpringerLink, 2008,
pp. 177–202.

[3] E. L. Wanko Keutchafo, J. Kerr, and M. A. Jarvis, ‘‘Evidence of nonverbal
communication between nurses and older adults: A scoping review,’’ BMC
Nursing, vol. 19, no. 1, pp. 1–13, Dec. 2020.

[4] M. Bani, S. Russo, S. Ardenghi, G. Rampoldi, V. Wickline, S. Nowicki,
and M. G. Strepparava, ‘‘Behind the mask: Emotion recognition in
healthcare students,’’ Med. Sci. Educator, vol. 31, no. 4, pp. 1273–1277,
Aug. 2021.

[5] E. L. Rosenberg and P. Ekman,What the Face Reveals: Basic and Applied
Studies of Spontaneous Expression Using the Facial Action Coding System
(FACS). London, U.K.: Oxford Univ. Press, 2020.

[6] B. Martinez and M. F. Valstar, ‘‘Advances, challenges, and opportunities
in automatic facial expression recognition,’’ in Advances in Face
Detection and Facial Image Analysis. Cham, Switzerland: Springer, 2016,
pp. 63–100.

[7] S. Du, Y. Tao, and A. M. Martinez, ‘‘Compound facial expressions of
emotion,’’ Proc. Nat. Acad. Sci. USA, vol. 111, no. 15, pp. E1454–E1462,
Apr. 2014.

[8] Z.-Y. Huang, C.-C. Chiang, J.-H. Chen, Y.-C. Chen, H.-L. Chung,
Y.-P. Cai, and H.-C. Hsu, ‘‘A study on computer vision for facial emotion
recognition,’’ Sci. Rep., vol. 13, no. 1, p. 8425, 2023.

[9] S. Bauer, J. Wasza, K. Müller, and J. Hornegger, ‘‘4D photogeometric face
recognition with time-of-flight sensors,’’ in Proc. IEEE Workshop Appl.
Comput. Vis. (WACV), Jan. 2011, pp. 196–203.

[10] Y. Ye, Z. Song, and J. Zhao, ‘‘Facial micro-expression analysis via a high
speed structured light sensing system,’’ J. Image Graph., vol. 9, no. 1,
pp. 15–19, 2021.

[11] A. Bhattacharyya, S. Chatterjee, S. Sen, A. Sinitca, D. Kaplun, and
R. Sarkar, ‘‘A deep learningmodel for classifying human facial expressions
from infrared thermal images,’’ Sci. Rep., vol. 11, no. 1, Oct. 2021,
Art. no. 20696.

[12] R. R. Adyapady and B. Annappa, ‘‘A comprehensive review of facial
expression recognition techniques,’’ Multimedia Syst., vol. 29, no. 1,
pp. 73–103, Feb. 2023.

[13] E. Cardillo and A. Caddemi, ‘‘A review on biomedical MIMO radars for
vital sign detection and human localization,’’ Electronics, vol. 9, no. 9,
p. 1497, Sep. 2020.

[14] S.Waqar, M.Muaaz, andM. Pätzold, ‘‘Human activity signatures captured
under different directions using SISO and MIMO radar systems,’’ Appl.
Sci., vol. 12, no. 4, p. 1825, Feb. 2022.

[15] X. Zhang, Y. Zhang, Z. Shi, and T. Gu, ‘‘MmFER: Millimetre-wave radar
based facial expression recognition for multimedia IoT applications,’’ in
Proc. 29th Annu. Int. Conf. Mobile Comput. Netw., Oct. 2023, pp. 1–15.

[16] S. Rao, ‘‘Mimo radar,’’ Texas Instrum. Incorporated, Dallas, TX,
USA, Tech. Rep. SWRA554A, Jul. 2018. [Online]. Available:
https://www.ti.com/lit/an/swra554a/swra554a.pdf

[17] L. Yuan, K. Liang, X. Pu, Y. Zhang, J. Leng, T. Wu, N. Wang, and X. Gao,
‘‘PRO-face S: Privacy-preserving reversible obfuscation of face images via
secure flow,’’ 2023, arXiv:2307.09146.

[18] R. Fink, ‘‘Pain assessment: The cornerstone to optimal pain manage-
ment,’’ Baylor Univ. Med. Center Proc., vol. 13, no. 3, pp. 236–239,
Jul. 2000.

[19] R. B. Fillingim, J. D. Loeser, R. Baron, and R. R. Edwards,
‘‘Assessment of chronic pain: Domains, methods, and mechanisms,’’
J. Pain, vol. 17, no. 9, pp. T10–T20, Sep. 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1526590015008652

[20] L. S. Franck, C. S. Greenberg, and B. Stevens, ‘‘Pain assessment
in infants and children,’’ Pediatric Clinics North Amer., vol. 47,
no. 3, pp. 487–512, 2000. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0031395505702224

[21] P. Werner, D. Lopez-Martinez, S. Walter, A. Al-Hamadi, S. Gruss, and R.
W. Picard, ‘‘Automatic recognition methods supporting pain assessment:
A survey,’’ IEEE Trans. Affect. Comput., vol. 13, no. 1, pp. 530–552,
Jan. 2022.

[22] Y. Kang and G. Demiris, ‘‘Self-report pain assessment tools for cognitively
intact older adults: Integrative review,’’ Int. J. Older People Nursing,
vol. 13, no. 2, Jun. 2018, Art. no. e12170.

[23] R. H. Bouajram, C. M. Sebat, D. Love, E. L. Louie, M. D. Wilson, and
J. J. Duby, ‘‘Comparison of self-reported and behavioral pain assessment
tools in critically ill patients,’’ J. Intensive Care Med., vol. 35, no. 5,
pp. 453–460, May 2020.

[24] D. C. Turk and R. Melzack, Handbook Pain Assessment. New York, NY,
USA: Guilford Press, 2011.

[25] G. Erogan and S. Celik, ‘‘Assessment of postoperative pain by the parent,
nurse and an independent observer among 1–7 year old children,’’ Int. J.
Caring Sci., vol. 13, no. 2, pp. 1013–1022, 2020.

48274 VOLUME 12, 2024



M.-J. López et al.: 3D Pain Face Expression Recognition Using a ML-MIMO Radar Profiler

[26] J. Chen, M. Abbod, and J.-S. Shieh, ‘‘Pain and stress detection using
wearable sensors and devices—A review,’’ Sensors, vol. 21, no. 4, p. 1030,
Feb. 2021.

[27] E. Campbell, A. Phinyomark, and E. Scheme, ‘‘Feature extraction and
selection for pain recognition using peripheral physiological signals,’’
Frontiers Neurosci., vol. 13, p. 437, May 2019.

[28] D. Fabiano,M. Jaishanker, and S. Canavan, ‘‘Impact of multiple modalities
on emotion recognition: Investigation into 3D facial landmarks, action
units, and physiological data,’’ 2020, arXiv:2005.08341.

[29] M. Á. Vicente-Querol, A. S. García, P. Fernández-Sotos, R. Rodriguez-
Jimenez, and A. Fernández-Caballero, ‘‘Development and validation of
basic virtual human facial emotion expressions,’’ in Proc. Int. Work-Conf.
Interplay Between Natural Artif. Comput. Cham, Switzerland: Springer,
2019, pp. 222–231.

[30] J. L. Tracy and R. W. Robins, ‘‘The automaticity of emotion recognition,’’
Emotion, vol. 8, no. 1, pp. 81–95, 2008.

[31] T. Hadjistavropoulos, ‘‘An interdisciplinary expert consensus statement
on assessment of pain in older persons,’’ Clin. J. Pain, vol. 23, no. 1,
pp. S1–S43, 2007.

[32] O. S. Ekundayo and S. Viriri, ‘‘Facial expression recognition: A review
of trends and techniques,’’ IEEE Access, vol. 9, pp. 136944–136973,
2021.

[33] P. Ekman andW. V. Friesen, ‘‘Manual for the facial action coding system,’’
in Consulting. Psychologists Press, 1978, doi: 10.1037/t27734-000.

[34] M. J. Wieser and T. Brosch, ‘‘Faces in context: A review and systemati-
zation of contextual influences on affective face processing,’’ Frontiers
Psychol., vol. 3, p. 471, Nov. 2012.

[35] Y.-I. Tian, T. Kanade, and J. F. Cohn, ‘‘Recognizing action units for facial
expression analysis,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 2, pp. 97–115, Feb. 2001.

[36] P. Ekman and W. V. Friesen, ‘‘Constants across cultures in the face and
emotion,’’ J. Personality Social Psychol., vol. 17, no. 2, pp. 124–129,
1971.

[37] L. LeResche, ‘‘Facial expression in pain: A study of candid photographs,’’
J. Nonverbal Behav., vol. 7, no. 1, pp. 46–56, 1982.

[38] K. D. Craig and C. J. Patrick, ‘‘Facial expression during induced pain,’’ J.
Personality Social Psychol., vol. 48, no. 4, p. 1080, 1985.

[39] C. J. Patrick, K. D. Craig, and K. M. Prkachin, ‘‘Observer judgments of
acute pain: Facial action determinants,’’ J. Personality Social Psychol.,
vol. 50, no. 6, pp. 1291–1298, 1986.

[40] K. M. Prkachin, ‘‘The consistency of facial expressions of pain: A
comparison across modalities,’’ Pain, vol. 51, no. 3, pp. 297–306,
1992.

[41] P. Ekman and E. L. Rosenberg,What the Face Reveals: Basic and Applied
Studies of Spontaneous Expression Using the Facial Action Coding System
(FACS). London, U.K.: Oxford Univ. Press, 1997.

[42] J. M. Rius, A. Lozano, L. Jofre, and A. Cardama, ‘‘Spectral iterative
algorithm for RCS computation in electrically large or intermediate
perfectly conducting cavities,’’ IEEE Trans. Antennas Propag., vol. 42,
no. 6, pp. 790–797, Jun. 1994.

[43] K. Li, K. Sward, H. Deng, J. Morrison, R. Habre, M. Franklin,
Y.-Y. Chiang, J. L. Ambite, J. P. Wilson, and S. P. Eckel, ‘‘Using
dynamic time warping self-organizing maps to characterize diurnal
patterns in environmental exposures,’’ Sci. Rep., vol. 11, no. 1, p. 8674,
Dec. 2021.

[44] A. Karlhede, ‘‘Classification of Euclidean metrics,’’ Classical Quantum
Gravity, vol. 3, no. 1, pp. L1–L4, Jan. 1986.

[45] Y. Wang, S.-N. Zheng, and X. Chen, ‘‘Analytic aspects of delan-
noy numbers,’’ Discrete Math., vol. 342, no. 8, pp. 2270–2277,
Aug. 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0012365X19301141

[46] X. Wang and Y. Dai, ‘‘An improved denoising method based on stationary
wavelet transform,’’ in Proc. Int. Symp. Commun. Eng. Comput. Sci.
(CECS), 2018, pp. 481–485.

[47] E. Stefanutti and F. Bruni, ‘‘Signal denoising using the stationary wavelet
decomposition,’’ in Proc. IMEKO TC19 Workshop Metrology Sea,’’
MetroSea 2017: Learn. to Measure Sea Health Parameters, vol. 2017,
pp. 104–110, 2017.

[48] R. S. Stanković and B. J. Falkowski, ‘‘The Haar wavelet transform: Its
status and achievements,’’ Comput. Electr. Eng., vol. 29, no. 1, pp. 25–44,
Jan. 2003.

[49] H. Kanagaraj and V. Muneeswaran, ‘‘Image compression using Haar
discrete wavelet transform,’’ in Proc. 5th Int. Conf. Devices, Circuits Syst.
(ICDCS), Mar. 2020, pp. 271–274.

[50] A. Halidou, Y. Mohamadou, A. A. A. Ari, and E. J. G. Zacko, ‘‘Review
of wavelet denoising algorithms,’’Multimedia Tools Appl., vol. 82, no. 27,
pp. 41539–41569, Nov. 2023.

[51] M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis,
‘‘Multilayer perceptron and neural networks,’’ WSEAS Trans. Circuits
Syst., vol. 8, no. 7, pp. 579–588, 2009.

[52] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 7553.

[53] R. Collobert and S. Bengio, ‘‘Links between perceptrons, MLPs and
SVMs,’’ in Proc. 21st Int. Conf. Mach. Learn. (ICML), 2004, p. 23.

[54] C.-p. Li, X.-y. Zhi, M. Jun, C. Zhuang, Z.-l. Zhu, C. Zhang, and
L.-P. Hu, ‘‘Performance comparison between logistic regression, decision
trees, and multilayer perceptron in predicting peripheral neuropathy in
type 2 diabetes mellitus,’’ Chin. Med. J., vol. 125, no. 5, pp. 851–857,
2012.

[55] G. E. Hinton, S. Osindero, and Y.-W. Teh, ‘‘A fast learning algorithm
for deep belief nets,’’ Neural Comput., vol. 18, no. 7, pp. 1527–1554,
Jul. 2006.

[56] G. E. Hinton, ‘‘Training products of experts by minimizing con-
trastive divergence,’’ Neural Comput., vol. 14, no. 8, pp. 1771–1800,
Aug. 2002.

MARÍA-JOSÉ LÓPEZ (Student Member, IEEE)
was born in Ecuador. She received the degree in
electronic engineering (telecommunications and
networks) from the Higher Polytechnic School
of Chimborazo, in 2013, and the master’s degree
in telecommunications engineering from the Uni-
versity of Calabria, Italy, in 2017. She is cur-
rently pursuing the Ph.D. degree with Universitat
Politècnica de Catalunya (UPC), Barcelona, Spain.
From 2013 to 2019, she taught at the Faculty

of Computer Science and Electronics, the Faculty of Sciences, and the
Faculty of Livestock Sciences, Polytechnic School of Chimborazo. She is
with the AntennaLab Group and the ComSense Lab Group, Department
of Signal Theory and Communications (TSC), UPC. She conducted a
research stay with the Millimeter-Wave Antennas and Integrated Circuits
Laboratory, University of Calabria. In addition, she has completed several
complementary training courses in the areas of innovation and vocational
training for employment. Since 2021, she has been a part of the M2m
Program, UPC, where she is the professional network for women, ‘‘Women
in Business,’’ and is a volunteer at the Young IT Girl in Spain. Her academic
work is focused on the manufacture and use of sensors for physiological
measurements in smart cars.

CÉSAR PALACIOS-ARIAS (Student Member,
IEEE) received the B.S. degree in telecommu-
nication and electronics engineering from the
Private Technical University of Loja (UTPL),
Loja, Ecuador, in 2013, and the M.S. degree in
electronics engineering from the University of
Calabria, Cosenza, Italy, in 2017. He is currently
pursuing the Ph.D. degree with the Signal Theory
and Communications (TSC) Department, within
the research group on microwave interaction with

living organisms, CommSensLab, Universitat Politècnica de Catalunya
(UPC). He has held positions with ALCATEL-LUCENT, from 2013 to 2015,
Corporación Nacional de Telecomunicaciones-CNT, from 2015 to 2015,
an External Researcher with the National University of Chimborazo, since
2018, and a Research Support Technician with the Signal Theory and
Communications (TSC) Department, UPC, from 2020 to 2021. He is
working on micro-systems design and manufacturing for communication
with living organisms and sensing at X-wave frequencies.

VOLUME 12, 2024 48275

http://dx.doi.org/10.1037/t27734-000


M.-J. López et al.: 3D Pain Face Expression Recognition Using a ML-MIMO Radar Profiler

JORDI ROMEU (Fellow, IEEE) received the
Ingeniero de Telecomunicación and the Doctor
Ingeniero de Telecomunicación degrees from
the Universitat Politècnica de Catalunya (UPC)-
BarcelonaTech, Barcelona, Spain, in 1986 and
1991, respectively. In 1985, he joined the
AntennaLab, Signal Theory and Communications
Department, UPC, where he is currently a
Full Professor involved in antennas near-field
measurements, electromagnetic scattering and

imaging, and system miniaturization for wireless and sensing industrial
and bio applications. In 1999, he was a Visiting Scholar with the Antenna
Laboratory, University of California at Los Angeles, Los Angeles, CA, USA,
on a NATO Scientific Program Scholarship, and the University of California
at Irvine, Irvine, CA, USA, in 2004. He holds several patents. He has
published 60 refereed articles in international journals and 80 conference
proceedings. He was a Grand Winner of European IT Prize, awarded by
European Commission for his contributions to the development of fractal
antennas, in 1998. He has been involved in the creation of several spin-off
companies.

LUIS JOFRE-ROCA (Life Fellow, IEEE) received
the M.Sc. (Ing.) and Ph.D. (Doctor Eng.) degrees
in electronic engineering (telecommunication
engineering) from the Universitat Politècnica
de Catalunya (UPC), Barcelona, Spain, in
1978 and 1982, respectively. He was a Visiting
Professor with École Supérieure d’Electricité
Paris, from 1981 to 1982; a Fulbright Scholar
with Georgia Institute of Technology, Atlanta,
from 1986 to 1987; the Director of the University

of California, Irvine, CA, USA, from 2001 to 2002; the Director of the
Telecommunication Engineering School, UPC, from 1989 to 1994; the
Vice President of the UPC, from 1994 to 2000; and the General Director
and a Secretary of Catalan Universities and Research, from 2011 to 2016;
the Director of the Catalan Research Foundation, from 2002 to 2004; the
Director of the Telefonica Chair on Information Society Future Trends,
UPC, since 2003; the Principal Investigator of the Spanish Terahertz Sensing
Laboratory Consolider Project, from 2008 to 2013; the Director of the
UPC-SEAT Chair on the Future of Automotive; the Research Leader of the
CommSensLab Maria de Maeztu Project, from 2017 to 2020; the Academic
Director of European Consortium for Future Urban Mobility (Carnet).
He has authored more than 200 scientific and technical papers, reports, and
chapters in specialized volumes. His research interests include antennas,
electromagnetic scattering and imaging, system miniaturization for wireless,
and sensing for industrial, scientific, and medical applications. His current
work focuses on connected reconfigurable autonomous vehicles for urban
mobility, massive MIMO antennas, and microorganism wireless interaction.
He is the Chairperson of the EIT-Urban Mobility European Association.

48276 VOLUME 12, 2024


