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ABSTRACT Faults in power distribution feeders cause damage to power utilities due to the deterioration of
reliability and power quality indexes and the displacement of field maintenance teams to replace or repair
power grid equipment. Additionally, consumer units have energy supply interruptions for an undetermined
time. Studies in specialized literature usually detect, classify, and locate faults after they occur. In contrast,
preventing faults by estimating areas vulnerable to them is crucial to mitigate all inconveniences and
additional costs after they occur. Tree vegetation is an essential factor contributing to faults. In this sense,
an enhanced method for tree vegetation mapping by areas is developed using multilayer perceptron neural
networks trained on high-resolution images from Google Earth. A geographic space is incorporated to
estimate the regions vulnerable to failures due to tree vegetation. Geographically weighted spatial analysis is
applied from local variables aggregated by areas. Spatial data analysis is used to real faults and tree vegetation
data from a medium-sized Brazilian city via QGIS and R programming environments. As a result, thematic
maps are produced with the areas whose feeders are vulnerable to faults, where there is a moderate positive
correlation by regions between the faults in distribution transformers and tree vegetation in the northeast and
southwest areas of the city under study.

INDEX TERMS Exploratory spatial data analysis, power distribution systems, spatial data analysis, steady-
state fault.

NOTATION
The notation used throughout this paper is reproduced below
for quick reference.

Acronyms:

ANN Artificial Neural Network;
CTs Census Tracts;
CUs Consumer Units;
ESDA Exploratory Spatial Data Analysis;
ESI Energy Supply Interruptions;
ETT Enhanced Tree Trimming
GIS Geographic Information Systems;
GW Geographically Weighted;

The associate editor coordinating the review of this manuscript and

approving it for publication was F. R. Islam .

GWEA Geographically Weighted
Exploratory Analysis;

GWMs Geographically Weighted Models;
MLP Multilayer Perceptron;
PDS Power Distribution Systems;
SDA Spatial Data Analysis;
SWM Spatial Weighting Matrix.

Indices:
i,j Index for census tracts.

Parameters:

X̄ Arithmetic mean;
σ Standard deviation;
b Bandwidth parameter for the

Gaussian kernel function;
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d Difference between the ordinal
position of two variables in the
same census tract;

dij Distance between the centroids of
census tracts i and j;

n Number of census tracts;
W (n×n) Spatial weighting matrix;
wij Weighting between the census

tracts i and j;
yi, zi Attributes associated with a census

tract at i.
Set:
�k Set of k classes used in the legend

of thematic maps.
Statistical Metrics:
ρ(zi, yi) Geographicallyweighted Pearson’s

local correlation coefficient;
c(zi, yi) Geographically weighted

covariance;
m(zi) Geographically weighted mean;
rs Spearman’s correlation coefficient;
s (zi) Geographically weighted standard

deviation.
Variables:

NFT Number of faults in distribution
transformers by census tracts;

PFT Percentage of faults in distribution
transformers by census tracts;

PTV Percentage of tree vegetation by
census tracts.

I. INTRODUCTION
Power distribution systems (PDS) are continually subject
to events that can result in disturbances and, consequently,
failures [1]. These failures cause numerous interruptions in
the energy supply and negatively impact PDS’s reliability and
power quality, seriously threatening its operation [2], [3].

ESIs are associated with multiple factors such as (i) tree
vegetation close to the overhead utility grid, (ii) adverse
weather conditions (wind gusts, snow, storms, electrical dis-
charges), (iii) damaged equipment (missing maintenance,
obsolescence, or manufacturing defect), (iv) animals as birds
and insects, (v) vehicle collision, (vi) overload on utility
grid; (vii) clandestine connection or vandalism, (viii) human
failures, (ix) protective equipment acting, and (x) kites [4].

Tree vegetation represents a relevant cause associated with
faults among all the factors above, and its impact is a recur-
ring problem for power utilities that results in significant
economic losses [5], [6]. This impact is related to the uncon-
trolled growth of tree vegetation close to distribution lines,
plus adverse weather conditions such as wind gusts and
storms [7], [8]. Additionally, the contact of tree branches
with energized conductors belonging to the utility grid often
causes short circuits, failures, damage to system infrastruc-
ture, and risks to human health [9], [10].

Tree vegetation close to overhead distribution lines also
can interfere with the operation of the utility grid in each area,
making it more vulnerable to failures. The overlapping of tree
branches over the cables can cause interference, ESIs, and
compromise the safety of consumer units (CUs).

Faults resulting from tree vegetation can be classified into
two categories: the first refers to interruptions caused by tree
branches that meet utility grid cables as they grow close to
the feeder. The second category is directly related to adverse
weather conditions, which can result in trees falling onto dis-
tribution lines or forced contact of branches with the feeder.

Adopting preventive measures is crucial to mitigate the
faults, inconveniences, and additional costs after they occur
in PDS. To the best of the authors’ knowledge, specialized
literature studies aim to detect, classify, and locate faults after
they occur – post-fault studies [11], [12]. On the other hand,
estimating regions whose distribution feeders are vulnerable
to faults can be a valuable tool to power utilities in planning
and executing preventive actions to minimize the occurrence
of faults and all maintenance costs related to them.

As mentioned above, several factors can make some
regions or cities more vulnerable to ESIs; however, somemay
be more relevant than others. For example, wind gusts may be
appropriate in coastal towns; conversely, tree vegetation can
be applicable in heavily wooded cities. Thus, the variables
associated with faults depend on the region or city under
study. In this context, spatial data analysis (SDA) is a tool
for preventing faults by estimating the city’s regions whose
feeders are vulnerable to them. Furthermore, the leading
causes of faults can be identified in the city under study.

This work aims to incorporate the geographic space study
to estimate areas whose utility grid is vulnerable to fail-
ures due to tree vegetation. The variables evaluated in this
study are shutdowns in distribution transformers that caused
steady-state faults and the percentage of area occupied by
tree vegetation per census tracts (CTs), which are directly
associated with faults in utility grid feeders. It is observed
that all transformers and tree vegetation are georeferenced
in a time window; that is, their geographic coordinates are
known, enabling SDA application.

A. LITERATURE REVIEW
Faults in PDS related to tree vegetation are addressed
in recent works. Cerrai et al. [5] assessed the impact of
enhanced tree trimming (ETT) on ESI, in which two different
methodologies were implemented. First, the authors applied
a statistical analysis to verify the trend of reduction in inter-
ruptions as the number of ETTs increases. An interruption
prediction model was addressed in the second stage, where
the aim is to evaluate changes in the number of interruptions
before and after ETT.

An approach for predicting vegetation-related interrup-
tions was presented in [7]. They were categorized into
two groups: those caused by tree growth and those
caused by vegetation due to adverse weather conditions.
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The predictions applied two models: a statistical approach
based on time series algorithms and an approach based on
non-linear machine learning.

In [11], the interruptions’ frequency, extent, and duration
were considered. The analysis of tree pruning operations was
evaluated based on a set of actual data, and two autoregressive
models were introduced: the spatial autoregressive model and
the spatial Durbin model. The results demonstrated that tree
pruning operations reduced interruptions and the number of
affected CUs.

Chen and Kezunovic [13] implemented a predictive
method for managing interruptions in transmission and dis-
tribution systems, where the impact due to the combination
of winds and tree vegetation was considered. A geographic
information systems (GIS) framework was introduced to cor-
relate energy system data with multiple climate data layers,
including wind and vegetation information. As a result, maps
were presented with the areas vulnerable to interruptions.

Local variables associated with faults due to trees during
storms were analyzed in [14]. Five fault risk models due
to tree vegetation were developed and compared using a
random forest algorithm, where the physical structure of trees
plus local environmental factors such as utility infrastructure,
faults history, tree pruning data, soil, and land cover informa-
tion were considered.

Taylor et al. [15] evaluated the impact of vegetation man-
agement to reduce ESIs during storms. A machine learning
model was applied, where data on vegetation management,
soil cover, climate data, and electrical infrastructure were
inserted. The study quantified the damage reduction in the
power grid due to ETT during adverse weather events. It was
found that annual reductions in hotspots varied between
25.7% and 42.5% due to ETT.

The authors empirically demonstrate the impact of ETT on
reducing faults during storms [16]. ESI reduced significantly
in areas where ETT treatment was applied, while more fail-
ures occurred in untreated lines.

The aforementioned studies evaluate the impact of ETT
on reducing ESI. On the other hand, the relevance of our
research consists of assessing the relationship between tree
vegetation and ESI, typically caused by factors such as wind,
snow/ice accumulation, and falling branches, considering the
city’s geographic space. Given that power utilities imple-
ment tree vegetation management programs such as ETT, this
study becomes pertinent when there is a need to enhance the
understanding or optimize strategies within these programs.
For example, this study can help in the decision-making
process to select critical areas that can be the targets of ETT
programs.

In [17], a spatial fuzzy influence diagram was presented
to identify vulnerable points in the power grid with a high
risk of interruptions caused by trees during extreme weather
conditions. Data such as forest resources, soil type, power
grid, and history of interruptions were considered. As a result,
the authors presented a map showing the areas whose power
grid is vulnerable to interruptions.

Finally, Onaolapo et al. [18] presented an outage predic-
tion model based on an artificial neural network (ANN).
Two models were built, one with ANN and the other with
multiple linear regression, where climate variables influ-
encing the power grid were introduced. The ANN-based
model improved performance by incorporating ten variables:
(1) outage history, (2) number of clouds, (3) minimum and
maximum temperatures, and (4) number of frost days. The
study highlighted the complex relationship between weather
events and failures in the power grid that result in ESI. On the
other hand, the city’s areas most vulnerable to climate events
were not highlighted. For example, strong winds can cause
trees and branches to fall onto the power grid. Therefore,
the city’s heavily wooded regions will be more vulnerable to
faults.

B. CONTRIBUTIONS
This study performs exploratory spatial data analysis (ESDA)
from tree vegetation data associated with faults and shut-
downs in distribution transformers. Its main contributions are
described below.

❖ Geographical space study is incorporated to produce
thematic maps showing areas vulnerable to faults due
to tree vegetation. These maps are an easy-to-interpret
visual tool for power utilities to plan and execute actions
to prevent ESIs. Therefore, all inconveniences and addi-
tional costs are minimized after the fault occurs in PDS.

❖ Geographically weighted exploratory analysis (GWEA)
by regions uses variables associated with each CT: dis-
tribution transformer faults and tree vegetation. Local
geographically weighted (GW) measurements, such as
standard deviation and local correlations, are applied.
GWEA considers the variable values for each CT and
the influence of closest or neighboring areas.

C. PAPER STRUCTURE
This paper follows in Section II with SDA, spatial analysis
with data aggregated by areas (Subsection II-A), Spearman’s
correlation coefficient (Subsection II-A.1), spatial weighting
matrix (Subsection II-A.2), and GWEA – Subsection II-A.3.
Subsection II-B presents tree vegetation mapping procedure.
Section III presents the implementation of GWEA in a Brazil-
ian city. Subsections III-A and III-B present tree vegetation
mapping and database description, respectively. An ESDA
is performed in Subsection III-C, from the percentage of
tree vegetation (Subsection III-C.1) and faults in distribution
transformers – Subsection III-C.2. GW statistical summary
is performed in Subsection III-C.3 considering the weighting
among areas. Finally, Section IV shows the conclusions of
our work.

II. SPATIAL DATA ANALYSIS
SDA aims to measure the properties and relationships of
events considering their spatial location – geographical coor-
dinates. In this way, geographic space is incorporated into the
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analysis; therefore, there is a visual perception of the spatial
distribution of the event under study [19].

This study uses SDA metrics to perform an ESDA on data
aggregated by areas named CTs. In this way, each location is
associated with a value for each variable under study: faults
percentage in distribution transformers and percentage of area
covered by tree vegetation.

ESDA is the crucial step of a study that applies SDA.
It consists of metrics to identify patterns based on the spa-
tial distribution of the event under study. Thus, hypotheses
can be formulated about the variables influencing its spatial
distribution [20], [21].

ESDA application shows essential effects: spatial autocor-
relation and spatial heterogeneity [22]. Spatial autocorrela-
tion refers to the analysis of variation in spatial dependence
based on comparing observations from a given geographic
area and its neighbors. This concept was defined by Tobler,
who stated the first Law of Geography: all things are similar;
however, closer things look more than farther away [23].
Autocorrelation has negative or positive values, where pos-
itive values indicate that close observations tend to exhibit
similar attributes; therefore, there is aggregation, similarity,
or grouping of the event under analysis. On the other hand,
spatial heterogeneity shows the variation of observations in
geographic space [19], [22].

A. SPATIAL ANALYSIS WITH DATA AGGREGATED BY AREAS
This study is linked to an SDA branch with several methods
for analyzing data aggregated by areas delimited by polygons.
They are applied to studying events aggregated by areas
where their location is unavailable. There is only one value for
each variable associated with each region. Thus, it is possible
to analyze patterns, trends, and relationships in data sets with
specific information about geographic areas such as CTs,
cities, or countries [19], [24].
The presentation of data aggregated by areas is prepared

using colored maps (thematic maps) that display the spatial
pattern of the event under analysis [19].

A branch of SDA with data aggregated by area allows the
use of public information from the demographic census. They
are grouped into small areas named CTs, whose area is a
function of their population density; CTs with greater-density
populations have smaller areas, and vice versa [4].

1) CORRELATION COEFFICIENT OF SPEARMAN
The Spearman’s coefficient correlation is a metric that iden-
tifies whether two variables are associated, where its value
belongs to the continuous interval [−1, 1].
Negative correlation values indicate that the variables

are inversely proportional. Positive values indicate that the
variables are directly proportional. Correlation strength is
evaluated as this metric approaches the two extremes {−1, 1}.
On the other hand, positive or negative correlations close
to zero indicate no significant correlation. Consider two

hypothetical variables, A and B: if A is associated with B,
it does not necessarily mean that A causes B and vice versa.

The rs coefficient is obtained by ranking the values of both
variables in ascending (or descending) order, where original
values are replaced by a positive integer value representing
the variable’s ordinal position in the data series. The rs coef-
ficient is calculated by:

rs= 1−
6
∑
d2

n(n2 − 1)
(1)

where n is the total number of CTs and d is the difference
between the ordinal position of two variables in the same CT.

Spearman’s coefficient is not sensitive to asymmetries or
outliers in the data series. Furthermore, the pair of variables
do not need to be linearly associated [25].

Finally, Spearman’s coefficient is a global metric that does
not consider the variables’ space distribution. In contrast, the
following two subsections present a spatial weighting matrix
(SWM) representing the influence of closest or neighboring
areas for obtaining GW metrics values.

2) SPATIAL WEIGHTING MATRIX
The neighborhood structure among areas establishes their
influence relationship, and it is crucial in studies that apply
SDA techniques with data aggregated by areas.

SDA techniques are widely applied in epidemiology,
botany, soil studies, mineral resources prospecting, and
criminology. A neighborhood structure among areas from
Euclidean distance among centroid areas is usually applied
in these knowledge areas, where closer areas have more
significant influence than distant areas [23]. This same neigh-
borhood structure is used in this study because an abrupt
transition of tree vegetation or faults among neighboring
areas is not expected.

In this sense, SWM is applied to estimate the spatial
variability in data aggregated by areas. SWM W (n×n) is
constructed from a discrete set of n areas {A1, ..,An}, where
each elementwij represents the spatial dependence among the
variables observed in Ai and Aj areas.

Fig. 1 shows an example of obtaining SWM. There are six
CTs (A,B,C ,D,E , andF) of the city in Fig. 1 (a); on the other
hand, in Fig. 1 (b), there is the corresponding SWMW (6×6),
since n = 6 CTs and whose obtaining rule is according to (2).

For example, CT B has borders in common with two CTs:
A and E . Thus, according to (2), SWM elements w21 (weight-
ing between B and A) and w25 (weighting between B and E)
are equal to 1

/
2. The other areas do not have common borders

with B; therefore, they have zero weighting – w23 = 0,
w24 = 0, and w26 = 0.

wij =


1

No. of Borders CTs
, if i and j are borders CTs

0, otherwise

(2)

SWM elements can also be obtained via kernel functions.
They are decreasing and monotone functions of the distance
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FIGURE 1. An illustrative example of obtaining a SWM with six CTs of the
city (a) and its corresponding SWM (b).

between Ai and Aj centroids. Therefore, it follows Tobler’s
first law, where the weighting among nearby CTs is more
significant than for distant CTs. Gaussian kernel is applied
in our study to obtain SWM elements according to (3):

wij= exp

(
−
1
2

(
dij
b

)2
)

(3)

where dij represents the distance between the centroids of
CTs i, and j and b is a bandwidth parameter for the function’s
decay rate [26].

3) GEOGRAPHICALLY WEIGHTED EXPLORATORY
Geographically weighted models (GWMs) are tools belong-
ing to a particular branch of non-stationary spatial statistics,
which intuitively incorporate local spatial relationships into
their structure. These techniques are helpful in contexts where
a global model does not adequately describe spatial data,
as they enable the estimation of local parameters in geo-
graphic space [26], [27].

The GW model outputs are mapped to provide a help-
ful tool that typically precedes more sophisticated statistical
analysis.

The kernel function is crucial in GWmodeling, which aims
to quantify the spatial dependence relationship among the
variables observed in CTs.

GW local summary statistic is obtained from a set of
spatial data and a SWM. Consider the attributes zi e yi
associated with a CT at i. The following metrics can be
obtained via (4)–(7), respectively: GW mean, GW standard

deviation, GW Pearson’s local correlation coefficient, and
GW covariance [26].

m (zi) =

∑n
j=1 wijzj∑n
j=1 wij

(4)

s (zi) =

√√√√∑n
j=1 wij(zj − m (zi))2∑n

j=1 wij
(5)

ρ (zi, yi) =
c(zi, yi)
s (zi) s(yi)

(6)

c (zi, yi) =

∑n
j=1 wij

⌈
(zj − m(zi))(yj − m(yi))

⌉∑n
j=1 wij

(7)

where wij are SWM elements.

B. METHODOLOGY FOR TREE VEGETATION MAPPING
Tree vegetation mapping is performed via image classifica-
tion of each CT by pixel identification. This process involves
identifying the RGB pattern of each pixel, allowing pre-
cise identification of the area percentage occupied by tree
vegetation.

Some remote sensing techniques are limited and cannot
adequately identify tree vegetation due to satellite images’
pixel length of around 30 m [28]. Therefore, an ANN multi-
layer perceptron (MLP) is applied to classify tree vegetation
from the pixels’ RGB pattern [29].

Fig. 2 shows an illustrative example of a CT with high-
lighted tree vegetation and the image pixels in a zoomversion.
In this sense, Fig. 3 shows a flowchart with the steps to
determine the area percentage of each CT occupied by tree
vegetation: (i) obtaining high-resolution images from Google
Earth of each CT; (ii) extraction of the RGB pattern of each
pixel; (3) Application of MLP to check the compatibility of
the pixel’s RGB pattern with tree vegetation; (4) Determina-
tion of CT area occupied by tree vegetation.

FIGURE 2. Illustrative example of tree vegetation mapping.
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FIGURE 3. Flowchart of tree vegetation mapping.

III. EXPLORATORY SPATIAL DATA ANALYSIS IN A
BRAZILIAN CITY
This work applies an ESDA to evaluate the influence of tree
vegetation on making some city CTs vulnerable to steady-
state faults.

In this sense, Fig. 4 shows some relevant factors that caused
9,266 ESI with more than a 1-minute duration over four years
– 2009 to 2012. Tree vegetation occupies the second position
in the ranking as the cause of 19% of ESI in the city under
study. These data highlight the importance of developing
effective strategies for adequately managing tree vegetation
to mitigate their impact on interruptions, improving the PDS
reliability and the service quality provided to CUs.

FIGURE 4. Relevant factors that caused steady faults in the city under
analysis.

The power grid analyzed has feeders located in a Brazilian
city. All simulations are performed via QGIS and R software
version 3.30 and 4.1.2, respectively.

QGIS is a GIS software that enables visualization, edit-
ing, and SDA [30]. On the other hand, R is a free
software for statistical and graphical computing, with

several packages, including the GWmodel package applied
in this study. Although not a GIS, R can perform similar
functions [26], [31].
All simulations in our work are performed on a computer

with a Windows operating system, an AMD Ryzen 7 3700X
processor, 3.6 GHz, 64-bit, and 16 GB of RAM.

A. TREE VEGETATION MAPPING
An MLP is applied to identify the pixel’s RGB pattern with
tree vegetation from high-resolution images obtained from
Google Earth. Image processing via MATLAB software is
used to achieve this objective [32].
MLP has a topology with three inputs (RGB pattern),

20 neurons (intermediate layer), and one neuron in the binary
output layer, where the RGBpattern of some pixels is compat-
ible with tree vegetation.MLP training uses 815 samples with
different shades, some compatible with tree vegetation and
others non-compatible. Therefore, there is a clear distinction
between tree vegetation and undergrowth.

Table 1 shows the MLP parameters applied to tree vegeta-
tion mapping for all city CTs [29].

TABLE 1. Multilayer perceptron parameters for tree vegetation mapping.

B. DATABASE DESCRIPTION
This section evaluates the percentage of tree vegetation
(PTV ) by CTs, which is responsible for permanent faults, and
if it can make some city areas vulnerable to faults.

In this sense, the terminology used in spatial regression
is applied where a set of independent variables explains a
dependent variable’s distribution in geographic space. In this
work, the dependent or study variable evaluated is shutdowns
in distribution transformers by CTs that caused steady-state
faults. The faults are associated with distribution transformers
because they are georeferenced, enabling the SDA appli-
cation. An independent or explanatory variable evaluated,
directly related to faults in utility grid feeders, is the percent-
age of area occupied by tree vegetation by CTs.

Consider a CT i with i = 1, . . . , n where n is the number
of city’s CTs. The independent variable PTV i is shown in (8).
It is obtained from the ratio between the area occupied by tree
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vegetation in CT i and its area:

PTV i =
Tree Vegetation Area in CT i

CT i Area
with i = 1, . . . , n

(8)

The dependent variable percentage of faults in distribu-
tion transformers at CT i named PFT i is shown in (9). It is
obtained from the ratio between the number of permanent
faults at CT i NFT i that caused shutdowns in distribution
transformers and the number of distribution transformers at
CT i named Ti.

PFT i =
NFT i
Ti

with i = 1, . . . , n (9)

PFT i is a fault probability estimating in distribution trans-
formers by CTs. CTs with more transformers Ti tend to have
a more significant number of faults in transformers NFT i.
Therefore, PFT i is a more effective variable than just the
number of faults NFT i because it represents a vulnerability
measure of CTs to faults.

All variables applied in ESDA are described in Table 2.

TABLE 2. Variables description.

C. EXPLORATORY SPATIAL DATA ANALYSIS
An ESDA is performed in NFT , PTV , and PFT variables in
the following two subsections, where the focus is on visual-
izing the variable distribution in the geographic space of the
city via thematic maps.

Thematic map legends are performed via standard devia-
tion intervals, which consider the statistical distribution of the
variable to be mapped. This technique is more appropriate for
use in data series that follow normal distribution. However,
it can show the locational distortions on maps of some CTs
concerning the global average [25], [33].

In this sense, the mean X̄ and standard deviation σ of the
distribution are calculated; then, the data series is segmented
into class intervals whose limits are proportions of the vari-
able’s standard deviation. The set �k of k classes can be
generalized in (10). Alternatively, 0.5σ or 0.25σ can be used
instead of σ for data series with small sparsity.

�k ={. . . ,
(
X̄ − 2σ

)
,
(
X̄ − σ

)
, X̄ ,

(
X̄+σ

)
,
(
X̄ + 2σ

)
, . . .}

(10)

1) PERCENTAGE OF TREE VEGETATION
An ESDA is performed for the independent variable PTV in
this section. Figs. 5 (a)–(c) show the PTV distribution by CTs

from 2010 to 2012. The maps are very similar because tree
vegetation usually changes very slowly. The CTs with the
highest PTV are found on the city outskirts, mainly in the
east, northeast, and southeast, and some CTs in the central
and extreme west. As expected, the city’s central region (red
circle) has a low PTV .

Table 3 shows descriptive statisticsmetrics forPTV byCTs
from 2010 to 2012. The metrics values are very similar for all
years evaluated.

TABLE 3. Statistical summary for PTV by census tracts.

The numbers in parentheses in the Figs. 5 legend indi-
cates the number of CTs whose PTV falls within the range.
Figs. 5 (a)–(c) most CTs have PTV ∈ [5%, 8%[ for all
years.

2) FAULTS IN DISTRIBUTION TRANSFORMERS
This section performs an ESDA for the dependent vari-
ables NFT and PFT . This study analyzed 2,848 interruptions
caused by the failure of distribution transformers.

Figs. 6 (a)–(c) show the NFT distribution by CTs
from 2010 to 2012. Fig. 6 (a) refers to NFT in 2010; 135 CTs
have NFT ∈]0, 3]. Most CTs have NFT in this range for all
years.

The CTs with the highest NFT were found mainly in the
south region in 2010 and the south plus northeast regions
in 2011. NFT fell drastically in 2012. Power utilities peri-
odically organize task forces to replace damaged equipment
(such as transformers) in critical CTs. It cannot be conclu-
sively stated that NFT fell in 2012 due to this, but it is a
relevant hypothesis to consider. The city’s central region has
low NFT for all years.

Table 4 shows some descriptive statistics metrics for NFT
by CTs from 2010 to 2012. On average, each CT has between
two and four annual faults. However, in 2011, a single CTwas
the target of 27 shutdowns in distribution transformers.

TABLE 4. Statistical summary for NFT by census tracts.
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FIGURE 5. PTV by CTs for the years 2010 (a), 2011 (b), and 2012 (c).

On the other hand, thematic maps and statistical summaries
are shown in Fig. 7 and Table 5, respectively, for the PFT
variable.

Figs. 7 (a)–(c) shows PFT distribution by CTs from
2010 to 2012. CTs with the highest PFT were found in

FIGURE 6. NFT by CTs for the years 2010 (a), 2011 (b), and 2012 (c).

the southeast, west, and northwest regions in 2010 and in
the southeast, west, northwest, and northeast areas in 2011.
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PFT fell drastically in 2012, too, due to theNFT drop in 2012
– Fig. 6 (c).

Table 5 shows some descriptive statistics metrics for PFT
by CTs from 2010 to 2012. It is worth pointing out that PFT
has maximum values exceeding 100% for all years. This is
possible because several shutdowns can occur in the same
transformer over the year in a CT i, that is, if NFT i > Ti,
then PFT i > 100% according to (9).

TABLE 5. Statistical summary for PFT by census tracts.

Finally, there is a distinction between NFT and PFT . NFT
only represents the number of transformer faults per CT.
On the other hand, PFT is a measure of CTs’ vulnerability to
faults, as it considers the percentage of damaged transformers
over the year for each CT.

3) GEOGRAPHICALLY WEIGHTED SUMMARY STATISTICS
Spearman’s correlation global coefficient is shown in Table 6
between PTV − PFT and PTV − NFT variables for the
years 2010 to 2012, according to (1). PTV and NFT have
a moderate positive global correlation for all years. Thus,
a cause-effect relationship can exist between them; therefore,
an increase in PTV causes an increase in NFT . Conversely,
there is no significant global correlation between PTV and
PFT variables. Additional studies must be performed to con-
firm or refute this hypothesis.

TABLE 6. Spearman’s global correlation coefficient.

Noteworthy, global metrics do not consider neighborhood
structure represented by SWM. Additionally, correlation at
the global level represents all cities’ CTs by a single numeri-
cal value. Therefore, global and local correlations can present
different results, and no correlation at a global level may be
confirmed at the local level or vice versa [33].
For a more detailed study, GWEA is performed con-

sidering neighborhood structure via SWM, obtained from
the Gaussian kernel in (3). Thematic maps from GW
metrics (4)–(7) are done in this section.

In this sense, Figs. 8 (a)–(c) show the standard deviation
GW for PTV by CTs from 2010 to 2012. For all years, there

FIGURE 7. PFT by CTs for the years 2010 (a), 2011 (b), and 2012 (c).

has been a high local variability in peripheral regions in the
extreme south, southeast, and northeast. Noteworthy, these
regions are close to the city’s rural area under study. High
local variability indicates nearby CTs with very different PTV
values.
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FIGURE 8. GW standard deviation for PTV by CTs for the years 2010 (a),
2011 (b), and 2012 (c).

FIGURE 9. GW standard deviation for PFT by CTs for the years 2010 (a),
2011 (b), and 2012 (c).
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FIGURE 10. GW local Pearson’s correlation between NFT and PTV for the
years 2010 (a), 2011 (b), and 2012 (c).

FIGURE 11. GW local Pearson’s correlation between PFT and PTV for the
years 2010 (a), 2011 (b), and 2012 (c).
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Figs. 9 (a)–(c) show the standard deviation GW for PFT
by CTs from 2010 to 2012. There is a high local variability in
peripheral regions in the extreme southeast in 2010 and north-
west and southeast regions in 2011 and 2012. Noteworthy is
the attenuation of regional variability in 2012.

GW correlation is shown in Figs. 10 (a)–(c) between
NFT and PTV from 2010 to 2012. Both variables have a
non-stationary relationship with a moderate positive GW cor-
relation in the northeast (in 2010 and 2011) and southwest
(in 2012) regions. A positive correlation means that, in these
regions, a rise in NFT is accompanied by an increase in PTV
and vice versa.

Conversely, Figs. 11 (a)–(c) show the GW correlation
between PFT and PTV from 2010 to 2012. Both variables
have a non-stationary relationship; however, they have no
significant correlation in all CTs and years evaluated.

Therefore, from Fig. 10, there is numerical evidence
that tree vegetation (PTV ) is a relevant factor associated
with interruptions in the utility grid (NFT ) in the northeast
(in 2010 and 2011) and southwest (in 2012) regions.

On the other hand, the GW correlation between PTV and
PFT is not significant from Fig. 11. Therefore, only the
tree vegetation variable does not make regions vulnerable to
faults in the city under study. According to Fig. 4, several
other variables are associated with faults. Combining several
variables could make some city regions vulnerable to faults.

ESDA applied in this study supports the execution of
more sophisticated SDA models to add other variables that,
together with PTV , can make some city areas vulnerable to
faults.

Noteworthy, the non-stationary relationship between PTV
and NFT and between PTV and PFT indicates that a global
spatial regression model would not be appropriate for mod-
eling faults; conversely, a local regression model would be
more relevant to represent the non-stationarity at the local
level [33].
Finally, an adaptive bandwidth with the influence of

30 closest CTs is considered in GWEA. The closest CT value
corresponds to 10%of CTs in the city under studywhere there
are n = 301 CTs [26].

IV. CONCLUSION
In this study, a fundamental step of spatial data analysis
(SDA) called exploratory spatial data analysis (ESDA) was
applied to produce thematic maps that showed the city’s
regions or census tracts (CTs) whose feeders are vulnerable
to faults due to tree vegetation.

Actual data georeferenced by CTs were vital for this study:
the dependent or study variables number of faults in trans-
formers (NFT ), percentage of faults in transformers (PFT ),
and independent or explanatory variable percentage of tree
vegetation (PTV ).
PTV variable was obtained from an enhanced method

for tree vegetation mapping by areas using multilayer per-
ceptron (MLP) artificial neural network (ANN) trained on
high-resolution images from Google Earth.

ESDA was performed by applying descriptive statistics
metrics and visualizing the spatial distribution of the vari-
ables in the city’s geographic space. Geographically weighted
(GW) summary statistics showed local spatial variability for
PFT and PTV variables.

GW Pearson’s local correlation showed a moderate pos-
itive correlation between NFT and PTV in the northeast
(in 2010 and 2011) and southwest (in 2012) regions. Con-
versely, the GW correlation between PTV and PFT is
insignificant for all evaluated years.

Therefore, tree vegetation (PTV ) is a relevant factor asso-
ciated with interruptions (NFT ) in the utility grid for some
regions. Conversely, only the tree vegetation variable does
not become regions vulnerable to faults in the city. There are
other variables traditionally associated with faults: electrical
discharges, fires, equipment failures, and adverse weather
conditions. The set of several variables can make some city
regions vulnerable to faults.

ESDA performed in this study will support the implemen-
tation of more advanced models for estimating areas whose
feeders are vulnerable to faults. Furthermore, incorporating
other variables, such as those mentioned in the previous
paragraph, will provide more robustness in future works.
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