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ABSTRACT The analysis of a single source in the vicinity of periodic structures is a very challenging task
since the aperiodic source forbids a direct application of a periodic analysis method to the problem. Full wave
methods addressing these problems involve infinite summations and double integrations which make the
analysis cumbersome. Homogenization based methods reduce this complexity but at the expense of a loss of
accuracy and flexibility in handling different kinds of structures. Moreover, the resulting Green’s functions
still need integrations as opposed to being in closed-form. In this paper, a novel approach is proposed to
obtain closed-form expressions for the Green’s functions of single sources over periodic structures which
makes the analysis of these problems efficient while offering more accuracy and flexibility compared to
existing homogenization methods in the literature. To compute the fields scattered by the periodic structure,
the reflection coefficients are numerically computed for TE and TM polarized incident plane waves with
different angles of incidence and they are approximated by complex exponentials. Approximated reflection
coefficients are used in conjunction with the plane wave expansion of the fields radiated by the dipole so
that the scattered fields can be expressed in closed-form by utilizing Bessel integral identities.

INDEX TERMS Closed-form dyadic Green’s functions, planar periodic structures, multilayered media,
electric dipole excitation, method of moments.

I. INTRODUCTION
Aperiodic sources placed over periodic structures have
attracted great interest from researchers of electromagnetics
area. High-impedance surfaces (HIS), which are also referred
to as reactive impedance surfaces (RIS) or artificial mag-
netic conductors (AMC), are special types of metasurfaces
originally proposed in [1]. It is generally utilized in antenna
applications to improve its radiation characteristics, such as
reduced size [2], [3], increased side-lobe suppression [4],
enhanced bandwidth [5], reduced mutual coupling [6] and
wider scanning angles [7]. They have also found use in
design of endfire antennas [8], [9], low profile multi-beam
omnidirectional antennas [10] and null-steering antennas
with deep nulls in wide bandwidths [11]. All these important
applications utilize HIS in the vicinity of the antenna which
provides the motivation behind the interest of researchers
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in analyzing electric dipole sources over planar periodic
structures printed on multilayered media.

Plane-wave expansion method (PWM), a good summary
of which can be found in [12], is a well established technique
in electromagnetics literature which can be used to tackle the
problem of dipole excitation of periodic structures. It relies
on the fact that a spherical wave can be written as an integral
summation of plane waves. This integration is actually a
2D inverse Fourier transformation and also known as Weyl
Identity [13]. In order to find the scattered electric field
due to a unit amplitude incident plane wave, electric field
integral equation (EFIE) is utilized. By superposition, the
weighted integral of these scattered fields yield the total
scattered field due to the dipole source. EFIE formulation
involves the periodic Green’s function (PGF) of the structure
which is expressed as a double infinite spectral summation.
Thus, calculation of the scattered field due to the dipole
source involves a double infinite integral and a double
infinite summation when the plane-wave expansion method
is employed.

46704

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-9942-5839
https://orcid.org/0000-0003-0946-9561


S. Adanir, L. Alatan: Closed-Form Dyadic Green’s Functions for Dipole Excitation

Array scanning method (ASM) [14], [15], [16] can be
utilized to reduce the limits of the double integration to
finite values. This method is based on synthesizing the single
dipole source from an infinite phased array of dipole sources
with periodicity same as the periodicity of the structure.
By converting the single source to an infinite phased array
of sources, ASM opens the way of utilizing an efficient
periodic moment method to find the scattered fields for
infinite array. The response of the single dipole can be
obtained by integrating the phased array expression over
the Brillouin zone (±π/periodicity). Thus, ASM involves
double infinite summation and 2D finite integration for
the analysis of a single source placed over a periodic
structure.

Array scanning method was applied for the problem of
calculating the fields of a line source above a 1-D periodic
structure in [17] and for the problem with a line source above
a 2-D periodic structure in [18]. The problem with a dipole
source over 2-D periodic structure is investigated in [12].
ASM, while being highly accurate and more efficient

compared to PWM, is still not a highly efficient technique
especially when it comes to analyzing fields for many
different source and observation positions. As a way of
overcoming this efficiency issue in full-wave approaches,
researchers worked on homogenization based methods which
rely on the characterization of metasurfaces by generalized
sheet transition conditions (GSTCs) [19] which can be
expressed in terms of surface susceptibilities [20], [21], [22],
[23], [24], [25], [26] or surface impedancematrices [27], [28],
[29].

Homogenization based approaches were applied for the
problem of calculating the fields of a line source above a
1-D periodic structure in [30] and for the problem with a
line source above a 2-D periodic structure in [31]. To the
best of our knowledge, first study on homogenized Green’s
functions for the problem with a dipole source over 2-D
periodic structure is [32].
In [32], the Green’s functions for the fields in both sides

of the interface are expressed as double integrations in the
spectral domain that contains reflection and transmission
coefficients. To find the unknown coefficients, boundary
conditions are applied which are actually GSTCs that can
be in terms of surface susceptibilities or impedances. After
solving the equations for the unknowns, the reflection and
transmission coefficients are put in the expressions of Green’s
functions and 2D integrations in spectral domain are carried
out to obtain the field values due to the dipole source.

The authors of [32] presented expressions for reflection
and transmission coefficients obtained by surface suscep-
tibility approach and also surface impedance approach.
However, this formulation is given for the special case of
a homogeneous background and isotropic structures. As for
the numerical results, dipole excitation of periodic square
PEC patches in free space is studied. Susceptibilities and
surface impedances are obtained from analytical closed form

expressions in the literature. They compared their results to
the results from ASM which is considered to be exact up
to the numerical accuracy. It is reported that their results
are in agreement with the full-wave ASM results when
periodicity is smaller than 0.1λ and distances of the source
and observation points to the surface are larger than the
periodicity. However, the accuracy of the method can not be
clearly evaluated since, instead of the scattered field values,
the total field values which are heavily dominated by the
incident field for the given parameters of the studied problem
are presented.

The approach in [32] is extended for metafilms at the
interface of two half spaces in [33] and for metasurfaces
placed on a dielectric slab in [34]. Since the numerical results
are reported for total fields, a significant difference between
the results for two different dielectric constants (5 and 16),
[33], and for two slabs of same permittivity but with different
heights (2 mm and 10 mm), [34], is not observed again due
to the dominance of the incident field.

Even though homogenization based approaches offer
efficient solutions, the accuracy of the scattered fields due
to a dipole source near 2-D periodic structures obtained
by homogenized Green’s function approach is not explicitly
verified in literature as explained in the previous paragraphs.
Moreover in [21], in which the reflection and transmission
properties of a metasurface homogenized by surface suscep-
tibilities are studied, the authors state that the fields appearing
in the GSTCs are ‘‘macroscopic’’ fields which mean that they
do not exhibit variations on a length scale comparable to
scatterer dimensions or spacing, but only on larger scales such
as the wavelength in the surrounding medium. This statement
means that the scattered fields obtained by homogenized
Green’s function approaches based on GSTCs will fail to
accurately represent the actual field variations, which limits
its usage to the applications where approximate field values
on the scales of a wavelength are sufficient. On the other end,
the fields obtained by using full wave approaches such as
PWM or ASM will be highly accurate but at the expense of
exhaustive computation power and time. Note that, neither
full wave nor the homogenization based approaches yield
closed form solutions which means it is necessary to carry out
integrations and summations for each different pair of source
and observation point.

In this paper, a novel approach is proposed that provides
closed form expressions to calculate the scattered fields
due to the electric dipole source placed close to planar
periodic structures in a more efficient way than the available
full wave methods in the literature while keeping the
accuracy at high levels even for the field variations within
the fraction of a wavelength as opposed to the currently
available homogenization based approaches. The proposed
approach is applicable to problems whose parameters satisfy
the same conditions in which homogenization methods are
valid: i) the periodicity is sufficiently small compared to
wavelength (< 0.1λ), so that the higher-order Floquet modes
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are negligible, ii) the observation point is not too close
(distance smaller than periodicity) to the periodic structure.

The formulation of the proposed approach will be intro-
duced in Section II, followed by the numerical examples
presented in Section III. Section IV will include the
concluding remarks.

II. FORMULATION
Calculation of reflected fields from the periodic structure
when excited by plane wave is a crucial step in the approach
proposed in this paper. Therefore, this analysis is shortly
introduced in II-A and the formulation for the main problem
is detailed in II-B.

A. REFLECTION COEFFICIENT ANALYSIS
Electric fields scattered by infinite periodic structures, lying
on a plane transverse to z and excited by a plane wave incident
in (θi, φi), can be expressed in the form of an infinite spectral
summation as [35] and [36]:

E⃗s(r⃗, r⃗ ′) =

+∞∑
p=−∞

+∞∑
q=−∞

E⃗pq(kxp, kyq, r⃗ ′)e−j(kxpx+kyqy+kzpqz)

(1)

where transverse and longitudinal wavenumbers are defined
below as:

kxp = kx +
2πp
Dx

, kyq = ky +
2πq
Dy

(2)

kzpq =


√
k2s − (k2xp + k2yq) k2s ≥ k2xp + k2yq

−j
√
(k2xp + k2yq) − k2s k2s ≤ k2xp + k2yq

(3)

ks is the wavenumber in the medium whereas
kx (= ks sin θi cosφi) and ky (= ks sin θi sinφi) are the
transverse wavenumbers of the incident wave. Dx and Dy
are the periodicities (spacing between elements) in x and y
directions, respectively.

The exponential term inside the summation in (1) is
known as a Floquet mode or a Floquet modal function [35].
Electromagnetic fields can be decomposed into Transverse
Electric (TE) and Transverse Magnetic (TM) parts with
respect to the plane of incidence based on a definition of
unit electric field vectors for these two orthogonal modes.
TE and TM reflection coefficients of the periodic structures
are calculated by exciting the structure with a unit amplitude
TE or TM plane wave. This analysis is generally performed
by using the concept of S-parameters with Sij convention
where i refers to the index of the reflected wave while j
refers to the incident wave. Indices 1 and 2 refer to the TE
and TM polarized fundamental (p = 0, q = 0) Floquet
mode, respectively. Indices greater than 2 refer to TE or
TM polarized components of higher order Floquet modes
which are sorted according to their complex wavenumber in
z direction.

Calculation of the reflected TE and TM fields is carried
out by applying Method of Moment (MoM) technique to

solve Mixed Potential Integral Equation (MPIE). RWG basis
function introduced in [37] is preferred in this work for its
flexibility in handling arbitrary geometries while Galerkin
method is utilized where the testing function is the same as
the basis function.

MoM analysis requires the Green’s function of the
structure which is a slowly convergent series for periodic
multilayered structures. This challenge is circumvented by
combining 3-level Discrete Complex Image Method (DCIM)
[38] and Ewald [39] techniques, a combination which has
a proven accuracy and efficiency as demonstrated in our
previous work [40].

B. DIPOLE EXCITATION OF PERIODIC STRUCTURES
A simple illustration of the problem is given in Fig. 1. The
point of observation is shown as r⃗o and the location of the
electric dipole source is r⃗d . The electric dipole current source
oriented along the direction âj can be expressed as follows:

J⃗d (r⃗ ′) = âjδ(r⃗ ′ − r⃗d ) (4)

FIGURE 1. Periodic structure with a rectangular lattice of PEC scatterers
with spacings Dx and Dy , excited by a dipole source at point r⃗d .

The electric fields associated with this source provide
Green’s functions of the structure since it is a point dipole
source with unit amplitude. This Green’s function is not a
scalar but rather a dyadic entity since such a source in a given
direction creates fields in all three directions. The following
formulation is for deriving the components of this dyadic
Green’s function due to horizontal dipole sources.

As described in the previous section, the response (reflec-
tion coefficients) of the planar periodic structure can be
obtained for plane wave incidence. Thus, the formulation
starts with expressing the spherical field radiated by the
dipole in terms of its plane wave spectrum as in (5) [12].

E⃗inc(r⃗, r⃗d ) =
−j
8π2

∫ +∞∫
−∞

dkxdky
1
kz

¯̄G(k⃗ρ)· âj

× e−j[kx (x−xd )+ky(y−yd )+kz|z−zd |] (5)
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¯̄G(k⃗ρ) is a dyad defined in (6) and the wavenumber
expressions are given in (7).

¯̄G(k⃗ρ) = [−jωµ ¯̄I −
1
jωϵ

k⃗ k⃗] (6)

k⃗ = âxkx + âyky ∓ âzkz ; k⃗ρ = âxkx + âyky (7)

The ‘‘minus (plus)’’ sign is used when the observation
point is below (above) the source point. For the problem
we focus on, the aperiodic source is above the periodic
structure and we are interested in the plane waves incident
on the periodic structure. Thus, for the incident plane waves,
observation point is below the source point and hence the
‘‘minus’’ sign is used in the wavenumber definition. When
dealing with the reflected plane waves from the periodic
structure, the observation point is above the source (surface
currents on the periodic scatterers) point and thus a ‘‘plus’’
sign is used in the wavenumber definition.

Incident electric field is a continuum of plane waves of the
form given by equations (8) to (10).

E⃗PWinc (r⃗, r⃗d , k⃗ρ) = E⃗pwi(r⃗, r⃗d , k⃗ρ)e−j[kxx+kyy−kzz] (8)

E⃗pwi(k⃗ρ, r⃗d ) =
¯̄G(k⃗ρ)· âjWinc(k⃗ρ, r⃗d ) (9)

Winc(k⃗ρ, r⃗d ) =
−j
8π2

1
kz
ej[kxxd+kyyd−kzzd ] (10)

The incident field for each plane wave can be written as
the sum of its TE and TM components in terms of the unit
electric field vectors for TE (ête) and TM (êtmi for incident,
êtmr for reflected) polarizations as:

E⃗pwi(k⃗ρ, r⃗d ) = Ete(k⃗ρ, r⃗d )ête(k⃗ρ) + Etmi(k⃗ρ, r⃗d )êtmi(k⃗ρ)

(11)

ête(k⃗ρ) = âx
ky
kρ

+ ây
−kx
kρ

(12)

êtmi(k⃗ρ) = âx
−kxkz
kρks

+ ây
−kykz
kρks

+ âz
−kρ
ks

(13)

êtmr (k⃗ρ) = âx
−kxkz
kρks

+ ây
−kykz
kρks

+ âz
kρ
ks

(14)

Ete and Etmi can be obtained simply by scalar multiplica-
tion of E⃗pwi with ête and êtmi, respectively, following the fact
that ête· ête = êtmi· êtmi = 1 and ête· êtmi = 0.

Ete,tmi(k⃗ρ, r⃗d ) = ête,tmi(k⃗ρ)· [−jωµ ¯̄I

−
1
jωϵ

k⃗ k⃗]· âjWinc(k⃗ρ, r⃗d ) (15)

Since field vectors are orthogonal to propagation direction,
ête,tmi· k⃗ = 0 which yields:

Ete,tmi(k⃗ρ, r⃗d ) = −jωµête,tmi(k⃗ρ) · âjWinc(k⃗ρ, r⃗d ) (16)

The formulation will be detailed for the y oriented
dipole source (âj = ây) only, since the derivation for
other orientations is straightforward by applying the same
procedure. The magnitudes of TE and TM components can
be written as:

Ete(k⃗ρ, r⃗d ) =
ωµ

8π2

kx
kzkρ

ej[kxxd+kyyd−kzzd ] (17)

Etmi(k⃗ρ, r⃗d ) = Etmr (k⃗ρ, r⃗d ) =
ωµ

8π2

ky
kρks

ej[kxxd+kyyd−kzzd ]

(18)

By using the unit TE and TM vectors as incident plane
waves, S-parameters of the periodic structure (for the
fundamental Floquet harmonic) are calculated numerically
through the use ofMoMas described in Section II-A.Ete,Etmi
and Etmr values in (17) and (18) and unit vector definitions
in (12) - (14) are utilized together with the calculated
S parameters of the periodic structure to compute TE and TM
polarized reflected waves. Finally, x component of the total
scattered electric field due to a y directed electric dipole above
the periodic surface can be found as:

Exy(r⃗o, r⃗d ) =

∫ +∞∫
−∞

{
dkxdkye−jkxxoe−jkyyoe−jkzzo

×

[
Ete(k⃗ρ, r⃗d )S11(k⃗ρ)

ky
kρ

+ Ete(k⃗ρ, r⃗d )S21(k⃗ρ)
−kxkz
kρks

+ Etmi(k⃗ρ, r⃗d )S12(k⃗ρ)
ky
kρ

+ Etmi(k⃗ρ, r⃗d )S22(k⃗ρ)
−kxkz
kρks

]}
(19)

Exy(r⃗o, r⃗d ) =
ωµ

8π2

∫ +∞∫
−∞

{
dkxdkye−jkx (xo−xd )e−jky(yo−yd )

×
e−jkz(zo+zd )

kz

[kxky
k2ρ

S11(k⃗ρ) −
k2x kz
ksk2ρ

S21(k⃗ρ)

+
k2y kz
ksk2ρ

S12(k⃗ρ) −
kxkyk2z
k2s k2ρ

S22(k⃗ρ)
]}

(20)

Similarly, following expressions for y and z components of
the total scattered field are obtained.

Eyy(r⃗o, r⃗d ) =
ωµ

8π2

∫ +∞∫
−∞

{
dkxdkye−jkx (xo−xd )e−jky(yo−yd )

×
e−jkz(zo+zd )

kz

[
−
k2x
k2ρ
S11(k⃗ρ) −

kxkykz
ksk2ρ

S21(k⃗ρ)

−
kxkykz
ksk2ρ

S12(k⃗ρ) −
k2y k

2
z

k2s k2ρ
S22(k⃗ρ)

]}
(21)

Ezy(r⃗o, r⃗d ) =
ωµ

8π2

∫ +∞∫
−∞

{
dkxdkye−jkx (xo−xd )e−jky(yo−yd )

×
e−jkz(zo+zd )

kz

[kx
ks
S21(k⃗ρ) +

kykz
k2s

S22(k⃗ρ)
]}
(22)

In order to be able to obtain closed-form expressions,
we need to evaluate these 2-D inverse Fourier transform
integrals, given in (20)-(22), analytically. Using identities
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like Weyl or Sommerfeld helps to achieve this goal. There
are branch point singularities in the integration domain at
kz = 0 or kρ = ks. Since these points form a circle in
the Cartesian kx − ky plane, they pose a bigger challenge in
this domain compared to the cylindrical coordinates. Thus,
by using the following change of variables, the integrals are
transformed into polar coordinates.

kx = kρ cos(φ) ; ky = kρ sin(φ)

xo − xd = ρ cos(9) ; yo − yd = ρ sin(9)

dkxdky = kρdkρdφ (23)

When the periodic structure has a symmetry such that the
variation of reflection coefficient is negligible for different
incident angles in φ direction, the reflection coefficient can
be assumed to be independent of φ. At this point, we limit
our attention to such structures whose S-parameters depend
only on kρ and are independent of φ so that the integration
with respect to φ can be found analytically by using Bessel
integral identities given in Appendix A. Starting with the y
component of the scattered electric field due to a y oriented
dipole, the contribution to Eyy(r⃗o, r⃗d ) from S11(kρ) can be
written in cylindrical coordinates as:

ES11yy (r⃗o, r⃗d ) = −
jωµ
8π

+∞∫
0

kρdkρ
e−jkz(zo+zd )

jkz
S11(kρ)

×
1
π

2π∫
0

dφ cos2(φ)e−jkρρ cos(φ−9) (24)

The integral with respect to φ can be divided into two parts
(I = I1 + I2) as:

I1 =
1
2π

2π∫
0

dφe−jkρρ cos(φ−9)
= J0(kρρ) (25)

I2 =
1
2π

2π∫
0

dφ cos(2φ)e−jkρρ cos(φ−9) (26)

I2 can be obtained in the following form after using the
complex exponential expansion of the cosine function and
performing a change of variables (φ −9 = ψ).

I2 = − cos(29)J2(kρρ) (27)

The recurrence relation of Bessel functions given in
Appendix A is utilized to express the second order Bessel
function in terms of lower order counterparts as:

J2(kρρ) =
2
kρρ

J1(kρρ) − J0(kρρ) (28)

Finally, I2 can also be expressed in terms of zeroth order
and first order Bessel functions like I1.

I2 = I2a + I2b
I2a = cos(29)J0(kρρ)

I2b = −
2 cos(29)

ρ

1
kρ
J1(kρρ) (29)

The reason for preferring zeroth order and first order
Bessel function representations is to perform the remaining
1-D integral with respect to kρ analytically by using
Sommerfeld identity or its derivative with respect to ρ (given
in Appendix A). The formulation for the contributions from
I1, I2a and I2b (denoted with a superscript) will be presented
separately, starting with contribution of I1 as:

ES11:I1yy (r⃗o, r⃗d ) = −
jωµ
8π

+∞∫
0

kρdkρ
e−jkz(zo+zd )

jkz
S11(kρ)

× J0(kρρ) (30)

In order to make the integrand compatible with the above
mentioned identities, S11(kρ) is approximated in terms of
complex exponentials by utilizing DCIM [41] as:

S11(kρ) =

N1∑
k=1

B1ke−jkzγ1k (31)

Applying the Sommerfeld identity gives us the contribu-
tion in a finite summation form as:

ES11:I1yy (r⃗o, r⃗d ) = −
jωµ
8π

N1∑
k=1

B1k
e−jksr1k

r1k
(32)

where r1k is defined as:

r1k =

√
(xo − xd )2 + (yo − yd )2 + (zo + zd + γ1k )2 (33)

Since I2a is just the scaled version of I1 by cos(29), the
contribution from I2a can be directly written as:

ES11:I2ayy (r⃗o, r⃗d ) = −
jωµ
8π

cos(29)
N1∑
k=1

B1k
e−jksr1k

r1k
(34)

I2b can be written in the following form by using (23)
and (29) to obtain the integral as:

ES11:I2byy (r⃗o, r⃗d ) =
jωµ
8π

2 cos(29)
ρ

+∞∫
0

{
dkρk2ρJ1(kρρ)

×
e−jkz(zo+zd )

jkz

S11(kρ)
k2ρ

}
(35)

Note that the derivative of Sommerfeld identity can be
utilized to evaluate this integral analytically if this time S11(kρ )

k2ρ
is approximated in terms of complex exponentials as:

S11(kρ)
k2ρ

=

Na1∑
k=1

Ba1ke−jkzγa1k (36)

By using this approximation and the derivative form of
Sommerfeld identity, the contribution from I2b is written in
a finite summation form as:

ES11:I2byy (r⃗o, r⃗d ) =
jωµ
4π

cos(29)
Na1∑
k=1

{
Ba1k (1 + jksra1k )

×
e−jksra1k

r3a1k

}
(37)
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where ra1k is defined as:

ra1k =

√
(xo − xd )2 + (yo − yd )2 + (zo + zd + γa1k )2 (38)

Next we will focus on the contribution of S21(kρ) to
Eyy(r⃗o, r⃗d ) and highlight the similarity of the procedure
needed to apply for obtaining closed-form expressions.
Moreover, for this contribution, the S-parameter related
variables that need to be approximated via DCIM will be
pointed out and the resultant closed-form expressions will be
presented. The contribution of S21(kρ) can be written in polar
coordinates as:

ES21yy (r⃗o, r⃗d ) = −
jωµ
8π

+∞∫
0

kρdkρ
e−jkz(zo+zd )

jkz

S21(kρ)kz
ks

×
1
π

2π∫
0

dφ cos(φ) sin(φ)e−jkρρ cos(φ−9)

(39)

By applying a similar procedure as presented above and by
using the same change of variables (φ−9 = ψ), the integral
with respect to φ can be obtained as:

I = − sin(29)J2(kρρ) = Ia + Ib

Ia = sin(29)J0(kρρ) ; Ib = −
2 sin(29)

ρ

1
kρ
J1(kρρ)

(40)

Due to the similarity of Ia to I2a and Ib to I2b in (29),
it is obvious that the remaining 1-D integrals over kρ can be
obtained in closed form by utilizing Sommerfeld identity and
its derivative for Ia and Ib related terms, respectively. In order
to utilize these identities the following DCIM approximations
are required.

S21(kρ)kz
ks

=

N2∑
k=1

B2ke−jkzγ2k (41)

S21(kρ)kz
ksk2ρ

=

Na2∑
k=1

Ba2ke−jkzγa2k (42)

The final form of the contribution of S21(kρ) can be written
as a sum of two finite summations, one for Ia and one for Ib,
as:

ES21:Iayy (r⃗o, r⃗d )

= −
jωµ
8π

sin(29)
N2∑
k=1

B2k
e−jksr2k

r2k
(43)

r2k =

√
(xo − xd )2 + (yo − yd )2 + (zo + zd + γ2k )2 (44)

ES21:Ibyy (r⃗o, r⃗d )

=
jωµ
4π

sin(29)
Na2∑
k=1

Ba2k (1 + jksra2k ) ×
e−jksra2k

r3a2k
(45)

ra2k =

√
(xo − xd )2 + (yo − yd )2 + (zo + zd + γa2k )2 (46)

By observing (21) and noting that S21 = S12 due to
reciprocity, the contribution from S12 is exactly the same as
the one from S21. Thus,

ES12yy (r⃗o, r⃗d ) = ES21yy (r⃗o, r⃗d ) (47)

Finally, to express the contribution of S22(kρ) to Eyy(r⃗o, r⃗d )
in closed-form, the following DCIM approximations are
needed.

S22(kρ)k2z
k2s

=

N3∑
k=1

B3ke−jkzγ3k (48)

S22(kρ)k2z
k2s k2ρ

=

Na3∑
k=1

Ba3ke−jkzγa3k (49)

Similar to the contribution of S11(kρ), this contribution
will also have three components, namely I1, I2a, I2b,
after the analytical evaluation of the integral with respect
to φ. By using Sommerfeld identity and its derivative,
in conjunction with the related DCIM approximations, each
component of S22(kρ) can be written in closed-form as:

ES22:I1yy (r⃗o, r⃗d )

= −
jωµ
8π

N3∑
k=1

B3k
e−jksr3k

r3k
(50)

r3k =

√
(xo − xd )2 + (yo − yd )2 + (zo + zd + γ3k )2 (51)

ES22:I2byy (r⃗o, r⃗d )

= −
jωµ
4π

cos(29)
Na3∑
k=1

Ba3k (1 + jksra3k )

×
e−jksra3k

r3a3k
(52)

ra3k =

√
(xo − xd )2 + (yo − yd )2 + (zo + zd + γa3k )2 (53)

Contribution of I2a can be obtained simply by scaling (50)
with − cos(29).

We have completed the derivation of closed-form expres-
sions for the y component of scattered electric field due
to a y oriented electric dipole over the periodic structure.
Derivation for the other transverse component (Exy) is similar
in form. For the sake of brevity, the derivation steps are
skipped and the final closed-form expressions are presented
in Appendix B.
We now turn our attention to vertical component of

scattered electric field due to a y oriented dipole. If we
observe equation (22), we can see that there are two
S-parameters contributing to Ezy(r⃗o, r⃗d ). The contribution of
S21 in polar coordinates is:

ES21zy (r⃗o, r⃗d ) =
jωµ
8π

+∞∫
0

kρdkρ
e−jkz(zo+zd )

jkz

kρ
ks
S21(kρ)

×
1
π

2π∫
0

dφ cos(φ)e−jkρρ cos(φ−9) (54)
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After performing the integration with respect to dφ,
the following integration which resembles the derivative of
Sommerfeld identity is obtained.

ES21zy (r⃗o, r⃗d ) =
ωµ

4π
cos(9)

+∞∫
0

e−jkz(zo+zd )

jkz

S21(kρ)
ks

× J1(kρρ)k2ρdkρ (55)

Following complex image approximation is made to be
able to express the result of the integral in a closed form:

S21(kρ)
ks

=

N4∑
k=1

B4ke−jkzγ4k (56)

Utilizing the derivative of Sommerfeld identity yields the
following finite sum for ES21zy (r⃗o, r⃗d ):

ES21zy (r⃗o, r⃗d ) =
ωµ

4π
cos(9)ρ

N4∑
k=1

B4k (1 + jksr4k )
e−jksr4k

r34k
(57)

Since ρ cos(9) = (xo − xd ), we finally obtain:

ES21zy (r⃗o, r⃗d ) =
ωµ

4π
(xo − xd )

N4∑
k=1

B4k (1 + jksr4k )
e−jksr4k

r34k
(58)

where r4k is defined as:

r4k =

√
(xo − xd )2 + (yo − yd )2 + (zo + zd + γ4k )2 (59)

A similar derivation applies for the ES22zy (r⃗o, r⃗d ) and it is
found to be as:

ES22zy (r⃗o, r⃗d ) =
ωµ

4π
(yo − yd )

N5∑
k=1

B5k (1 + jksr5k )
e−jksr5k

r35k
(60)

where the following complex image approximation is used:

S22kz
k2s

=

N5∑
k=1

B5ke−jkzγ5k (61)

and r5k is defined as:

r5k =

√
(xo − xd )2 + (yo − yd )2 + (zo + zd + γ5k )2 (62)

Derivation of the closed-form expressions for a y-directed
dipole excitation are presented. Since the reflection coeffi-
cients are assumed to be independent of φ, the expressions
due to an x-directed dipole excitation can be easily obtained
with a simple change of variables between x and y. Hence
all components of the dyadic Green’s function for horizontal
sources are available, which makes it possible to analyze
planar antennas places over periodic structures.

8 S-parameter related entities ((31), (36), (41), (42), (48),
(49), (56), (61)) need to be approximated in terms of a

finite summation of complex exponentials, to obtain closed-
form expressions for dyadic Green’s functions of horizontal
sources over periodic structures. These approximations are
achieved by sampling the associated entity along a path in
complex kρ(or kz) domain. The path used for the sampling in
this study is nearly the same as described in [41]. In Fig. 2,
C0 denotes the sampling path defined in [41] and C1 denotes
the path used in this work. The difference is that, one end
of the sampling path is not exactly at kz = ks as is the case
in [41] but instead it is at a slightly shifted point on the real kz
axis. The other end of the path is shifted slightly upwards on
the imaginary kz axis. This modification is made to prevent
numerical errors occurring in the approximation process due
to the pole at kρ = 0 for the functions to be approximated.
The sampling path is truncated at a point very close to
kz = −jksT . T is taken as 5 in this work. The justification
for this value can be made by observing the exponential
inside the inverse Hankel transform integrals above. If dipole
and observation point are both at a minimum height of 0.1λ
from the periodic structure, then the exponential inside these
integrals (e.g., (55)) takes the following value:

e−jkz(zo+zd )
∣∣∣∣
zo=zd=0.1λ and kz=−jks5

= e−ksλ = e−2π (63)

which is smaller than 0.002. This ensures that the contribution
to the integral from the components with wavenumbers
beyond the chosen truncation point is negligible which is
also verified by numerical integration accuracy test as will
be explained in the next paragraph.

FIGURE 2. Sampling path described in [41] (C0) and modified sampling
path used in the proposed method in this paper (C1), where T is the
sampling truncation number.

At each sample point, the MoM solution of the peri-
odic structure for the corresponding plane wave incidence
is performed only once and all required parameters are
calculated without any significant additional time cost.
Extraction of the complex images from the sampled data is
performed by the Generalized Pencil of Function (GPOF)
technique [42]. In an intermediate step of this technique,
a singular value decomposition (SVD) is applied on the
sampled data matrix. Only significant singular values which
are larger than a preset threshold value are taken into
account, and the number of these significant singular values
determines the number of complex exponentials used in the
approximation. The threshold value used in this work is
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1 × 10−8, unless stated otherwise. The number of complex
images obtained with this criterion varies between 6 and
15 depending on the approximated S-parameter related entity
and whether the periodic structure is in free space or in
layered media. The accuracy of the DCIM approximation
is verified by computing the integrals (e.g., (30), (35))
numerically for a set of source-observation points and
comparing these to the integral results calculated through sum
of exponentials obtained via DCIM (e.g., (32), (37)). The
numeric computation of the integrals are carried out on a path
which is C0 of Fig. 2 extended with a straight path between
kz = −jks5 and kz = −jks200. Highest error in the integral
results obtained by DCIM approach is observed to be less
than 2.5% which is sufficient for the accuracy of the fields.
To demonstrate the accuracy of the formulation proposed in
this work, numerical results corresponding to the application
of it on some sample problems will be presented in the
next section in comparison with the results obtained from
a commercially available 3-D electromagnetic simulation
software, HFSS by Ansys [43].

III. NUMERICAL RESULTS
Two different cases are considered such that in the first case,
the periodic structure is in free space while in the second
one the periodic surface is printed on a dielectric slab as
an example of a multilayered medium. The sample problem
for free space is the same as in Fig. 3 of [32]. However,
a comparison of the results with the ones reported in [32]
will not be presented since the scattered field results are
not available for that work, and the total field values are
almost equal to the incident field values of the dipole source
without the periodic structure. The periodic structure is a
square PEC patch array as shown in Fig. 3 with parameter
values presented in Table 1. For multilayered test case, the
same patch array is printed on a dielectric slab with dielectric
constant of 3.38 and thickness of 2mm. The results for free
space (FS) and multilayered (MLYD) cases are presented
comparatively on same plots, to observe the effects of the
dielectric slab.

FIGURE 3. Periodic surface.

The selection of this geometry is based on the fact that the
S-parameters have negligible dependence on φ as observed
from the reflection coefficient results for different incident
angles presented in Figure 4. Note that this kind of behaviour

TABLE 1. Parameters of the problem.

is a requirement to obtain the closed-form Green’s function
expressions proposed in this work.

FIGURE 4. Magnitude of S11 for the structure described in Fig. 3 and
Table 1.

Assuming that the patch array lies at z = 0 plane, a y
oriented dipole is placed at the center of the periodic structure
at a height of 3mm (0.15λ) (xd = yd = 0, zd = 3mm). First
the variation of Eyy with respect to the position of observation
point along x (xo) and y (yo) directions is examined for
different heights (zo). Figure 5 and 6 respectively show the
magnitude and phase of Eyy with respect to xo at yo =

0 and zo = 5 mm (2mm above the dipole). The structure
in consideration is infinitely periodic in x and y directions.
However for Hertzian dipole excitation, HFSS can provide
results only for periodic structures truncated at a finite
number of cells. In order to observe the convergence of HFSS
results, several simulations are performed for increasing
number of cells, and the number of cells used in each direction
for the corresponding simulation is denoted by M × M in
the legends of the plots. Since the field variation is slow in x
direction, the convergence of HFSS results can not be easily
observed from the magnitude plots. However, the phase plots
demonstrate that HFSS results converge for 55 number of
cells in both x and y directions.

The magnitude and phase variation of Eyy with respect
to yo at xo = 0 and zo = 5 are presented in Figures 7
and 8, respectively. As expected from a y directed dipole,
the field variation is more rapid in y direction. Again the
convergence of HFSS results can be observed better from the
phase plots. For both variations with respect to x and y, good
agreement between HFSS results and the results obtained
with the proposed method are observed for both free space
and multilayered cases.
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FIGURE 5. Magnitude of Eyy with respect to xo (yo = 0 and zo = 5 mm).

FIGURE 6. Phase of Eyy with respect to xo (yo = 0 and zo = 5 mm).

FIGURE 7. Magnitude of Eyy with respect to yo (xo = 0 and zo = 5 mm).

The accuracy of the results become more important as the
observation point moves close to the source point. Hence the
previous analyses are repeated when the observation point is
at zo = 2 mm plane which is 1mm below the dipole source.
The magnitude and phase plots for this close proximity case
are presented at two orthogonal lines in Figures 9 to 12. Good
agreement between the results obtained by the proposed
method and HFSS simulation results can still be observed

FIGURE 8. Phase of Eyy with respect to yo (xo = 0 and zo = 5 mm).

even though the observation point gets closer to the source
and the fields varymuchmore faster compared to the previous
case.

FIGURE 9. Magnitude of Eyy with respect to xo (yo = 0 and zo = 2 mm).

FIGURE 10. Phase of Eyy with respect to xo (yo = 0 and zo = 2 mm).

We now focus on evaluating the results for z component of
the scattered electric field due to a y oriented dipole. Recall
from the formulation in the previous section that Ezy can be
seen as a sum of the contributions from S21 and S22. Since
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FIGURE 11. Magnitude of Eyy with respect to yo (xo = 0 and zo = 2 mm).

FIGURE 12. Phase of Eyy with respect to yo (xo = 0 and zo = 2 mm).

the cross coupling between TE and TM polarized fields is
negligible for the analyzed structure, we end up with only
contribution being due to S22. Equation (60) refers that Ezy
vanishes as y coordinates of the observation point and the
dipole source gets closer to each other. Thus,Ezy is not plotted
along yo = 0 line as it is zero for that case. Magnitude
and phase plots for Ezy with respect to yo at two different
observation heights (z = 5 and z = 2) are presented in
Figures 13 to 16. It is clearly seen that the results of the
proposed approach agrees very well with the results of HFSS
for the vertical component of the scattered field as well.
Agreement is preserved for both height values of observation
plane and for both free space and multilayered cases.

An evaluation of the proposed approach would not be
complete without discussing its efficiency. The most time
consuming part of the method is the numerical computa-
tion of the S-parameters at the sample points for DCIM
approximation. The number of samples used for the results
presented in this section, is 200 which is seen to be sufficient
for converged field values as seen in Fig 17. For free space
case, first sampling point requires 2 seconds and each of
the other sampling points takes 1.2 seconds resulting a total
of 4 minutes time for the calculation of all entries of the
dyadic Green’s function. For multilayered case, calculations

FIGURE 13. Magnitude of Ezy with respect to yo (xo = 0 and zo = 5 mm).

FIGURE 14. Phase of Ezy with respect to yo (xo = 0 and zo = 5 mm).

FIGURE 15. Magnitude of Ezy with respect to yo (xo = 0 and zo = 2 mm).

at the initial sampling point takes 40 seconds while the
time required for each of the remaining sampling points is
3.5 seconds. This makes a total of 12.3 minute calculation
time for all the dyadic Green’s function components.

HFSS, on the other hand, requires much more time to yield
converged values. For the free space problemwith 45×45 unit
cells, total time required for HFSS is 8.5 hours while for
multilayered problem with the same number of unit cells
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FIGURE 16. Phase of Ezy with respect to yo (xo = 0 and zo = 2 mm).

FIGURE 17. Magnitude of Eyy with respect to xo (yo = 0 and zo = 2 mm)
for free space (FS) and multilayered (MLYD) problems to demonstrate the
convergence of the proposed method with respect to number of samples.

10 hours is required. For the multilayered case, the difference
between the results with 45×45 and 55×55 unit cells is more
significant compared to the difference for free space problem.
If one runs the simulation inHFSSwith 55×55 unit cells, then
the time required for this goes as high as 27 hours. Proposed
method offers an efficiency improvement by a factor of more
than 125.

In all of the numerical examples studied in this paper,
a work station type of notebook is used with a 128 GB of
RAM. The processor of the computer is Intel Core i7-9750H
CPU with 2.60GHz clock speed.

IV. CONCLUSION
A novel approach has been presented in this paper to
analyze the fields due to electric dipole sources in the
vicinity of planar periodic structures. The accuracy of the
proposed method is demonstrated with various numerical
results including both magnitude and phase of scattered
electric fields. The efficiency of the approach is also proven
by comparing its computational cost against the simulation
time of HFSS for a finite periodic structure large enough to
observe convergence of the results.

It is believed that the proposed method will fill an
important gap in the literature by obtaining closed-form
Green’s function expressions for the dipole excitation of
periodic planar structures. It eliminates the need for calcu-
lating the inverse Fourier transform or Sommerfeld integrals
for different source and/or observation point locations.
It achieves this efficiency while keeping the accuracy at
high levels even for field variations at small scales since
it is based on the full-wave MoM solution of reflection
coefficients.

APPENDIX A
BESSEL IDENTITIES
Some useful identities and transform equations utilized in
the formulation of the approach proposed in this paper are
summarized from [44] and [45]. The Sommerfeld identity is
given as:

e−jksr

r
=

∞∫
0

e−jkzz

jkz
J0(kρρ)kρdkρ (64)

where J0(z) is the Bessel function of the first kind of order 0.
The derivative of the Sommerfeld identity with respect to ρ
is

ρ(1 + jksr)
e−jksr

r3
=

∞∫
0

e−jkzz

jkz
J1(kρρ)k2ρdkρ (65)

In order to reach (65) from (64), the following identity of
Bessel function is used.

d
dz

[z−vJv(z)] = −z−vJv+1(z) (66)

A useful integral representation of Bessel function of the
first kind of integer order n is given as:

Jn(z) =
j−n

2π

2π∫
0

ejz cosφejnφdφ (67)

The recurrence relations are used to relate Bessel functions
of different orders. A very useful one of them is given as
follows:

Jv−1(z) + Jv+1(z) =
2v
z
Jv(z) (68)

Identities for negative argument and negative integer order
are also worth mentioning as these are among the mostly used
Bessel identities.

J−n(z) = (−1)nJn(z)

Jn(−z) = (−1)nJn(z) (69)

APPENDIX B
CLOSED-FORM EXPRESSION FOR EXY
By observing the similarities and differences in the expres-
sions for contributions of S-parameters to the electric field
components in equations (19) through (21), one can quickly
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determine the closed-form expressions for Exy, which are
given below:

ES11xy (r⃗o, r⃗d ) = ES11:Iaxy (r⃗o, r⃗d ) + ES11:Ibxy (r⃗o, r⃗d ) (70)

ES11:Iaxy (r⃗o, r⃗d ) =
jωµ
8π

sin(29)
N1∑
k=1

B1k
e−jksr1k

r1k
(71)

ES11:Ibxy (r⃗o, r⃗d ) = −
jωµ
4π

sin(29)
Na1∑
k=1

Ba1k (1 + jksra1k )

×
e−jksra1k

r3a1k
(72)

ES21xy (r⃗o, r⃗d ) = ES21:I1xy (r⃗o, r⃗d ) + ES21:I2axy (r⃗o, r⃗d )

+ ES21:I2bxy (r⃗o, r⃗d ) (73)

ES21:I1xy (r⃗o, r⃗d ) = −
jωµ
8π

N2∑
k=1

B2k
e−jksr2k

r2k
(74)

ES21:I2axy (r⃗o, r⃗d ) = −
jωµ
8π

cos(29)
N2∑
k=1

B2k
e−jksr2k

r2k
(75)

ES21:I2bxy (r⃗o, r⃗d ) =
jωµ
4π

cos(29)
Na2∑
k=1

Ba2k (1 + jksra2k )

×
e−jksra2k

r3a2k
(76)

ES12xy (r⃗o, r⃗d ) = ES12:I1xy (r⃗o, r⃗d ) + ES12:I2axy (r⃗o, r⃗d )

+ ES12:I2bxy (r⃗o, r⃗d ) (77)

ES12:I1xy (r⃗o, r⃗d ) = −ES21:I1xy (r⃗o, r⃗d )

ES12:I2axy (r⃗o, r⃗d ) = ES21:I2axy (r⃗o, r⃗d )

ES12:I2bxy (r⃗o, r⃗d ) = ES21:I2bxy (r⃗o, r⃗d ) (78)

ES22xy (r⃗o, r⃗d ) = ES22:Iaxy (r⃗o, r⃗d ) + ES22:Ibxy (r⃗o, r⃗d ) (79)

ES22:Iaxy (r⃗o, r⃗d ) = −
jωµ
8π

sin(29)
N3∑
k=1

B3k
e−jksr3k

r3k
(80)

ES22:Ibxy (r⃗o, r⃗d ) =
jωµ
4π

sin(29)
Na3∑
k=1

Ba3k (1 + jksra3k )

×
e−jksra3k

r3a3k
(81)
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