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ABSTRACT The rapid evolution of neuroimaging techniques underscores the necessity for robust medical
image registration algorithms, essential for the precise analysis of resting-state networks. This study
introduces a comprehensive modular evaluation framework, designed to assess and compare the differences
of four state-of-the-art algorithms in the field: FSL, ANTs, DARTEL, and AFNI. Our framework highlights
the critical importance of algorithm selection in neuroimaging, addressing the unique challenges and
strengths each algorithm presents in processing complex brain imaging data. Our rigorous evaluation delves
into the algorithms’ differences, with a focus on spatial localisation accuracy and the fidelity of resting-state
network identification. The comparative analysis uncovers distinct advantages and limitations inherent to
each algorithm, illuminating how specific characteristics can shape neuroimaging study outcomes. For
instance, we reveal FSL’s robustness in handling diverse datasets, ANTs’ precision in spatial normalisation,
DARTEL’s suitability for large-scale studies, and AFNI’s adaptability in functional and structural image
analysis. The findings highlight the nuanced considerations necessary in choosing the right registration
algorithm for neuroimaging data, advocating for a bespoke approach based on the unique requirements of
each study. This detailed analysis advances the field, guiding researchers towards more informed algorithm
selection and application, thus aiming to improve the accuracy and reliability of neuroimaging outcomes.
Presenting a clear, comprehensive overview of each algorithm within our novel framework, the study
addresses the needs of the neuroimaging community and paves the way for future advancements in medical
image registration.

INDEX TERMS NRAAF, algorithm evaluation in neuroimaging, resting-state fMRI analysis, non-rigid
image registration, medical imaging, multivariate pattern analysis.

I. INTRODUCTION
In the rapidly evolving field of medical imaging, the process
of image registration plays a crucial role in various critical
applications, including diagnosis, prognosis, treatment, and
follow-up [1]. Image registration, also known as image fusion
or matching is crucial for mapping the anatomy, physiology,
functions, and connectivity of brains both in individuals and
groups [2]. This technique has witnessed the development of
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various alignment methodologies, each aiming to enhance the
accuracy and comprehensiveness of image analysis [3].
Particularly, this study focuses on Default Mode Networks

(DMN) - critical brain networks that are most active during
rest and are involved in self-referential and introspective
activities. Their relevance spans across various neuropsycho-
logical disorders and cognitive functions, serving as a focal
point in understanding the neural basis of these conditions
and their potential therapeutic targets [4], [5]. DMNs are a
subset of Resting-State Networks (RSNs). The persistence
of intrinsic activity, even during altered states like sleep [6]
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and certain sedation types [7], [8], makes RSNs a subject of
immense interest and investigation in neuroimaging.

In this field, functional magnetic resonance imaging
(fMRI) emerges as a sensitive tool, detecting changes in
regional blood perfusion, volume, or oxygenation corre-
sponding to neuronal activity. Traditional image registra-
tion approaches in fMRI, involving iterative optimisation
procedures, are foundational yet demand enhancements
to accommodate the complexities of modern medical
imaging challenges [9]. These challenges include multiple
modalities, image quality, distortion, organ motion, and
noise. Specifically, in functional MRI paradigms, motion
correction becomes crucial to mitigate subject movement
effects, which can introduce artefacts or distortions requiring
correction [10].
Given these intricacies, our study aims to delve

into the algorithmic differences in resting-state networks
between different demographic groups. For this purpose,
we utilise data from the public repository Open Neuro
(https://openneuro.org), ensuring data safety, confidentiality,
and increased reproducibility of our findings with a large
dataset (N=815). This dataset facilitates the evaluation of
visible activation networks, which are crucial for applying
and understanding various metrics in RSN studies.

This contribution introduces the Non-Rigid Registra-
tion Algorithm Analysis Framework (NRAAF), a modular
evaluation framework designed to provide an objective
comparison of non-rigid registration algorithms, specifi-
cally focusing on the validation and comparative analysis
of four prominent fMRI registration algorithms: FMRIB
Software Library (FSL), Advanced Normalisation Tools
(ANTs), Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra (DARTEL), and Analysis of
Functional Neuroimages (AFNI) (summarised in Table 1).
These algorithms are rigorously evaluated within the context
of the control network, offering insights into their impact on
the spatial localisation accuracy and reliability of identified
networks.

In the following sections, we describe our unique approach
to image pre-processing, including a bespoke evaluation
framework for analysing the Blood Oxygen Level Dependent
(BOLD) signal in grey matter (GM) functional differences
within default mode networks (simplified overview in Fig. 1).
This represents a pioneering study in its field. We then
present our findings and conclusions, highlighting the effi-
cacy and adaptability of our modular evaluation framework
in addressing the nuanced challenges of medical image
registration.

II. RELATED WORK
We believe that studying algorithm evaluation is more
significant than developing a new one, considering the current
state of the art in nonlinear intra-subject, intra-modality
registration. There are very few papers that are solely
devoted to evaluation in the literature, and the majority of
publications on algorithms do not focus on a comprehensive

evaluation [11]. This section presents challenges for each
evaluated algorithm.

A. ANTS (ADVANCED NORMALISATION TOOLS)
Functional imaging analysis using Advanced Normalisation
Tools (ANTs) presents a robust framework for neuroimaging;
however, it encounters several challenges that impact its
application.

One of the challenges lies in voxel-wise hypothesis
testing, as discussed by Rizzo et al. [12]. Voxel-wise
analysis can lead to inflated false positives, necessitating
rigorous statistical correction methods to address this issue.
Additionally, artefact removal in fMRI data is critical for
accurate analysis. Tohka et al. [13] present an automatic
independent component labelling approach to tackle this
challenge, enhancing the reliability of functional imaging
results.

Another challenge relates to optimising template selection
for different populations and datasets. Avants et al. [14]
discuss the optimal template effect and strategies for
template selection, particularly important for elderly and
neurodegenerative brain studies. Furthermore, ANTs relies
on well-annotated data for multi-atlas segmentation, and
Avants et al. [14] exploremethods and annotation strategies to
improve multi-atlas segmentation, addressing the challenge
of limited training data.

Additionally, the robustness of ANTs in the presence of
noise and variations in MRI data quality is a persistent chal-
lenge. This challenge is crucial in pediatric neuroimaging,
as highlighted by Tustison et al. [15], who emphasize the
importance of ANTs for addressing these issues. Finally,
Klein and Ghosh [16] evaluate the performance of ANTs
in volume-based and surface-based brain image registration,
illustrating challenges in the registration of different image
modalities and the need for accurate alignment in multi-
modal studies.

B. DARTEL (DIFFEOMORPHIC ANATOMICAL
REGISTRATION THROUGH EXPONENTIATED LIE ALGEBRA)
DARTEL, a valuable tool for structural-functional analyses,
confronts several challenges in functional imaging that
impact its application.

One key challenge is the accuratemodelling of longitudinal
structural MRI data. Ashburner and Ridgway [17] discuss
symmetric diffeomorphicmodelling techniques for longitudi-
nal data, addressing the challenge of modelling changes over
time effectively. Additionally, Manogaran and Leung [18]
introduce feature-based group independent component anal-
ysis as an approach to improving high-dimensional brain
structural and functional imaging analysis. This approach
helps tackle the challenge of handling complex, high-
dimensional data.

Another challenge relates to the fusion of information
from different imaging modalities. Gaser et al. [19] present
BrainAGE as a method for predicting the conversion to
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FIGURE 1. Abstract visualisation of the registration process. This includes functional and structural image
registration. The functional image is first registered on the structural image of the same subject. Then the resulting
image is normalised onto a standard template and fitted to a general linear model. This produces activation clusters
which are subject to multivariate pattern analysis.

Alzheimer’s disease, emphasizing the integration of multi-
modal data. Furthermore, Groves et al. [20] explore the
benefits of multi-modal fusion analysis, focusing on cortical
morphometry and white matter microstructure, addressing
the challenge of combining information from diverse sources
effectively.

Lastly, Tustison et al. [21] highlight the importance
of measurement-based performance evaluation of image
segmentation algorithms in DARTEL, emphasizing the
challenge of accurate segmentation and the need for rigorous
evaluation techniques.

C. AFNI (ANALYSIS OF FUNCTIONAL NEUROIMAGES)
Analysis of Functional NeuroImages (AFNI) is a powerful
tool for fMRI data analysis, but it faces several challenges
that influence its utility in research.

One challenge concerns the control of false positives
in cluster-based fMRI analyses. Cox et al. [22] address
this issue and provide insights into reducing false-positive
rates in AFNI, improving the reliability of fMRI results.
Chen et al. [23] and Chen et al. [25] discuss the challenges
related to t-tests, sidedness choice, and the artificially
doubled false positive rates, highlighting the need for
statistical rigour in AFNI-based analyses.

Another challenge is the detection of subtle differences
in functional connectivity patterns. Bhaumik et al. [24]
present multivariate pattern analysis strategies to improve
the detection of remitted major depressive disorder using
resting-state functional connectivity, addressing the chal-
lenge of identifying nuanced functional alterations.

The stability of individual differences in regional blood
oxygen level-dependent (BOLD) signal baseline during task
and rest is also a concern. Chen et al. [25] investigate
this challenge and emphasise the importance of considering
BOLD signal baseline stability in fMRI studies.

Lastly, the issue of robust and accurate linear registration
and motion correction in brain images is a common
challenge in fMRI pre-processing. Jenkinson et al. [26]

discuss improved optimisation techniques for addressing this
challenge, contributing to more reliable pre-processing in
AFNI-based analyses.

D. FSL (FMRIB SOFTWARE LIBRARY)
FSL is versatile but faces challenges in functional imaging
that impact its use in research.

One significant challenge is the accurate correction of
image noise and artefacts. Salimi-Khorshidi et al. [27]
propose automatic denoising techniques in FSL, addressing
the challenge of optimising image quality for subsequent
analysis. Andersson and Sotiropoulos [28] tackle the issue
of off-resonance effects and subject movement in diffusion
MRI, emphasising the need for effective correction strategies.

using MATLAB R2023a [65].
Another challenge is the integration of information from

different imaging modalities. Glasser et al. [29] discuss
the challenges and benefits of multi-modal data fusion in
large-scale neuroimaging projects like the Human Connec-
tome Project, highlighting the importance of combining data
sources effectively.

Additionally, Woolrich et al. [30] introduce multilevel
linear modelling for group analysis in FSL, providing a
solution for modelling the variability present in complex
neuroimaging datasets, which is a common challenge.

Finally, Gaser et al. [19] explore the neuroimaging
community’s approach to addressing the challenge of
reproducibility and reliability in fMRI studies, highlight-
ing the need for standardised and transparent analysis
pipelines.

As this review of related work indicates, current neu-
roimaging algorithms, including ANTs, DARTEL, AFNI,
and FSL, offer valuable insights but also face significant
challenges, particularly in terms of adaptability and precision.
This underscores the need for a more integrative and
flexible approach. The following section introduces our
proposed framework, designed to overcome these limitations
by leveraging a comprehensive, multidimensional evaluation
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FIGURE 2. The functional and structural pre-processing stages are shown in this image of the evaluation framework, which is followed by the
registration of pre-processed images to the MNI152 standard template. We then generated clusters by using FSL FEAT [67] to fit the registered
images into a general linear model. These clusters were then input to Support Vector Machines (SVM) to calculate the decision boundary between
the algorithm’s contribution to the activation intensity. To get definitive results, the statistical analysis was subsequently completed and
visualisations generated

strategy. This innovative approach aims to refine neuroimag-
ing techniques, ensuring more accurate, robust, and versatile
applications in various research contexts.

III. NRAA—NON-RIGID REGISTRATION ALGORITHM
ANALYSIS FRAMEWORK
This innovative framework for evaluating non-rigid reg-
istration algorithms in fMRI data is distinguished by its
comprehensive approach, integrating three key metrics:

• Peak Activation Intensity Analysis: Identifies and
localises peak activation points within functional brain
networks, crucial for precise brain activity mapping.
This metric, leveraging ’lmax_zstat.txt’, is optimised in
our framework for enhanced accuracy.

• Cluster-Based Evaluation: Utilises ’cluster_zstat.txt’
to evaluate the spatial distribution and size of activation
clusters. This is integral for maintaining the integrity of
functional networks and is adapted in our framework for
refined analysis.

• Thresholded Activation Mapping: Via ’thresh_zstat’
files, providing visual and statistical representations
of significant brain activation areas. This metric is
crucial in our framework for accurate localisation and
interpretation of functional networks.

In the pre-processing stage, we employ the FMRIB
Software Library (FSL) for image processing, with a focus
on the unique impact of different registration algorithms.
Our procedure includes registering fMRI images to the
subject’s structural MRI and the MNI 152 2mm standard
template, followed by direct registration of the time series

4D fMRI image to the MNI152 template. The distinctiveness
of our approach lies in the interchangeable use of different
registration algorithms, allowing for an in-depth analysis of
BOLD signal variations in resting-state networks.

We introduce the processing pipeline (Fig. II-D) which
accepts multi-modal (structural and functional) images and
the MNI152 standard template as inputs. The pipeline
operates in parallel, allowing for the simultaneous processing
of multiple datasets and enabling inter-subject comparisons.

This section describes the evaluated algorithms, the
pre-processing, the processing steps, the dataset, and the
evaluation metrics.

A. EVALUATED ALGORITHMS
In this section, we discuss the non-rigid registration algo-
rithms that are currently used in the framework. The
differences in spatial transformation approaches among FSL,
AFNI, ANTs, and DARTEL stem from their underlying
algorithms, optimisation strategies, and intended use cases.
Table 1 briefly highlights these differences. Additionally,
we provide a comparative overview of the algorithms among
themselves below.

• FSL vs. AFNI:Both offer linear and non-linear options,
but FSL’s FNIRT and AFNI’s 3dQwarp differ in their
specific approaches to non-linear registration. FSL’s
user-friendly interface contrasts with AFNI’s focus on
functional MRI and its requirement for more user input.

• FSL/AFNI vs. ANTs: ANTs stands apart for its sym-
metric normalisation in non-linear registration, which
is not a primary feature in FSL’s FNIRT or AFNI’s
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TABLE 1. This table encapsulates the differences in spatial transformation approaches among FSL, AFNI, ANTs, and DARTEL, highlighting their underlying
algorithms, optimisation strategies, and intended use cases. Each algorithm is specifically selected for its ability to address distinct aspects of image
registration, ensuring robustness and precision in our framework.

3dQwarp. ANTs is often chosen for studies needing very
high precision in alignment.

• DARTEL vs. Others: DARTEL’s approach to creating
a group-specific template and its use of diffeomorphic
mappings make it distinct from the other three. While
FSL and AFNI focus on a broader range of neuroimag-
ing applications, DARTEL specialises in high-accuracy
morphometric analyses.

Each tool has specific strengths and should be chosen
based on the specific requirements of a study, such as the need
for high precision, user-friendliness, or specialised applica-
tions like volumetric analysis or high-accuracymorphometric
analyses.

B. DATASET
Robust results in neuroimaging research often require large
sample sizes, particularly for studies analysing between-
subject effects [77]. To meet this need, we selected the
‘‘AOMIC-ID1000’’ dataset (N = 928), notable for its
comprehensive representation of the general population and
its diverse range of MRI data. This dataset, accessible
at https://openneuro.org/datasets/ds003097/versions/1.2.1,
includes structural, diffusion, and both task-based and
resting-state functional MRI data, along with concurrent
physiological data and extensive demographic information.
Such diversity makes it an ideal choice for a broad and
accurate analysis in our study.

From this dataset, we carefully selected N = 815 par-
ticipants, prioritising those with robust activation signals to
ensure the reliability of our findings. This selection was
based on a verification process conducted, focusing on the
robustness of results and minimising pre-processing issues
often encountered in smaller samples. This strategy ensures
that our analysis is grounded in data representative of a wide
range of brain activities.

Table 2 in our manuscript presents an overview of various
datasets we evaluated for implementation in our framework.
The ‘‘AOMIC-ID1000’’ was ultimately chosen for its large
number of subjects and its extensive focus on the brain,
which aligns with our objective to conduct a comprehensive
and nuanced analysis of brain function without resorting
to synthetic data. Figures 3 and 4 show modalities and
demographics collected.)

FIGURE 3. This figure shows the modalities collected in the dataset
chosen for this study. We focus on the T1w and fMRI modalities from the
Amsterdam Open MRI Collection [77], which is a collection of
multi-modal MRI datasets for individual difference analysis. Specifically,
we elected to use the ID1000 dataset, which is described in this section.

C. PRE-PROCESSING
This section outlines the pre-processing steps in MRI brain
imaging data. Our pre-processing protocol is designed to
enhance the sensitivity of statistical analysis and ensure the
validity of results, ultimately leading to more accurate and
reliable research findings.

The primary goal of our pre-processing is to condition
the data for analysis by eliminating artefacts. This ensures
that variability in our experimental framework is solely
due to differences in registration algorithms. Our approach
includes brain extraction, artefact detection and removal,
normalisation, and registration [45].
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TABLE 2. Public datasets used in the state-of-the-art as well as deep learning-based medical image registration were considered for use in this research.
This list is not comprehensive as datasets keep evolving. Sorted by region of interest. These datasets were investigated and subsequently, The Amsterdam
Open MRI Collection (in table highlighted in italics) was chosen due to the largest number of subjects and focus on functional MRI.

FIGURE 4. This study utilises a dataset consisting of N = 815 participants,
including 416 females and 399 males. The age range of the participants is
19 to 26 years old, with an average age of approximately 22.9 years. This
dataset was deliberately chosen to address the gender disparities in
medical data accessibility.

In our pre-processing workflow for functional neu-
roimaging data, we prepare each structural and functional
images separately. The structural images were corrected for
non-uniformity and aftrifacts, and then brain was extracted
from the skull. The functional images were motion and
slice-timing corrected. This yielded structural and functional
pre-processed images ready for processing by registration
algorithms.

1) FILE PREPARATION
Our study utilised structural (T1w) and functional MRI
images in NIFTI1 format, chosen for its wide compatibility
with various software packages and to avoid issues associated
with the Analyze format. These 3T high-quality images
were acquired in Right-to-Left orientation and processed as
detailed in Table 3.

To address motion and slice-timing artefacts in the
functional MRI data, we applied the FSLMCFLIRT tool [26]
for correction. This step ensured the accuracy of subsequent
analyses by stabilising the raw functional files.

In preparation for analysis, additional steps included cre-
ating parameter files and configuring command-line options
for parallel processing. This was particularly important for
efficient processing on High-Performance Computing (HPC)
architecture, which significantly reduced the registration
time. Each functional image comprised 290 slices, necessi-
tating these optimisations for streamlined data handling.

2) BRAIN EXTRACTION
We utilised FSL BET [93] for skull-stripping, removing
each brain from its whole-head image and resulting in a
skull-stripped image (illustrated in Figure 5). This step was
applied to each MRI volume of the ID1000 dataset.

Post-skull-stripping, we employed various FSL pre-
processing methods on these images. These methods are
pivotal for conditioning the data for accurate statistical
analysis, ensuring optimal data quality.

Skull-stripping of the brain, followed by the removal of
motion and distortion artefacts from the functional data,
precedes registration. The motion-corrected functional brain
is then aligned with the skull-stripped structural brain of the
same subject.

D. PROCESSING
Subsequently, after pre-processing, the same subject’s struc-
tural and functional image is registered to the standard
template, with each step’s mathematical transformation
stored for the transformation of the 4D time series to standard
space. Our processing approach is methodically structured,
involving several key steps for each subject’s data:

1) Linear Registration: This stage involves aligning
structural and functional brain images from the same
subject. The primary objective here is to ensure
accurate alignment within each individual’s data set
[52], [53].
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TABLE 3. Details of the files from the scanner. All images in this study were obtained from the ‘‘Intera’’ version of the Philips 3T scanner (Philips, Best,
the Netherlands) [77].

FIGURE 5. For each brain, we obtained two images: the original
T1-weighted MRI and the extracted brain. To provide a comprehensive
view of each brain, we present sagittal (front-facing right), coronal (right
on the right side), and axial (front-facing top, right on the right side)
views in three columns (left to right). It is important to note that the
images presented in this figure are for illustration purposes only. For this
figure, we changed the images’ scale, location, and contrast to facilitate
visual inspection of the brains.

2) Non-Linear Registration: Now, the focus shifts to
aligning functional images with the same subject’s
structural space, which is essential for effective com-
parison across different subjects [54], [55].

3) Applying Transformations: The combined results
from the linear and non-linear registration phases are
applied to the whole time-series functional images.
This step moves the images into a standard space.

4) Statistical Analysis:We conduct a thorough statistical
analysis, including Univariate analysis via General
Linear Model fitting [48], [49] andMultivariate Pattern
Analysis via SVMs [50], [51]. This analysis is crucial
for identifying patterns and correlationswithin the data,
extending our understanding to encompass group-level
brain activity.

We first align functional brain images with structural data
from the same subject using linear registration methods.
These images are then registered to a standard template
through non-linear registration techniques. The combined
transformations from these stages are applied to the complete
time series of functional images, aligning them with the stan-
dard MNI152 space. This careful process ensures that only
brain regions are registered, preserving analysis integrity.
Recent studies by Dadar et al. [44], Nael et al. [45], and
Frost et al. [46] support the effectiveness of these registration
methods in neuroimaging. The registration algorithm is then
swapped and the same process is repeated.

This concise overview encapsulates the essential steps of
our processing stage, ensuring a rigorous and comprehensive
analysis of neuroimaging data. Figures 1 and 6 visually
exemplify the brain’s alignment pre- and post-registration
with the standard template.

FIGURE 6. Example result of functional registration using the nonlinear
method. The upper row represents the subject brain before registration,
the lower row depicts the brain registered (resized) onto the standard
MNI152 template.
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E. EVALUATION METRICS IN NRAAF
The evaluation metrics in our Non-Rigid Registration
Algorithm Analysis Framework (NRAAF) utilise a combina-
tion of univariate and multivariate analyses to robustly assess
registration algorithms:

1) FSL FEAT Metrics for Univariate Analysis: Our
framework incorporates FSL FEAT metrics for uni-
variate analysis, leveraging their established reliability
in measuring spatial precision and alignment accuracy
in neuroimaging. These metrics are grounded in the
general linear modeling approach of FEAT, aligning
with methodologies discussed in Jenkinson et al. [41],
which provides a comprehensive overview of FSL
tools, including FEAT, in neuroimaging.

2) Use of SVMs for Multivariate Analysis: Diverging
from the traditional use of Support Vector Machines
(SVMs) for classification in neuroimaging, as ini-
tially outlined in Cortes and Vapnik [42], our study
employs SVMs innovatively within the Multivariate
Pattern Analysis (MVPA) framework. This novel
application focuses on analysing the performance
of registration algorithms in processing fMRI data,
specifically assessing their impact on the functional
connectivity patterns. The innovative use of SVMs
in this context extends beyond typical classification
tasks, offering new insights into the effectiveness of
registration algorithms in neuroimaging data analysis,
as highlighted in the discussion of evolving machine
learning techniques in neuroimaging by Varoquaux and
Thirion [43].

By integrating these two methodologies, our NRAAF pro-
vides a comprehensive assessment of non-rigid registration
algorithms, evaluating both their anatomical precision and
functional impact. This approach not only aligns with current
standards in neuroimaging analysis but also introduces a
novel perspective through the unique application of SVMs in
MVPA, marking a significant contribution to the field.

IV. IMPLEMENTATION
This section outlines the methodologies and procedures
employed in our study, detailing the computational resources,
software applications, and the image registration process.
We emphasise the critical steps involved in pre-processing
neuroimaging data, registering images to a standard space,
and analysing the resulting data. Our approach combines
well-established techniques with innovative applications,
leveraging advanced computational resources and statistical
analyses to ensure rigorous evaluation and accurate interpre-
tation of neuroimaging data.

A. COMPUTATIONAL RESOURCES
The analysis was conducted on a CentOS machine, version
8.2.2004-x86_64 (Dell PowerEdge R740 Rack Server). This
system, equipped with Intel Xeon Gold 6240 processors
totalling 288 cores and 720GBDDR4RAM,was essential for

the computationally intensive tasks of functional neuroimage
processing and analysis.

B. SOFTWARE APPLICATIONS
Several software applications were utilised for pre-processing
and computing findings for assessment, including but not
limited to FSL 6 [41], Freesurfer 7.4 [64], and MATLAB
R2023a [65]. Visualisations of the results were generated
using MATLAB and Freesurfer Freeview 3.0 [66].

C. IMAGE REGISTRATION PROCESS
In our study’s implementation, the image registration process
was tailored to address specific challenges and requirements
of our fMRI data analysis:

• Efficiency in Execution: Recognising the extensive
data volume, we conducted the initial registration
and standard space alignment in parallel, signifi-
cantly reducing processing time in comparison to the
non-parallel processing. This approach was instru-
mental in performing a total of 6520 whole-brain
3D-3D registrations, both linear and non-linear, and
3260 3D-4D transformations.

• Iterative Approach: After initial registrations, we sys-
tematically replaced the registration algorithm, enabling
a comprehensive comparative analysis across different
techniques. This iterative method provided unique
insights into the performance of various registration
algorithms in our dataset.

• Maintaining Data Integrity: A key focus was main-
taining the quality of the fMRI data. By directly
moving the 4D fMRI time series images to the MNI152
template by utilising previously saved transformations,
we avoided the quality degradation typically associated
with repeated registrations. While direct evidence for
quality degradation due to repeated registrations is
limited, related studies in the field suggest potential
issues with registration quality [14], [41], [47].

Through these tailored strategies in image registration, our
study not only achieved efficiency and precision but also
offered a deeper insight into the comparative effectiveness
of different registration methods. This meticulous approach
sets a foundation for the subsequent analyses, ensuring that
our findings are grounded in robust and accurately aligned
images.

D. CLUSTER ANALYSIS AND STATISTICAL PROCESSING
Descriptive statistics provided summary measures of the
data’s central tendency and variability, which include mean,
median, standard deviation, range, minimum, maximum,
interquartile range (IQR), skewness, and kurtosis. These
statistics are essential for a comprehensive understanding of
the distribution of peak activation intensities.

While exploring various analytical approaches, the poten-
tial application of Principal Component Analysis (PCA)
was considered. PCA is often used in neuroimaging studies
to reduce data dimensionality and to identify underlying
patterns in complex datasets. However, given the specific
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context of our study, which focuses on investigating resting
state networks with four distinct algorithmic components, the
application of PCA was deemed unnecessary. This decision
was guided by the targeted nature of our research objectives,
which centre on the direct comparison of these predefined
algorithms rather than uncovering latent structures within
a larger set of variables. Nevertheless, future studies with
larger sets of variables or different research focuses might
benefit from the application of PCA or similar multivariate
techniques.

Cluster peak activations were quantified as the highest
intensity points in regions of interest. Significant clusters
were numerically identified, with associations between peak
activation and significant clusters in resting-state networks
being tested. fMRI data processing utilised FEAT (FMRI
Expert Analysis Tool) Version 6.00, part of FSL. Z (Gaus-
sianised T/F) statistic images were thresholded using clusters
determined by Z>2.3 and a (corrected) cluster significance
threshold of P=0.05 [67].

1) INTER-SUBJECT STATISTICAL TESTS
Statistical analyses were conducted using MATLAB release
R2023a. The volumetric measurement of the Control Net-
work activations was based on voxel sizes of 2 2 2 mm3, with
a robust dataset of N = 815 subjects. Despite the substantial
sample size, the Shapiro-Wilk test indicated non-normality
of the data; hence, non-parametric methods were chosen
for further analysis alongside descriptive statistics. The
chosen statistical tests were Mann-Whitney U Test, Wilcoxon
Signed-Rank Test, Kruskal-Wallis Test, and Spearman’s Rank
Correlation. They were selected due to their robustness in
handling non-normality and fewer assumptions about the
underlying data distribution [62], [63].

2) EFFECT SIZES AND ERROR CORRECTION:
In this study, we not only focused on statistical significance
but also on the practical significance of our findings.
To achieve this, we incorporated effect size calculations and
error correction methods into our analysis. The rank-biserial
correlation is used as the effect size for Mann-Whitney
U Test and Wilcoxon Signed-Rank Test, determined by
r =

Z
√
N
. For Spearman’s Rank Correlation, the rho

coefficient directly represents the effect size. To mitigate
the risk of Type I errors (false positives) in our analysis
with multiple comparisons, we employed the Bonferroni
Correction in contrast to methods like the False Discovery
Rate (FDR). Despite its potential to increase Type II errors
(false negatives), the Bonferroni Correction is a common and
robust method in complex studies to ensure validity against
accidental findings [40], [94].

3) APPLICATION OF MULTIVARIATE PATTERN ANALYSIS
Beyond non-parametric tests, our study utilises Multivariate
Pattern Analysis (MVPA) via Support Vector Machines
(SVMs) to generate heat maps that provide visualisation

of the similarity between the voxel intensities reported by
the algorithms, facilitating a detailed intersubject analysis of
the Control Network activations. Mutual Information (MI)
is employed alongside SVM to enhance visual inspection
and provide a statistical metric of interdependence between
subjects.

The methodologies implemented include a novel use of
SVMs to analyse neuroimaging data. Unlike traditional
SVM applications in neuroimaging, which predominantly
focus on classification tasks [31], [32], our approach uses
SVM for direct comparison of algorithmic performance
in processing resting-state fMRI data. This technique,
illustrated by Weaverdyck et al. [33] and further expanded
in our study, delineates decision boundaries on a voxel-
by-voxel basis, enabling a detailed pairwise comparison of
the algorithms. Such comparative analysis through SVMs is
scarcely addressed in current literatures [34] and [35], mark-
ing our study as a significant advancement in neuroimaging
research. The heat maps derived from these SVM weights
offer a visual assessment of each algorithm’s impact on
connectivity patterns, a technique that echoes the findings of
Steardo et al. [36] and Mikolas et al. [37] in their respective
fields.

SVMs are widely recognised for their robust classifi-
cation capabilities in neuroimaging [38], [39], excelling
in discerning and predicting patterns from complex data.
Our application of SVM extends beyond traditional feature
selection methods, like those using segmented gray matter
or regions of interest [31], to a broader analytical scope,
reflecting the versatility and innovative potential of SVM in
neuroimaging.

In this analysis, MI serves as a robust statistical measure
for quantifying the registration accuracy among different
algorithms applied to Resting-State fMRI data. Grounded
in information theory, MI provides a nonlinear correlation
metric between datasets [36], crucial in neuroimaging where
precise voxel alignment is imperative for accurate functional
connectivity mapping.

Our methodologies included advanced image registration
processes, clustering analysis, and statistical processing of
activation data, as well as the innovative application of
machine learning techniques like Support Vector Machines
(SVMs) for feature extraction and heatmap generation. These
approaches enabled us to conduct an intricate inter-subject
analysis of the Control Network activations, leveraging
the structural detail provided by the Harvard-Oxford atlas
to enhance our understanding of the underlying neural
mechanisms.

V. EVALUATION RESULTS
In this analysis, we examined the variability in peak
activation identification reporting across 815 subjects using
four different non-rigid registration algorithms: FSL, ANTs,
DARTEL, and AFNI. Focusing on the strength of the
correlation between the Control Network and its seed region,
and the difference of each algorithm to the correlation.
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FIGURE 7. Seed Region and Corresponding Harvard-Oxford Atlas Regions. The first row displays the identified seed
region for the control network in both hemispheres, shown in sagittal, coronal, and axial views. The second row shows
the corresponding regions within the Harvard-Oxford cortical atlas where the seed region is located, including the
Paracingulate Gyrus, Cingulate Gyrus (anterior division), and Cingulate Gyrus (posterior division). This juxtaposition aids
in understanding the anatomical context of the seed region within established brain atlases.

We present the results by hemispheres. Our study aimed
to investigate how these algorithms influence neuroimaging
data interpretation, specifically resting-state networks. These
results, are crucial for the validation and refinement of our
proposed framework, paving the way for more extensive
analyses and enhancements in future researchmethodologies.

A. SEED REGION
The commonly adopted seed region for the control network
was precisely localised using RAS (Right, Anterior, Superior)
coordinates, a conventional neuroimaging coordinate system.
The specified coordinates (R: 4.60, A: 35.44, S: 21.78)
target an area within the brain’s left hemisphere, implicating
regions such as the Paracingulate Gyrus, and the anterior
and posterior divisions of the Cingulate Gyrus. This region’s
involvement is critical given its associationwith key functions
of the control network.

The identified seed region for the control network,
encompassing the Paracingulate and Cingulate Gyri (anterior
and posterior divisions), is pivotal for several reasons.
Functionally, these regions are integral to the control network,
playing a critical role in higher-order cognitive processes
such as attention, working memory, and decision-making,
and are essential in cognitive control and emotional regula-
tion [56], [57]. Statistically, the seed region’s localisation is
influenced by the variability in registration algorithms like
FSL, ANTs, DARTEL, and AFNI. This variability affects the
interpretation of neural responses, as measures like mean,
median, standard deviation, skewness, and kurtosis provide
insights into the consistency and distribution of activation
intensities [58], [59]. Moreover, in resting-state networks,
the consistency of algorithmic registration in these regions
is crucial for understanding functional connectivity and
intrinsic neural activities, thereby influencing the analysis
of resting-state networks [60]. Differences in algorithm
performance critically affect control network analysis in

resting-state fMRI, underscoring the importance of accurate
localisation and intensity measurement. Recent research
emphasises the impact of functional connectivity measures
on neuroimaging accuracy [61]. The seed region is shown in
Figure 7.

B. ATLAS MEASUREMENTS
We measured the strength of the correlation to the seed
region and difference of each algorithm contribution to the
correlation of each subject using the Harvard-Oxford cortical
and subcortical structural atlas on MNI152 space. The
Harvard-Oxford cortical structural atlas provides a regional
parcellation comprising 96 regions (48 regions 2, left and
right), and 17 regions in the subcortical structural atlas
(8 from the cerebral cortex, thalamus, caudate, pallidum,
hippocampus, amygdala, and accumbens 2, left and right; and
the brain stem) [95], [96], [97], [98].

C. STATISTICAL INSIGHTS IN NEUROIMAGING DATA
INTERPRETATION
This section presents the analysis of the descriptive statistics
of peak activation intensity in both the left and right
hemispheres of the activated regions, using four distinct
neuroimaging algorithms: ANTs, DARTEL, AFNI, and FSL.
The focus is on understanding algorithmic variations in
correlation strength and hemisphere differences.

As Table 4 reveals, ANTs demonstrated a high mean
(6.9184) and maximum value (21.2000), indicating a ten-
dency to detect higher activation intensities. The skewness
(3.1411) and kurtosis (16.4160) suggest a distribution with
significant outliers. DARTEL showed a lower mean (6.3695)
with a narrower standard deviation (1.4351), suggesting more
consistent but potentially less sensitive measurements of
activation intensities, as indicated by the kurtosis (21.8712).
AFNI presented a considerable range (23.6000), indicating
high variability in activation intensities. The zero minimum
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TABLE 4. Descriptive Statistics of Left Hemisphere Peak Activation Intensity in the Control Network. This table presents a comparative analysis of four
neuroimaging algorithms: ANTs, DARTEL, AFNI, and FSL. It highlights ANTs’ tendency to detect higher activation intensities with significant outliers,
DARTEL’s more consistent but less sensitive measurements, AFNI’s high variability, and FSL’s balanced sensitivity and variability in activation detection.

TABLE 5. Descriptive Statistics of Right Hemisphere Peak Activation Intensity in the Control Network. This table compares the same four neuroimaging
algorithms as Table 4. It illustrates ANTs’ propensity for detecting intense activations, DARTEL’s consistent performance across hemispheres, AFNI’s
notable variability in activation intensities, and FSL’s comparable and balanced detection capabilities across both hemispheres.

value could suggest instances of no detected activation. FSL
reported a moderate mean (6.7825) and standard deviation
(1.8348), suggesting balanced sensitivity and variability in
activation detection.

ANTs similar to the left hemisphere, showed high mean
(6.9339) and maximum (31.6000) values, with even higher
skewness (4.3537) and kurtosis (39.0803), indicating a
propensity for detecting intense activations. DARTEL was
consistent with the left hemisphere; it had a slightly
higher mean (6.5036) but similar patterns in other metrics,
suggesting uniformity across hemispheres. AFNI displayed
similar characteristics to the left hemisphere, with a large
range (22.2000) and maximum value (22.2000), indicating
notable variability. FSL showed comparable statistics to
the left hemisphere, maintaining a balance between sen-
sitivity and variability. For all the values please refer to
Table 5.

Within our study, histograms are utilised to depict the
frequency distribution of peak activation intensities derived
from fMRI data. Each histogram offers a visual summary
of how often various intensity values occur within the
dataset, which corresponds to the precision of different
non-rigid registration algorithms in mapping brain activity.
This representation allows for an immediate grasp of the
central tendency and dispersion of the peak activation
intensities.

The histograms for AFNI’s peak cluster intensities in both
hemispheres exhibit a right-skewed distribution, indicating a
prevalence of lower intensity values with fewer occurrences
of higher intensities (Fig. 8). This skewness suggests a
potential for non-detection or underestimation of intensity
values by the AFNI algorithm. The red line, representing
the mean, and the green dashed line, indicating the median,

are both shifted towards the lower end of the intensity scale,
further emphasising the skewness of the distribution. The red
line shows the mean and the median is denoted by the green
dashed line.

In the case of ANTs (Fig. 9), the histograms also display
a right-skewed distribution, but with a mean and median
that are closer together, suggesting a more symmetrical
distribution around the central value compared to AFNI. The
distribution implies that ANTs tends to detect higher intensity
activations more frequently than AFNI.

The DARTEL algorithm’s histograms show a narrower
and more symmetric distribution, with a median that closely
approximates the mean, indicating a balanced detection of
peak intensities with less skewness (Fig. 10). This symmetry
may reflect DARTEL’s consistent performance in capturing
the central tendency of the data without a significant bias
toward higher or lower intensity values.

Finally, the histograms for FSL (Fig. 11) show a distribu-
tion that is slightly right-skewed, with the mean and median
closely aligned. This suggests that FSL, while similar to
ANTs in its tendency to detect higher intensities, may offer a
more balanced approach with less variability in the detection
of peak intensities across the sample.

From these histograms, we can infer the following about
algorithmic differences:

• AFNI may be less consistent in detecting peak inten-
sities, as evidenced by the broader spread and right
skewness, potentially indicating issues with sensitivity
or calibration.

• ANTs appears to be more sensitive to higher intensity
activations but also shows signs of right skewness, which
could point to variability in peak detection.
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FIGURE 8. Histograms of AFNI Peak Cluster Intensities in Resting-State fMRI Data. These histograms display the
frequency distribution of peak activation intensities for AFNI’s algorithm in both brain hemispheres. The
right-skewed distribution highlights a prevalence of lower intensity values and fewer occurrences of higher
intensities. The mean (red line) and median (green dashed line) are both shifted towards the lower end of the
intensity scale, indicating a potential underestimation or non-detection of higher intensity values by the AFNI
algorithm. This visual representation aids in understanding the algorithm’s precision in mapping brain activity,
showing central tendencies and dispersion of peak activation intensities.

• DARTEL presents a more uniform detection across a
range of intensities, suggesting a reliable performance
with less variability.

• FSL seems to strike a balance between sensitivity
and variability, detecting a moderate range of intensity
activations without significant skewness.

These inferences are supported by the numerical results
showing means, medians, standard deviations, and measures
of skewness and kurtosis for each algorithm. The histograms,
along with these descriptive statistics, provide a compre-
hensive view of each algorithm’s performance, allowing
for an assessment of their strengths and limitations in the
context of peak intensity detection in resting-state network
analysis. This comparison is crucial for researchers selecting
algorithms for fMRI data processing, as it directly impacts
the accuracy and reliability of functional network mapping.

1) HEMISPHERE COMPARATIVE OVERVIEW
ANTs consistently exhibit high mean and maximum values
in both hemispheres, suggesting a tendency to detect more
intense activations. The skewness and kurtosis further
indicate a propensity for outliers and extreme values.
DARTEL demonstrates more moderate and consistent mea-
surements across hemispheres, albeit still with indications of

non-normality. AFNI displays a wide range and zero mini-
mum in both hemispheres, pointing towards high variability
and potential instances of non-detection. FSL presents a
balance between sensitivity and variability, with moderately
high mean and standard deviation, and less extreme skewness
and kurtosis compared to ANTs and AFNI.

The consistency in algorithmic performance across hemi-
spheres is noteworthy. Although our analysis does not
indicate significant hemispheric differences in peak activa-
tion intensities, this uniformity is crucial for understanding
hemispheric specialisation or symmetry in brain function.
The findings suggest that the observed variations in activation
intensities are more reflective of the algorithmic processing
rather than intrinsic differences between the hemispheres.
This insight is significant for neuroimaging studies inves-
tigating lateralisation or hemispheric asymmetries in brain
functions, as it underscores the importance of algorithm
selection in interpreting such hemispheric differences [99],
[100].

The boxplots and violin plots for each of the four non-rigid
registration algorithms — ANTs, DARTEL, AFNI, and
FSL — provide a visual summary that complements the
descriptive statistics and reveals differences in algorithmic
performance across the left and right hemispheres. The key
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FIGURE 9. Histograms of ANTs Peak Cluster Intensities in Resting-State fMRI Data. These histograms illustrate the
frequency distribution of peak activation intensities for the ANTs algorithm in both brain hemispheres. The
right-skewed distribution is notable but with a mean and median that are closely aligned, indicating a more
symmetrical distribution around the central value compared to AFNI. This pattern implies that ANTs tends to detect
higher-intensity activations more frequently than AFNI, as evidenced by the distribution’s shape.

features of these plots and the inferences drawn about each
algorithm in the hemispheric context are detailed below. The
star notation is explained in Table 6.

TABLE 6. Explanation of star notations used in box plots.

In the context of hemispheric comparison, these plots allow
us to discern whether the algorithms perform differently in
detecting activation intensities in the left versus the right
hemisphere. For instance, a box plot with multiple stars
suggests a robust hemispheric difference in the algorithm’s
performance. In contrast, an ‘ns’ above a plot suggests that
the algorithm does not exhibit a significant preference or
difference in detection capability between hemispheres.

From the provided plots (Figs. 12, 13), it is observable
that some algorithms show statistically significant differences
in peak activation intensities, while others do not. This
variance underscores the importance of algorithm selection
when interpreting hemispheric differences in neuroimaging
data. The careful choice of registration algorithms is cru-
cial as it directly impacts the accuracy of localising and

interpreting functional brain activities, particularly when
exploring the lateralisation of brain functions or hemispheric
asymmetries.

Comparative box plots of Peak Cluster Intensities across
algorithms for left (Fig. 12) and right (Fig. 13) hemispheres
illustrate the interquartile range (IQR), median, and outliers
for peak cluster intensities detected by each algorithm in
both hemispheres. The plots highlight the central tendency,
dispersion of values, and the presence of outliers, elucidating
the differences in detection capabilities and consistency
among algorithms. Notably, AFNI displays several outliers,
particularly in the right hemisphere, indicating high variabil-
ity and potential for extreme value detection or non-detection.
The median lines are consistent across hemispheres for each
algorithm, suggesting an absence of significant hemispheric
bias in the detection of peak cluster intensities. From the
boxplots, it is evident that:

• ANTs display a relatively wide IQR in both hemi-
spheres, suggesting a larger spread of intensity values,
which indicates variability in intensity detection.

• DARTEL exhibits a tighter IQR, implying more consis-
tent detection of intensity values across the sample.

• AFNI shows a wide range with several outliers,
particularly in the right hemisphere, indicating high
variability and potential for extreme value detection or
non-detection.

VOLUME 12, 2024 47927



M. Svejda et al.: NRAAF: A Framework for Comparative Analysis

FIGURE 10. Histograms of DARTEL Peak Cluster Intensities in Resting-State fMRI Data. These histograms represent
the frequency distribution of peak activation intensities derived using the DARTEL algorithm in both brain
hemispheres. Characterised by a narrower and more symmetric distribution, the median closely approximates the
mean, indicating a balanced detection of peak intensities with less skewness. This symmetry in the distribution may
reflect DARTEL’s consistent performance in accurately capturing the central tendency of the data without significant
bias towards higher or lower intensity values.

• FSL presents a balance with moderate IQR and fewer
outliers, suggesting a reliable detection of intensities
with less variability compared to ANTs and AFNI.
The median lines (central mark in the boxplot) for
each algorithm are relatively consistent across both
hemispheres, suggesting no significant hemispheric bias
in the detection of peak cluster intensities by the
algorithms.

The median lines (central mark in the boxplot) for each
algorithm are relatively consistent across both hemispheres,
suggesting no significant hemispheric bias in the detection of
peak cluster intensities by the algorithms.

Hemispheric comparisons of Peak Cluster Intensities using
violin plots (Figs. 14 and 15) for non-rigid registration
algorithms. The violin plots illustrate for left and right
hemispheres, respectively, combining boxplot features with
kernel density estimation. These plots provide insights into
the frequency and distribution of peak cluster intensities for
each algorithm, emphasising hemispheric differences and
similarities. The plots reveal that while ANTs and AFNI
display wider distributions in both hemispheres, indicating a
variety of intensity values, DARTEL shows more uniformity,
reflecting consistent detection across hemispheres. FSL,
on the other hand, presents a narrower range in both
hemispheres, suggesting fewer extreme intensity values.

Violin plots combine the boxplot with a kernel density
estimation, providing more insight into the distribution of the
data. The thickness of the violin plot indicates the frequency
of data points at different intensity levels. From the violin
plots, we observe that:

• The distributions for ANTs and AFNI are wider in
several sections, indicating a variety of intensity values
with a frequent occurrence.

• DARTEL’s distribution is more uniform, reflecting its
consistency across different intensity values.

• FSL’s distribution, while similar in shape to ANTs
and AFNI, does not extend as far, implying fewer
occurrences of extreme intensity values.

The mean and median indicated by lines within the
violin plots show the central tendency of the data. A closer
alignment of the mean and median suggests a more sym-
metrical distribution, while greater separation might indicate
skewness.

The hemispheric comparison demonstrates how the algo-
rithms perform in detecting activations across the left and
right hemispheres. The analysis, supported by statistical
metrics, indicates that some algorithms exhibit significant
hemispheric differences, which are essential for studies
focusing on lateralisation or symmetry in brain function. The
consistency across hemispheres also highlights the impact
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FIGURE 11. Histograms of FSL Peak Cluster Intensities in Resting-State fMRI Data. These histograms exhibit the
frequency distribution of peak activation intensities for the FSL algorithm in both brain hemispheres. The distribution
is slightly right-skewed, yet the mean and median are closely aligned, suggesting that FSL, while similar to ANTs in its
tendency to detect higher intensities, provides a more balanced approach with less variability in the detection of
peak intensities across the sample.

of algorithm choice on the interpretation of hemispheric
differences.

2) NON-NORMALITY INDICATORS
Across both hemispheres and all algorithms, the skewness
and kurtosis values are significantly high. For instance,
ANTs in the right hemisphere shows a kurtosis of 39.0803.
These metrics indicate that the data distribution deviates from
normality, presenting with heavy tails and pronounced peaks.

The non-normality of the data suggests that the peak
activation intensities are not evenly distributed around the
mean. This has implications for statistical analysis and
interpretation, as many standard statistical tests assume
normality.

The significant skewness and kurtosis values across all
algorithms confirm the non-normality of the peak activation
intensity data. This deviation from normality necessitates
the application of specialised statistical methods that do
not rely on normal distribution assumptions, such as
non-parametric tests or bootstrap methods. These approaches
can provide more accurate interpretations of neuroimaging
data, especially when exploring complex neural networks or
conducting comparative algorithmic analyses [101].

The results show notable algorithmic variations in the
measurement of peak activation intensities, with ANTs and
AFNI tending towards higher and more variable intensities,

and DARTEL and FSL showing more consistent but less
variable intensities. The significant skewness and kurtosis
across all algorithms confirm the non-normality of the data,
a critical factor that must be considered in statistical analyses
and interpretation. This non-normality highlights the need
for specialised statistical approaches that do not rely on the
assumption of normally distributed data.

The consistency in algorithmic performance across hemi-
spheres underscores the importance of algorithm selection in
neuroimaging studies. The choice of algorithm can greatly
influence the detected activation patterns, impacting the
interpretation and conclusions drawn from neuroimaging
data. These insights are crucial for researchers in selecting
the most appropriate algorithms for their specific study
objectives, especially in investigations involving complex
brain networks and resting-state activities.

The comparative analysis of algorithms provides critical
insights into their respective strengths and limitations. ANTs,
with its higher mean and maximum values, appears particu-
larly adept at detectingmore intense neural activations, which
may be beneficial in studies focusing on highly localised
brain activities or specific functional regions. DARTEL,
exhibiting more moderate and consistent measurements,
could be more suitable for studies requiring a balanced
approach to sensitivity and variability, such as in broad-based
neuroimaging research exploring general brain functions.
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FIGURE 12. This box plot demonstrates the performance of each
algorithm in the left hemisphere, with ANTs showing a wide IQR and high
variability, DARTEL exhibiting a tight IQR indicating consistent detection,
and FSL presenting a moderate IQR with fewer outliers, reflecting a
balanced approach.

FIGURE 13. This plot illustrates the algorithms’ performance in the right
hemisphere. It underscores AFNI’s high variability with numerous
outliers, indicating potential extreme value detection or non-detection,
compared to the more balanced detection and fewer outliers in FSL.

AFNI’s wide range and high variability suggest its utility
in studies where a broader spectrum of neural activities

FIGURE 14. This plot details the distribution of peak cluster intensities in
the left hemisphere for each algorithm. It underscores the hemispheric
performance of ANTs and AFNI with their broader range of intensity
values and contrasts this with the more uniform and consistent detection
by DARTEL and the narrower range shown by FSL.

FIGURE 15. Similar to the left hemisphere, this plot for the right
hemisphere reflects the distribution characteristics of each algorithm. The
comparative analysis between hemispheres highlights the consistent
performance of each algorithm, with particular emphasis on the
variability and range of intensity values detected by ANTs and AFNI, and
the more balanced detection by FSL.

is of interest, potentially including both high and low-
intensity activations. FSL, with its balanced sensitivity and
moderate variability, could be preferred in studies aiming
for a middle-ground approach, balancing detection sensitivity
with variability in activation intensities [41], [102].

This section presents a detailed analysis of peak activation
intensities across different algorithms. The histograms and
descriptive statistics reveal how each algorithm — FSL,
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ANTs, DARTEL, and AFNI — varies in terms of sensitivity
and variability in detecting activations. This comparative
insight is crucial for selecting the most appropriate algorithm
for specific fMRI studies, impacting the accuracy and
reliability of functional network mapping.

D. STATISTICAL ANALYSIS - NON-PARAMETRIC TESTS
In the current study, Spearman correlation coefficients
(Table 7) were calculated to assess the association between
hemispheres for peak activation intensities using various
algorithms. AFNI demonstrated a robust correlation (p =

0.66346, p <.001), indicating a strong monotonic relation-
ship between hemispheres. This was closely followed by
ANTs (p = 0.61647, p <.001), suggesting a strong yet
slightly less pronounced association. DARTEL (p= 0.52181,
p < .001) and FSL (p = 0.53823, p < .001) showed
moderate correlations, indicating a consistent but weaker
linkage between hemispheric intensities compared to AFNI
and ANTs.

TABLE 7. Adjusted Spearman’s Rank Correlation Coefficients and
p-Values for fMRI Registration Algorithms. The table summarises the
Spearman’s rank correlation analysis results, indicating the varying
strengths of the monotonic relationships between left and right
hemisphere peak activation intensities for ANTs, DARTEL, AFNI, and FSL.
RHO values range from moderate to strong, and the adjusted p-values
denote high statistical significance for each algorithm.

The non-parametric Mann-Whitney U Test (Table 8)
revealed significant hemispheric differences for ANTs (U =

1.382e-09, r = 0.16073) and AFNI (U = 4.4707e-10, r =

0.16489), suggesting a difference in central tendency of
peak intensities between the two hemispheres. In contrast,
DARTEL showed no significant hemispheric difference (U=

1, r = −0.027746), indicating a balanced detection of peak
intensities across hemispheres. FSL demonstrated a marginal
hemispheric difference (U = 0.044285, r = −0.074119),
suggesting a subtle but statistically significant variance.

TABLE 8. Adjusted Mann-Whitney U Test p-values and effect sizes for
each algorithm (comparing hemispheres). This table presents the results
of the Mann-Whitney U Test, providing insights into hemispheric
differences in peak activation intensities as detected by different
algorithms. Adjusted p-values and effect sizes are indicated for ANTs,
DARTEL, AFNI, and FSL, highlighting significant variances in their
performance across hemispheres.

The Wilcoxon Signed-Rank Test (Table 9), further
corroborated these findings, with ANTs (W = 6.4656e-
29, r = 0.28244) and AFNI (W = 1.7356e-27, r =

0.27526) showing highly significant median differences

between hemispheres, indicating that peak intensities are
not evenly distributed within each hemisphere. In contrast,
DARTEL (W = 0.41947, r = −0.055061) and FSL (W =

0.00011416, r = −0.1112) did not show significant median
differences, suggesting a more symmetrical distribution of
peak intensities between hemispheres.

TABLE 9. Adjusted Wilcoxon Signed-Rank Test p-values and effect sizes
for each algorithm (comparing hemispheres). This table presents the
outcomes of the Wilcoxon Signed-Rank Test, offering insights into the
median differences in peak activation intensities between hemispheres
for each of the studied algorithms. Effect sizes are included to quantify
the magnitude of these differences.

TABLE 10. Kruskal-Wallis Test p-values for hemispheric differences in
neuroimaging. This table presents the Kruskal-Wallis test results
assessing the statistical differences in peak cluster intensities between
the left and right hemispheres for each non-rigid registration algorithm.
Lower p-values indicate more significant differences between
hemispheres.

These results indicate that the selection of a non-rigid
registration algorithm can have significant implications for
the interpretation of hemispheric differences in neuroimaging
studies. Algorithms demonstrating significant hemispheric
differencesmay be preferred in studies focusing on lateralised
brain functions, while those showing no significant differ-
ences may be better suited for studies requiring a balanced
hemispheric approach.

In the examination of hemispheric correlations using
non-rigid registration algorithms, scatter plots were con-
structed to visualise the relationship between peak activation
intensities across the left and right hemispheres. These scatter
plots are accompanied by Spearman’s rank correlation coef-
ficients, providing a non-parametric measure of association
that does not assume linearity in the relationship between
hemispheric intensities. The line of best fit demonstrates the
overall trend and direction of the correlation, with points
closer to the line indicating a stronger relationship between
hemispheric activation intensities.

For the AFNI algorithm (Fig. 16), the scatter plot
demonstrates a dense clustering of data points along the
line of best fit, suggesting a strong positive monotonic
relationship between the two hemispheres (p = 0.66346, p <

.001). This indicates that as peak intensities increase in one
hemisphere, they tend to increase in a similar manner in the
other hemisphere, reflecting consistency in AFNI’s detection
of activation intensities across hemispheres.

The scatter plot for ANTs (Fig. 17) also shows a positive
correlation, albeit with data points more dispersed around
the line of best fit than AFNI, which implies a strong
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FIGURE 16. The scatter plot for AFNI shows a dense clustering of points
along the line of best fit, suggesting a strong positive monotonic
relationship, with a Spearman’s rho of 0.66346 (p < .001). This indicates
that peak intensities in one hemisphere tend to be matched by similar
intensities in the contralateral hemisphere, which is essential for studies
examining functional symmetry or lateralisation.

but less direct association (p = 0.61647, p < .001). The
dispersion suggests that while there is a relationship between
the hemispheres in peak intensity detection, it is not as tightly
linked as AFNI’s, possibly due to algorithmic differences in
processing or sensitivity to hemispheric activation patterns.

FIGURE 17. The scatter plot for ANTs presents a slightly more dispersed
set of points around the trend line, implying a strong but less tight
monotonic relationship (rho = 0.61647, p < .001). This suggests that while
there is a general trend of hemispheric symmetry in peak intensity
detection, there are individual cases where this symmetry is not as
pronounced.

DARTEL’s scatter plot (Fig. 18) reveals a moderate
positive correlation (p = 0.52181, p < .001), with data
points spread widely around the line of best fit. This
indicates variability in the algorithm’s hemispheric intensity
detection, which might reflect DARTEL’s different approach
to handling the neuroimaging data.

FIGURE 18. The scatter plot illustrates the Spearman correlation of peak
activation intensities between hemispheres using the DARTEL algorithm.
The data points display a moderate positive correlation with a Spearman’s
rho of 0.52 (p < .001), indicating a consistent but less robust association
in intensity detection across hemispheres compared to other algorithms.
This pattern underscores the potential differences in algorithmic
sensitivity and specificity in delineating hemispheric brain activations.

Similarly, FSL’s scatter plot (Fig. 19) indicates a moderate
positive correlation (p = 0.53823, p < .001) and shows a
spread of data points that suggest variability in its detection
of peak intensities across hemispheres.

FIGURE 19. Scatter plot depicting the Spearman correlation between
hemispheres for the FSL algorithm, with a moderate positive rho value of
0.54 (p < .001). The distribution of data points suggests a moderate
degree of symmetry in peak intensity detection between the hemispheres,
reflecting the FSL algorithm’s sensitivity to bilateral brain activation.

These scatter plots, when viewed alongside the non-
parametric test results, inform us of the distinct characteristics
of each algorithm. The consistent Spearman correlation
across all algorithms suggests that there is a general tendency
for hemispheres to mirror each other in activation intensity
detection, which is crucial for studies investigating bilateral
brain functions. However, the variability seen in the scatter
plots, especially for DARTEL and FSL, underscores the
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importance of considering individual algorithmic perfor-
mance when analysing hemispheric data, as it may influence
the interpretation of lateralised brain functions.

The strength and direction of these associations have
significant implications for the selection of appropriate
non-rigid registration algorithms in the study of resting-state
networks and hemispheric specialisation. The choice of
algorithm could affect the outcomes of studies seeking to
understand the lateralisation of cognitive processes or the
symmetry of brain activations in health and disease.

The bar graph (Fig. 20) illustrates the mean differences
across a population in peak activation intensities between
the left and right hemispheres for each of the four non-rigid
registration algorithms: ANTs, DARTEL, AFNI, and FSL.
This visual representation allows for the assessment of
hemispheric bias in intensity detection by each algorithm,
which is essential in studies of hemispheric specialisation.

Our analysis revealed that ANTs and AFNI algorithms
exhibit a mean positive difference in intensities, suggesting
a propensity for detecting higher intensities in the right
hemisphere compared to the left. This is in contrast with
FSL, which shows a mean negative difference, indicating
a tendency for higher intensities in the left hemisphere.
DARTEL presents symmetrical detection across hemispheres
with no significant mean difference, reflecting its balanced
performance in capturing hemispheric activation intensities.

The interquartile range (IQR) depicted in the box plots
indicates the central 50% of intensity values, providing
an understanding of the spread and consistency of the
data. ANTs demonstrates a wide IQR in both hemispheres,
denoting variability in intensity detection. DARTEL exhibits
a narrower IQR, suggesting more consistent detection of
intensity values. AFNI, with a wide range and outliers,
especially in the right hemisphere, implies high variability
and a potential for detecting or failing to detect extreme
values. FSL shows a balanced profile with a moderate IQR
and fewer outliers, indicating reliable detection with less
variability compared to ANTs and AFNI.

The median lines across the box plots, which represent the
central tendency of the detected intensities, further substan-
tiate these findings. Collectively, these results underscore the
critical need for careful selection of registration algorithms in
neuroimaging analyses. The choice of algorithm can signifi-
cantly influence the observed hemispheric differences, which
may have profound implications for the interpretation of
functional lateralisation in cognitive neuroscience research.

Non-parametric tests like Spearman’s Rank Correlation
and Mann-Whitney U Test offer insights into hemispheric
differences in peak activation intensities. The analysis reveals
significant variations across algorithms, underscoring the
importance of algorithm selection in neuroimaging. The
strength and direction of hemispheric associations have
profound implications for the selection of appropriate reg-
istration algorithms in studies of resting-state networks and
hemispheric specialisation.

E. MULTIVARIATE PATTERN ANALYSIS (MVPA)
To further investigate the differences revealed in Figure 20,
we present slices with maximum and minimum voxel
intensity values resulting from SVMs analysis. In our
study, SVMs were employed to discern the subtle differ-
ences in voxel intensities for the control network across
different neuroimaging registration algorithms. Given that
each algorithm might influence the spatial pattern of brain
activation differently, it was imperative to conduct a thorough
pairwise comparison. This approach ensures that the unique
contribution of each algorithm can be assessed relative
to others, capturing the nuances in how each algorithm
processes the neuroimaging data.

To perform a comprehensive evaluation, six pairwise
comparisons were calculated, involving all possible pairs
among the four algorithms: FSL, ANTs, AFNI, and DAR-
TEL. The SVM weights derived from these comparisons
provide a quantitative measure of the difference in voxel-wise
intensities, directly attributed to the algorithmic processing.
The resultant weight maps are a representation of this
multivariate analysis, highlighting regions where algorithmic
differences are most pronounced. These regions, depicted
in the weight maps, showcase the maximum and minimum
SVMweights, offering a visual and statistical insight into the
algorithmic impact on the control network’s spatial patterns.

In the SVM weight maps presented in Figures 21, 22,
23, 24, 25, and 26, the ‘hot’ colour map has been applied,
where the intensity of voxel values is visually represented
by a spectrum of colours. We utilise the RAS coordinates
fromANTs, DARTEL, AFNI, and FSL to examine the spatial
specificity of brain activations. Black indicates voxels with
weights near zero, suggesting no significant contribution
to the classification decision for either algorithm being
compared. As weights become more negative, indicating
a greater influence on the classification in favour of the
second algorithm listed in the pair, the colour transitions to
red. The most negative weights, which have the strongest
influence in favour of the second algorithm, are depicted
as dark red. Conversely, as weights increase positively,
reflecting a stronger influence in favour of the first algorithm
listed in the comparison, colours lighten through red shades
and eventually reach yellow for the most positive weights.
Therefore, in the maps comparing ANTs versus AFNI, for
instance, dark red areas represent voxels where AFNI’s
classification is more influenced, while yellow areas denote
a stronger influence from ANTs.

Theweightmap visualisation betweenAFNI andDARTEL
(Fig. 21) shows amaximal activation weight of 0.7094 at slice
38, and aminimal weight of -0.6738 at slice 16. This indicates
a pronounced difference in how each algorithm processes
the fMRI data, with AFNI showing a stronger classification
influence in certain brain regions compared to DARTEL. The
spatial distribution of these weights, particularly the areas of
maximum weight, suggests that AFNI may be more sensitive
to variations in voxel intensities in these regions, potentially
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FIGURE 20. Bar chart of the mean differences in peak activation intensities between hemispheres by
algorithm. The chart compares the mean intensity differences (Left - Right) for ANTs, DARTEL, AFNI,
and FSL. Error bars indicate variability within each algorithm, with positive values indicating higher
intensities in the left hemisphere and negative values indicating higher intensities in the right
hemisphere. This visualisation aids in assessing the hemispheric bias of each neuroimaging algorithm.

FIGURE 21. AFNI vs DARTEL. Max weight: 0.7094 at slice 38 (X: 28, Y: 19, Z: 38) Min weight: -0.6738 at slice 16 (X: 37, Y: 70, Z: 16).

reflecting its algorithmic biases or strengths in capturing
certain types of brain activity.

In comparison to other algorithm pairs, the AFNI vs
DARTEL map suggests a unique spatial signature that
could reflect their underlying computational models and
assumptions. The moderate difference in maximal and
minimal weights may indicate a balance in the sensitivity
between these two algorithms. When relating these findings
to the broader context of fMRI analysis, this balance might
suggest that a combined approach using both AFNI and
DARTEL could leverage their complementary strengths,
potentially leading to a more robust interpretation of resting-
state networks.

The weight map for ANTs vs AFNI (Fig. 22) reveals a
maximumweight of 0.6903 at slice 28 and aminimumweight
of −0.6784 at slice 45. The close range of these extremities
suggests that while both algorithms have their specificities,
they also share a degree of commonality in detecting brain
activation. Regions with the highest positive weights may
indicate areas where ANTs outperforms AFNI in terms of
activation detection, possibly due to its algorithmic design
and data processing techniques.

Comparatively, the ANTs vs AFNI weight map displays
less extremity in the weights than some other pairs, such
as FSL vs DARTEL. This could imply that ANTs and
AFNI, while different, may share a more similar approach
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FIGURE 22. ANTs vs AFNI. Max weight: 0.6903 at slice 28 (X: 32, Y: 23, Z: 28) Min weight: -0.6784 at slice 45 (X: 27, Y: 20, Z: 45).

FIGURE 23. ANTs vs DARTEL. Max weight: 0.6656 at slice 25 (X: 27, Y: 37, Z: 25) Min weight: -0.6502 at slice 38 (X: 66, Y: 20, Z: 38).

to handling fMRI data, as reflected in their SVM weight
distributions. In the broader context, the differences and
similarities elucidated by this comparison could inform
researchers on which algorithm to select based on the specific
aspects of brain function they wish to investigate.

The ANTs vs DARTEL weight map (Fig. 23) shows a
maximumweight of 0.6656 at slice 25 and aminimumweight
of −0.6502 at slice 38. The distribution of weights across
these slices suggests that ANTs and DARTEL may variably
influence the classification of voxel intensities. The presence
of both positive and negative extremes in close proximity
indicates that there are specific regions where each algorithm
distinctly influences the classification outcome.

In comparison with other algorithm pairs, the ANTs vs
DARTEL map points to a divergent pattern of brain region
classification, which may be reflective of the different pro-
cessing strategies inherent to each algorithm. Understanding
these differences is paramount in the broader context, as it
directly impacts the interpretation of neural connectivity and
the reliability of subsequent conclusions drawn from the
fMRI data.

The FSL vs AFNI weight map (Fig. 24), with a maximum
weight of 0.7113 at slice 28 and a minimum weight of
−0.7180 at slice 15, indicates distinct differences in the
spatial localisation and intensity of brain activations as
interpreted by each algorithm. This suggests that when
considering the control network’s spatial patterns, FSL tends
to classify certain voxels as more relevant compared to
AFNI and vice versa. The presence of both high positive
and negative weights implies a significant disparity in
the voxel-wise intensities that each algorithm considers
important for classification.

When looking at the broader context of algorithm selection
for fMRI analysis, the FSL vs AFNI comparison underscores
the necessity of understanding each algorithm’s methodolog-
ical underpinnings. Considering the significant differences
in the weight maps and the supplemental global differences
highlighted in Figure 21, researchers should contemplate the
specific features and patterns their study aims to capture. This
ensures the selected algorithms alignwith their research ques-
tions, especially when exploring complex neural networks or
conducting comparative algorithmic analyses.
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FIGURE 24. FSL vs AFNI. Max weight: 0.7113 at slice 28 (X: 31, Y: 24, Z: 28) Min weight: -0.7180 at slice 15 (X: 36, Y: 70, Z: 15).

FIGURE 25. FSL vs ANTs. Max weight: 0.5886 at slice 39 (X: 32, Y: 25, Z: 39) Min weight: -0.6582 at slice 33 (X: 30, Y: 42, Z: 33).

The weight map comparison between FSL and ANTs
(Fig. 25) shows a maximal weight at 0.5886 in slice 39 and
a minimal weight at −0.6582 in slice 33, suggesting a
disparity in the spatial patterns each algorithm emphasises in
the classification of brain activations. The range of weights
indicates that FSL and ANTs may have different sensitivities
to certain features within the neuroimaging data, leading to
varied interpretations of the same brain regions.

In comparison with other algorithm pairs, the FSL vs
ANTs weight map indicates a notable difference in how these
algorithms may represent the control network. This disparity
can have significant implications in the broader context of
neuroimaging research. The choice between using FSL or
ANTs for fMRI analysis could lead to different conclusions
regarding the localisation and significance of brain activity,
underlining the importance of careful algorithm selection
based on study objectives.

The comparison between FSL and DARTEL (Fig. 26)
yields a maximum weight of 0.7027 at slice 28 and a
minimum weight of −0.6648 at slice 16. The distinct
activation patterns suggested by these weight maps could
inform on the differential performance of these algorithms
in detecting and classifying brain activation. The presence of

robust maximum and minimum weights indicates that each
algorithmmay preferentially highlight different aspects of the
control network’s spatial patterns.

In the broader context, understanding the unique contri-
butions of FSL and DARTEL is critical when interpreting
complex neural networks. The substantial variation observed
in this weight map, coupled with the supplemental global
differences depicted in Figure 21, indicates that algorithmic
choice plays a crucial role in the accurate localisation and
interpretation of brain function. Researchers must consider
these differences when designing studies and interpreting
fMRI data to ensure that the selected algorithms are most
suitable for their specific research aims.

1) MUTUAL INFORMATION
A pairwise mutual information (MI) analysis was conducted
to quantify the similarity in information content between
the outputs of the MVPA weight maps of registration
algorithms): FSL, DARTEL, ANTS, and AFNI. While
Figures 21, 22, 23, 24, 25, and 26 show only the slices
with minimum and maximum intensity contributions; the MI
was calculated on whole brain weight maps. The MI values
were computed on a scale from 0 (no shared information)
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FIGURE 26. FSL vs DARTEL. Max weight: 0.7027 at slice 28 (X: 28, Y: 26, Z: 28) Min weight: -0.6648 at slice 16 (X: 37, Y: 70, Z: 16).

FIGURE 27. Mutual Information Heat map derived from whole-brain SVM weight maps, illustrating the shared information between
fMRI registration algorithm pairs. The heat map highlights the extent of agreement between algorithms, with lighter shades
indicating higher mutual information (maximum MI: 0.94043 between ‘FSL vs AFNI’) and darker shades representing lower mutual
information (minimum MI: 0.81566 between ‘ANTS vs DARTEL’). This visualisation aids in discerning the congruence of activation
patterns detected by different algorithms, pivotal for algorithm selection in neuroimaging studies.

to 1 (identical information content). The resulting MI matrix
(Table 11) and corresponding heat map (Fig. V-E) reveal the
extent of information overlap between algorithm pairs.

The MI values along the diagonal are 1, indicating perfect
self-similarity, as expected. Notably, the heat map reveals
a variation in MI values across different pairs, with the
lighter cells such as those for ‘FSL vs AFNI’ and ‘ANTS
vs DARTEL’ indicating a higher MI. These elevated MI
values suggest that despite the methodological diversity of
the algorithms, there is a substantial overlap in the activation

patterns they detect. Conversely, the darker cells in the
heatmap, particularly those representing ‘FSL vs DARTEL’
and ‘AFNI vs DARTEL’, imply less shared information,
which might be indicative of each algorithm’s unique
processing characteristics and their differential sensitivity to
specific brain features or noise patterns.

Upon further examination, the heat map also provides
insights into the potential redundancy or complementarity
of algorithmic pairs. For instance, ‘FSL vs ANTS’ and
‘ANTS vs AFNI’ show similar MI values, which might
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TABLE 11. Pairwise mutual information values between fMRI registration algorithm SVM weight maps. The values range from 0 to 1, with 1 indicating
identical results and values closer to 0 indicating less similarity.

suggest that these algorithms could either be capturing similar
features within the fMRI data or exhibiting similar biases
in processing strategies. This kind of insight is essential for
researchers when considering which algorithms to employ
for consensus in activation detection or for leveraging the
diversity of information captured for more nuanced brain
network analyses.

The MI heat map analysis complements the findings of the
Wilcoxon averaged bar graph, highlighting the minimum and
maximum mutual information values. These extremes reflect
the range of shared information captured by the algorithms
and provide a benchmark for evaluating the similarity or
diversity in the results they produce. A higher bar on the
Wilcoxon graphwould correlate with the lighter shades on the
MI heat map, both indicating a higher degree of agreement
between algorithms. In contrast, lower bars align with the
darker shades, pointing towards a greater discrepancy in
the information each algorithm captures. This juxtaposition
enables a more nuanced understanding of the algorithms’
performance, guiding the selection of appropriate algorithmic
combinations for specific neuroimaging tasks.

VI. CONCLUSION
In summarising the key aspects of our investigation, it’s
apparent that the selection of neuroimaging registration
algorithms is of paramount importance for the accurate
interpretation of resting-state networks. Through the appli-
cation of SVM weight maps, we’ve discerned the distinct
methodological sensitivities inherent to algorithms such as
ANTs andAFNI. These sensitivities fundamentally shape our
perception and characterisation of neural activities.

The mutual information analysis augments this under-
standing by quantifying the overlap between algorithm pairs,
offering a metric of convergence or divergence in the neural
patterns they discern. Higher mutual information values
suggest a significant congruence in detected patterns, which
is advantageous for corroborating findings across multiple
studies. In contrast, lower values bring forward the unique
detection capabilities of individual algorithms, potentially
unearthing diverse facets of brain functionality.

Moreover, our examination reveals hemispheric inclina-
tions within these algorithms. The interpretation of mean
intensity differences between hemispheres is indicative of an
inherent algorithmic bias, which can either veil or highlight
cerebral asymmetries. Such insights compel a judicious
selection of algorithms, especially when investigating the
lateralisation of brain function [68].

These results advocate for a considered and informed
approach to algorithm selection in neuroimaging research.
The choice of an algorithm becomes a critical factor in the
study’s outcome, influencing the interpretative lens through
which resting-state networks are viewed. As we progress,
these findings will inform the refinement of methodological
frameworks, enhancing the precision and interpretative depth
of future investigations into the brain’s intrinsic networks.
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