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ABSTRACT This article proposes a Network-on-Chip (NoC) communication subsystem model on the
basis of which the Electronic Computer-Aided Design (ECAD) architecture in the form of software is
implemented. It makes it possible to automate the process of preparing and generating an HDL description
of the NoC model in the Verilog language. It is shown that not in all cases it is required to model the entire
NoC. Often, it is necessary to model its certain parts, such as a communication subsystem, routing algorithm,
and traffic control system. The developed model allows modeling a parameterized NoC communication
subsystem to obtain an estimate of the consumed logical blocks and registers required for prototyping
the communication subsystem. All components of the communication subsystem are implemented as
separate modules due to which the hardware costs for adding the necessary components for the study are
reduced because of the absence of the need to completely rework the model program code every time. The
effectiveness of using the developed ECAD and low-level modeling automation methods to study the work
of routing algorithms for NoC topologies is demonstrated.

INDEX TERMS Electronic computer-aided design (ECAD), HDL, network-on-chip (NoC), modeling, RTL.

I. INTRODUCTION
The constant increase in the complexity of computational
problems and in the amount of data required for calculations
are becoming important factors influencing the industry of
developing computer systems [1]. This is reflected in the
transition from single-core to multi-core processors, as well
as from single-processor computing systems to multipro-
cessor ones. In recent years, the development of processors
and Systems-on-Chip (SoC) andMulti-Processor System-on-
Chip (MPSoC) [2] has reached a new qualitative level, which
is a combination of a large number of processors on one
chip (from 100 or more) and connecting them into a single
Network-on-Chip (NoC) [3]. This requires the development
of new approaches to the design of MPSoCs.

Thus, the NoC development is an important scientific and
technical task. Although this direction itself has appeared
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relatively recently, a significant number of publications on
this topic and their representation in highly cited international
journals (Figure 1) indicates the high attention of the scien-
tific community and engineers to this topic; it is quite evident
that many problems in this field have not been solved yet.

Further, in section II, we will look at the basic definitions
and NoC structure. In Section III, we consider a compre-
hensive approach to NoC modeling. The main results and
low-level modeling are described in Section IV. Automation
of NoC modeling is described in Section V. Evaluation of the
developed Electronic Computer-Aided Design (ECAD) on
the real problems is given in Section VI. Finally, Section VII
summarizes and briefly describes the results obtained.

The main contributions of this research are as follows:
first, we examined in detail the NoC design flow as a type
of VLSI design flow and showed the features associated
with the fact that the NoC is a very complex development
object; we described the problems and their solutions, as well
as the place of our work in the general theory of NoCs;
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FIGURE 1. Distribution of publications with the keyword ‘‘networks-on-chip’’ in the journals indexed in WoS over the past 10 years.

second, we proposed separate NoC modeling approach,
which allows reducing the complexity of the modeling pro-
cess by separately modeling individual parts of the NoC;
third, we implemented a low-level model of a NoC communi-
cation subsystem and proposed an architecture of ECAD for
low-level NoC modeling based on it; fourth, we described
how the interface between high-level and low-level mod-
els should be implemented within a single ECAD; fifth,
we described the means of automating the low-level NoC
modeling process and advantages it gives; finally, we briefly
described successful cases of using the developed ECAD and
its areas of application.

II. BACKGROUND
A. NoC STRUCTURE
NoC is a complex system with an ultimately non-
deterministic structure. Depending on the tasks performed,
NoC can contain a large number of different components in
its architecture. At the same time, there are basic elements
without which NoC cannot be implemented. The basic NoC
structure [3], [4] is shown in Figure 2.
The structure of theNoC necessarily includes the following

components: computing IP blocks (IP), routers (R), and a
topology (T), which determines how the network components
are interconnected [5].

A router is connected to each computing IP block through a
special communication interface (CI). The IP block generates
data and passes it to the router, which ensures that the data is
correctly transmitted to the destination IP block. The router

is essentially a state machine whose structure is shown in
Figure 3 [6], [7].

The router has a set of input and output ports, which
(depending on the implementation) can be not only physical
but also have virtual channels. Based on the routing algorithm
embedded in the router [8], [9], it forms the received data
from the computing IP block into data packets. Each data
packet is supplemented with auxiliary information required
for the correct operation of the algorithm (in the general case,
it is destination address). Then the output port of the router to
which the data packet must be redirected so that it follows the
calculated path is determined. In this way, the connection of
the input and output ports in the router is managed.

All the routers are interconnected by links that implement
the network topology. In the general case, theNoC topology is
an undirected connected graph consisting of vertices: routers
and edges – physical communication lines [4].

The smaller the number of vertices, the lower the resource
costs; the smaller the average distance between nodes and
the diameter of the graph, the faster the packets reach the
destination node [10].

B. NoC MODEL AND STAGES OF ITS DEVELOPMENT
For data transmission networks, which include Ethernet net-
works, wireless local area networks (WLANs), and other
similar systems, the OSI model [11] is used to generalize
the representation of network components. There are various
levels and protocols of system interaction: from the hard-
ware implementation level technologies to program levels
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FIGURE 2. Basic structure of the NoC.

FIGURE 3. General router structure in a NoC.

of the description of protocols and data structures. As NoC
is conceptually a data network implemented inside the chip
to organize data transfer between IP blocks and other NoC
components, it is possible to compare the NoC structure and
the tasks solved by its components with the OSI network
model (Figure 4) [12], [13].

The application level, presentation level, and session level
are implemented by an IP computational block that generates
data for transmission over the network and indicates the desti-
nation IP block where this data should be transferred. Unlike
classical data transmission networks (where, in accordance
with the OSI model, the tasks of the transport level include
ensuring reliable transmission of data packets between net-
work elements and the implementation of data transmission
protocols [14], [15]), in a NoC, the transport level ensures
the coordination of data structures between the computing IP
block and communication subsystem.

FIGURE 4. OSI model in a NoC.

The remaining levels of the OSI model are implemented by
theNoC communication subsystem,which receives data from
the IP block, converts it into a format suitable for transmis-
sion between the routers in a network with a predetermined
topology, transmits it along the route calculated by the router,
and (upon reaching the target node) performs the reverse
transformation for transfer to the IP block.

C. NoC DESIGN FLOW
In the NoC development industry, a certain sequence of
design phases has developed [16] (Figure 5).

Traditionally, when designing complex devices, a top-
down design model is used [17], [18], [19]. With this
approach, the project goes through various phases the result
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FIGURE 5. Phases of the NoC design flow.

of which is an increasingly detailed representation of the
finished product.

The NoC design begins with the development of technical
specification, which generally specifies the requirements for
theNoC –without taking into account how and fromwhat ele-
ments of the base components the NoC will be implemented.

As a result of the analysis of requirements from the speci-
fications, the development of models of the designed system
is carried out in order to obtain a preliminary description
of the NoC; to determine the set of components it should
consist of and clear up the possibility of such an implemen-
tation. It should be noted that despite the wide range of tools
and modeling methods when designing a NoC, the task of
modeling is complicated by the fact that it is necessary not
only to develop a NoC model, but also to create the models
for testing, as well as to prepare the test data to check the
correctness of the model.

The modeling phase is divided into 2 blocks: mathe-
matical modeling and behavioral modeling [20]. With the
help of mathematical modeling, the system developed is
described in an analytical form using mathematical formulas
and terms. Mathematical models (with the help of logical
and mathematical constructions) describe the properties of
the developed system, its parameters, connection of compo-
nents, dependence of data transformation. In the general case,
a mathematical model is a set of differential equations that
completely describe the system.

Behavioral modeling, unlike mathematical modeling,
describes the functioning of the system as a set of algorithms.
Algorithms represent the behavior of the real elements of the
system and reproduce its logical structure. Depending on the
simulation results, behavioral models can be implemented in
both High-Level Language (HLL) and Hardware Description
Language (HDL). As a result of passing through all phases of
modeling, a complete description is formed, and a complete
functional verification of the technical requirements for the
NoC developed is completed.

The next step in the NoC design flow is prototyping and
system verification. At this phase, the description of a NoC
is carried out using Verilog or VHDL hardware description
languages at the register transfer level (RTL). Usually, a NoC
prototype is created from its low-level model. All func-
tionality of a NoC is checked using functional verification
for compliance with the technical specifications using refer-
ence ideal models implemented as test benches or high-level
models (in C, SystemC, etc.). In addition to functional veri-
fication, timing verification which takes into account signal
propagation delays in interconnections is performed.

The task of the remaining phases of the NoC design flow
is to prepare the prototype for production. The chip layout
is optimized, and library elements are placed that correspond
to the production technology based on which the final device
will be implemented. A timing verification of the system is
re-performed to verify the performance of the production-
adapted system. Then the prepared device descriptions in
GDSII format can be transferred to production and testing of
the chips manufactured.

It is worth noting that modeling is the most important
phase in the NoC design because the success of the remaining
phases directly depends on how the system was modeled.
In the event of a simulation error, the results of all the fol-
lowing phases are discarded as unsatisfactory to the technical
specifications, and the simulation is performed again. At the
same time, it is at the phase of behavioral modeling that a
description of the system being developed is formed, and its
components and their characteristics are determined [21].

D. NoC MODELING
As previously shown, when designing a NoC, a separate
important task is the development of its communication
subsystem. Designing a NoC communication subsystem in
general consists in determining many different characteristics
of the following elements [22]: connection topology, routing
algorithm, router structure, methods of traffic flow control in
the network. The general structure of a NoC also includes
the following components [4]: computing nodes and external
peripherals; however, their influence on the network opera-
tion at the initial stage can be neglected because they do not
affect the communication subsystem but only generate data
that the communication subsystem must transmit. The con-
nection of NoC IP blocks with its communication subsystem
occurs only at the level of network routers.

To analyze the impact of the adopted architectural deci-
sions on the performance of the NoC designed, it is required
to conduct modeling. Depending on the type of data to be
obtained, various types of modeling can be applied at this
phase [20]: mathematical, behavioral. Compared to high-
level modeling, the low-level modeling phase is one of the
most labor-intensive in design, both in terms of describing
modules and obtaining simulation results (which is much
more compared to high level modeling). Model preparation
usually consists in the development of a large amount of the
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same type of program code in hardware description languages
during which the behavior of NoC components is described,
and various model parameters are set. Due to limited FPGA
resources, it is not always possible to prototype a NoC with
the required number of nodes. Dividing the original model
into several models of less complexity that explore the indi-
vidual components of a NoC can significantly reduce the time
to obtain modeling results. The use of the specialized ECAD
for the NoC design and modeling can significantly reduce the
resource costs. At the same time, such an ECAD can automate
both the entire development cycle and its phases.

III. COMPREHENSIVE APPROACH TO NoC MODELING
As mentioned earlier, a NoC must contain computing IP
blocks, routers, as well as a module that describes how the
network components are interconnected. Therefore, there are
models that explore a NoC in a comprehensive manner with
all the necessary components present. There are few such
models [23], [24], [25], because their usage is associated with
a large number of difficulties: from the large time spent on
obtaining the result right up to the impossibility of imple-
mentation of a NoC with a large number of nodes. At the
same time, only comprehensivemodelingmakes it possible to
fully evaluate thework ofNoCs, and their application remains
necessary.

A. SEPARATE NoC MODELING
Most models designed to study a NoC explore its individual
parts: either computing IP blocks [26], [27], [28], [29], [30],
or the structure of routers [31], [32], [33], [34], or the con-
nection topology [35], [36], [37], [38], [39], [40], [41], [42].
Suchmodels allow a deeper analysis of the components under
study. For routers and topologies, this approach allows analy-
sis of the communication subsystem with a larger number of
nodes than with complex modeling while the time to obtain
results for a separate component is reduced.

Currently, separate modeling of NoC components has a
significant drawback because the results of the work of such
models are in no way consistent with each other. This man-
ifests itself both in various ways of parameterizing models
and specifying the initial conditions for their operation and in
obtaining simulation results. Simulation results cannot just
be presented in different formats. But (depending on the
model) they can be very different from each other. It should
bementioned separately that low-level modeling is associated
with high-level modeling, where the simulation results are
also difficult to combine into a single data format [20].
A consequence of the problem described above is the

difficulty in data standardization. The problem is not only
in combining the formats of input and output results but
also in their reliability because the same algorithm can be
implemented in different ways in models, which can lead to
different results.

Thus, it is necessary to create a new approach to low-level
NoC modeling and a specialized low-level NoC model to

separate modeling of the system and combine the modeling
results of various NoC components for the further use.

IV. LOW-LEVEL MODELING OF A NoC COMMUNICATION
SUBSYSTEM
When low-level modeling of a NoC communication subsys-
tem, the developer solves several tasks to obtain the final
result: preparing a low-level model, coding it in the HDL,
developing a set of tests to check the correctness of the model,
prototyping the model, collecting and analyzing the results.
To evaluate the correctness of the model, it is necessary to
conduct modeling with various parameters, which leads to a
constant change in its code to reflect the changes made. This
task (like the task of collecting results) is time-consuming.

Thus, a single infrastructure for low-level modeling should
include the following elements: a low-level model (a top-level
module of the hierarchy, topology module, routing module,
router module), verification model (testbenches, an interface
module for connecting external reference high-level modules
via the DPI interface), automation tools of model configura-
tion and run, collection and processing of modeling results,
and preparation of input data for modeling.

A. LOW-LEVEL MODEL OF A NoC COMMUNICATION
SUBSYSTEM
To implement the possibility of complex low-level NoCmod-
eling and separatemodeling of its individual parts, a low-level
model of the NoC communication subsystem was devel-
oped [43]. Its structure is shown in Figure 6.

FIGURE 6. Structure of the low-level model of a NoC communication
subsystem.

The model consists of two parts:
− model core – files in the Verilog HDL that implement a

communication subsystem of the NoC under study;
− testing infrastructure – contains files for conducting

automated event modeling of the model operation on the
pre-prepared data.

The main components of the model are highlighted in the
‘‘Model Core’’ block. It consists of three elements: a router
module, topology module, packet generator module. These
modules allow modeling both communication subsystems
and a NoC as a whole. These modules are developed in the
Verilog HDL and adapted to run in Intel Quartus Prime Lite
ECAD to further obtain an RTL description based on which
binary programming files for the FPGA development board
are prepared. Such an organization of the model core also
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allows using the model core in the third-party software for
designing and debugging a project on an FPGA.

The router module implements the structure of the input
and output ports of the router, algorithm for receiving data
packets, routing algorithm, and algorithm for sending pack-
ets. The router consists of x ports for receiving packets from
other routers, x ports for sending packets to other routers,
1 port for receiving a packet from a compute node, 1 port for
sending a packet to a compute node. The number x of input
and output ports associated with other routers is configurable
by the user depending on the topology selected. The number
of ports connecting the router and computing node is fixed.

The router module implements the routing algorithm under
study and is a state machine that implements the algorithm
based on which the router operates. Using the information
about the topology of a communication subsystem stored in
the router, as well as the service information stored in the
forwarded data packets, the port to which the packet must be
sent so that it reaches the destination node is selected. For
most routing algorithms to work in a router, it is necessary
to store the information about the number of routers in the
network, number of ports to which a packet can be forwarded,
and also information about the type of connection of the
nearest routers.

The task of the router is to determine which port the packet
came to, and allocate the auxiliary information in it for the
algorithm to work. This information is then processed by
the routing algorithm to determine the number of routers to
which the packet must be forwarded in order to reach its
destination. At the final stage, it is necessary to determine
to which port the packet should be sent, pack the auxiliary
information received from the algorithm, and send the packet
to the appropriate port.

The topology module implements the analyzed topology
of the communication subsystem. It connects all the routers
to each other, transfers the data between them, and sends
the data to the computing node. The topology implements
an undirected graph representing the structure of connections
between the routers. This is the main module of the model
core. It combines routers, computing nodes, and other mod-
ules with each other; provides the data transfer between them,
and also returns the packet passing results for the further
analysis.

The packet generator module allows transferring input
packets to the network, tracking their path, and also collects
the status of the packet delivery to the required computing
node. The module generates the test data packets that are fed
into the network, receives the packets from the network, and
analyzes errors when the packet passes through the network.

The packet generator supports different types of traffic
patterns: from synthetic (random, uniform, bit reversal, tor-
nado, etc.) [22], [44], [45] right up to application-specific
and benchmarks like PARSEC [46] and SPLASH [47] using
script files.

The packet generator is auxiliary and in fact is not a struc-
tural element of the communication subsystem; it is needed

to reduce the NoC model (it replaces the computing nodes).
It emulates the generation of data packets when testing the
network. All the ports of the routers are connected to the
packet generator module for communication with computing
nodes. This makes it possible to conduct a NoC research with
more nodes than when using real computing nodes.

To provide testing of the model operation at the register
level, for the model core files, an add-on with testbench files
that check the correctness of the model based on ideal signals
was developed. Since such a check is quite long, the compo-
nents to allow making a high-level check were additionally
implemented. One of such components is the SignalTap logic
analyzer [48], which is part of the Intel Quartus Prime. This
tool makes it possible to read the studied signals in the real
time of the prototype on the FPGA development board and
select the states of interest of the variables. The SystemVer-
ilog DPI direct programming interface implemented helps to
organize the call of functions developed in the C / C++ lan-
guage in the code developed in the SystemVerilog language.
Using this interface, one can organize the transfer of test data
from the computer to the model, as well as obtain the results
of the modeling.

B. ECAD ARCHITECTURE FOR LOW-LEVEL NoC
MODELING
The NoC model proposed above is the basis for the ECAD
architecture for low-level NoC modeling; the structure of this
architecture is shown in Figure 7.

The ECAD software HDLNoCGen [43] was developed
in C#; it implements the presented NoC low-level modeling
architecture and provides support for circulant topologies for
a NoC [8], [49]. It includes components for setting up the
generation of the model core, tools for collecting data from
the model core, as well as tools for managing the generation
of data packets:

− model tuning module, which receives the necessary data
for the parametric generation of theNoC communication
subsystem, generates the core of the model, and also
launches the model to obtain the working results;

− data processing module, which is necessary to obtain
the results of the model and generate test data for the
submission to the model in real time, as well as to collect
the results of the modeling and compare them with the
results of high-level modeling.

An important part of the ECAD is the model tuning mod-
ule whose main component is the developed translator for
parametric generation of the model core code. Also, this
module allows multiple launch of the model with different
parameters, which automates the process of generating the
model and obtaining results.

The other modules of the developed ECAD are the result
analysis tools. Some of them (tools for displaying network
characteristics) are located in the data collector module
because they provide an access to the raw data. The routing
algorithm analysis tools and topology visualization tools are
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FIGURE 7. ECAD architecture for low-level NoC modeling.

located in the model setup block because they perform data
processing from the model and allow them to be compared
with the results obtained at the high-level modeling phase.
They are needed to synchronize the results of low-level and
high-level modeling.

The following set of parameters is fed to the ECAD input:
a network topology, routing algorithm, network signature
(which contains information about the number of nodes and
the topology for their connection), and additional modules
to be connected to the network. Optionally, one can set the
location of the model core prototype.

The developed ECAD allows modeling a parameterized
NoC communication subsystem to obtain an estimate of the
number of consumed arithmetic logic blocks (ALM) and
registers (REG, memory blocks) required for prototyping the
communication subsystem.

All the components of the communication subsystem are
implemented as separate modules, due to which the resource
costs for adding the necessary components to the model for
research are reduced because of the absence of the need for
a complete redesign of the model code. This is possible due
to the created universal interface, to which all the connected
components transmit the data in their own format after which
they are converted for the further use by other components.
With the help of the universal interface, it is possible to add
the additional components to the model for modeling a NoC
as a whole.

For the ECAD developed, at the level of its architec-
ture, it was proposed to divide its components into a
synthesizing unit and analysis unit. The synthesizing block
includes the model core, testing infrastructure, HDL code
generator, and multiple model launch tools. Data collector
components, algorithm analysis tools, and topology analysis
and visualization tools are included in the result analysis
block.

In accordance with the requirements of the generally
accepted standards for the ECAD composition, it should
consist of informational (a database of modeling results),

mathematical (approximation models for predicting mod-
eling results), linguistic (low-level models in the Verilog
language), methodical (developed modeling techniques), and
technical (an operational FPGA prototype) components; and
software (ECAD software and auxiliary utilities). Informa-
tion support includes the input data (based on which the
parametric synthesis of the model takes place), as well as
the results of the model operation, such as the consumed
chip resources, clock frequency of the synthesized network
project, and the efficiency of the components placement. The
hardware includes a workstation on the Windows operating
system,which runs the developed ECAD, Intel Quartus Prime
Lite, that creates a network description file for the FPGA
chip, and also the FPGA chip itself as part of the develop-
ment board.

C. DATA FORMAT HARMONIZATION FOR PARAMETER
TRANSFER BETWEEN NoC MODELS
High-level and low-level NoC models designed to study the
NoC structural components initially have no connection with
each other in terms of the mutual use of modeling results.
With the traditional approach, whenmodels of different levels
are used separately, there is no question of their synchroniza-
tion. Now, ensuring seamless integration of models with each
other has a significant impact on the efficiency of interaction
between them. We propose to use the fact that the models
have partially the same data – information about the topology
(the structure of connections of routers and their number),
information about the router (the number of data transmis-
sion channels, their size), the routing algorithm, etc. These
parameters are set in each model in the corresponding format,
which leads to the need to transform the data by the user,
and this increases the time of the study, let alone may cause
errors. To eliminate these problems, a data preprocessing
module was developed to adapt the format of the studied
NoC characteristics for use in both high-level and low-level
modeling. Models should be able to both receive parameters
and issue them.
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FIGURE 8. Window of topology settings for the low-level NoC model in HDLNoCGen software.

Topology information representation can be implemented
in several ways. The user can prepare a configuration file
that will contain a description of the characteristics of the
topology under study. In this case, the user is limited to the
set of topologies implemented in the model. Another way
to specify topology information is to describe the topology
using an adjacency matrix in which the dimensions of the
matrix in height and width are given by the number of routers,
and the links between them are indicated as 1 or 0 at the
intersection of the row and column of the corresponding
routers. The second method is the most universal as it allows
using not only the developed proprietary software tools for
the topology analysis but also third-party software for the
graph analysis. In this case, the file with the description of
the topology configuration becomes much larger compared
with the one in the first case.

In the developed ECADHDLNoCGen [43], a combination
of the first and second methods of specifying the topology
characteristics is implemented. The user can specify informa-
tion in the form of a configuration file in which characteristics
for the topology supported by default are specified, as well
as the adjacency matrix (for the unsupported topology) is
presented. In the developed ECAD, this module is called
‘‘Topology analysis and visualization tools’’ and is part of the
ECAD configuration module (Figure 8). This module allows
getting information about the topology, displaying it in the
graphical window, and preparing the data for setting up a
low-level NoC model. An example of a graphical window
for entering settings and visualizing the topology is shown
in Figure 8.

As the user can initially set the settings of the low-level
model and subsequently use them in a high-level one, the
ECAD customization module allows getting them in the form
of a configuration file. The router settings are transferred
in a similar way. The user can set them in the form of a
configuration file, which will go to the input of the models.

Particular attention should be paid to the choice of the
routing algorithm in the models. This is the most difficult
setting in terms of model matching. Low-level models, like
high-level ones, can be developed in different languages and
have different code structures. The implementation of the
supported algorithms in each model is different, which can
lead to different results of the same algorithm in different
models. To solve this problem, descriptions of routing algo-
rithms are used in the form of separate text files connected to
the models. Currently, the same approach is used in preparing
a file with an algorithm as in generating a low-level model by
translating code from C# into Verilog. The file describes the
algorithm in the form of a function in the C# language with
restrictions on the data types and syntactic constructions used.
The configuration file of the model indicates which algorithm
to use for modeling. When the model runs, the selected file
with the routing algorithm is recognized by the model and
executed.

The advantage of the approach described is that it elim-
inates the need to implement the same algorithm in several
programming languages. The algorithm is the same in all
models, and there is no difference in the modeling results
depending on the implementation of the algorithm. This
also expands the list of algorithms supported by the model.
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At the same time, this approach requires the development of
additional code to interpret the algorithm, regardless of the
language in which the model was developed.

V. AUTOMATION OF LOW-LEVEL NoC MODELING
The developed ECAD for low-level NoC modeling is based
on the low-level model. But the most important subsystem
that distinguishes the developed ECAD fromNoCmodels are
modules that implement modeling automation and provide
the achieved increase in the speed, accuracy, and simplifica-
tion of the process of low-level NoC modeling.

A. GENERATION OF A LOW-LEVEL MODEL OF THE NoC
COMMUNICATION SUBSYSTEM
In the classical approach to low-level NoCmodeling, for each
analyzed configuration of the NoC communication subsys-
tem, it is necessary to create own model core files, which is
a routine and time-consuming task. To automate this process,
a model tuning module in HDLNoCGen was developed [43].
This module was developed in C#. Its task is to generate
model core files based on information about the topology and
the routing algorithm. The main component of this module is
the HDL code generator. Structurally, the HDL code genera-
tor is a translator that can operate in two modes depending on
the data supplied to the ECAD. The operating modes of the
translator are shown in Figures 9 and 10.

FIGURE 9. Modes of operation of the HDL code generator based on the
model core prototype.

In the first mode, the work of the translator is based on the
use of the model core prototype (Figure 9). The developer
creates a prototype of the model core once. During further
operation of the system, it is required to change only the file
in which the routing algorithm is implemented. In this file, the
developer notates (place specialized comments) the lines of
code that need to be changed to create a parameterized model.
The translator receives this file as input, reads it line by line,

FIGURE 10. HDL code generator operating modes in C#-to-Verilog
translator mode.

and passes it to the lexical analyzer. The lexical analyzer in
each line searches for a label to change. The found string
is passed to the parser, which parses this string, determines
the parameter to be changed, and also gives the name of the
parameter to be set. A set of variables (consisting of a variable
and a value to be replaced) is passed to the code generator,
which requests all the necessary data from the model and
creates a new file with the routing algorithm.

The second mode of the generator is C#-to-Verilog trans-
lation (Figure 10). In this mode, the generator does not need
a model kernel prototype. The input of the translator is a
file with a routing algorithm developed in C#. A file with
restrictions for the lexical analyzer is also supplied. Based
on these inputs, the code generator generates a file with a
routing algorithm in the Verilog language, as well as all other
necessary files.

The translator proposed is not a classical one-pass or two-
pass translator [50]. It is a translator adapted to the generation
of the NoC communication subsystem. It differs in that the
translator checks the type of input data before starting. If the
input is Verilog files there is no actual code translation. The
code input is parameterized based on additional parameters
described in the code itself. If the input is a file describing a
routing algorithm in C# language its adapted translation takes
place.

For the file with the routing algorithm, we developed a
number of restrictions on its structure, as well as on the set
of C# tokens that can be used to describe the algorithm.
Structurally, the file is a C# function to which all necessary
data are passed as parameters.

As a result of the analysis of routing algorithms used in
both high-level and low-level models, restrictions on the use
of C# tokens were formed. It is allowed to use variables
of integer, long, boolean types, as well as arrays and lists
based on these data types. It is allowed to use a limited set
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of mathematical operations: addition, subtraction, multiplica-
tion, division, absolute number calculation, inversion, bitwise
shifts. It is allowed to use assignment, strict and non-strict
comparison operations. Syntactic constructions of the lan-
guage are also restricted: it is possible to use the conditional
operator if / else, the case selection operator, as well as the
for loop. The above-described capabilities of C# language are
enough to implement any routing algorithm for a NoC. Thus,
the translator can translate only a limited set of lexemes.

Another feature of the translator is that depending on the
selected C# algorithm string, it either translates it into Verilog
language or performs parametric substitution of the code
block. This applies to the description of the module header,
as well as the formation of the block for selecting the direction
of the packet to the output port of the router.

The description of the Verilog module header depends
on the set of topology parameters for which the routing
algorithm is implemented, as well as on the parameters for
the algorithm itself. And if the parameters for the algorithm
operation are equally present in the C# and Verilog code, the
information about the topology parameters is set in different
ways. For the C# algorithm, only the set of formers for
mathematical calculation of the graph is enough, and there is
no need to explicitly describe all the ports of the router. For a
Verilog module, a description of the router ports is necessary.
Thus, when the translator analyzes the input parameters of
the algorithm in C#, the number of router ports is calculated,
the dimension of the data parcels they can accept is specified,
both input and output ports are formed, and special names
are given for each of them. At the end, the generated block of
code describing this data is inserted into the module header.

The C# algorithm works without taking into account the
real data in the data packet that needs to be sent between
routers, it only takes into account the auxiliary data for the
algorithm to work. Also, the algorithm does not consider the
availability of ports for communication with computational
nodes. When translating into Verilog language, these data are
also taken into account; so, a large block of code in which
auxiliary information for the algorithm operation is substi-
tuted into the data packet is generated. Also, a block is formed
where (based on the results of the algorithm operation) the
output port of the router to which the data packet should be
sent is calculated.

The developed translator not only allows automatic synthe-
sis of the parametric model of the communication subsystem
but also provides the possibility of matching the analysis of
the routing algorithm with a high-level model.

The model setup module can generate all additional nec-
essary Verilog files for a NoC creation in automatic mode,
as well as generate a project for Quartus Prime and runmodel-
ing / prototyping of the communication subsystem using TCL
commands.

The possibility of multiple model launching by submitting
a pre-formed configuration file to ECAD is implemented.
This file specifies the signature of the network topology to
be created and the requirements for generating the model

kernel code: either parameters for the algorithm and the
algorithm itself in C# or the path to the location of the
prototype of the model kernel are given. Optionally, one can
specify what additional modules should be connected to the
model. Additionally, it is possible to specify the settings to
be considered when creating a project for Quartus Prime.
In one configuration file one can specify several network
descriptions that will be sequentially created after which their
modeling will be performed. The simulation results will be
collected in a single summary table for the further analysis.

Additionally, in the module of model adjustment, the pos-
sibility of high-level check of correctness of the structure
of the communication subsystem and routing algorithm by
generating routing paths from the zero router to all other
routers is implemented.

B. METHODOLOGY FOR AUTOMATED END-TO-END
NoC DESIGN
Based on the method of separate modeling described in
Section III and the use of a specialized generator of the
low-level model of the NoC communication subsystem,
we formulate a methodology for automated end-to-end NoC
design – by automatic parameterization of the low-level
model in order to coordinate the results of NoC modeling
at all the phases of design and automation of the modeling
process. An important element of the proposed methodology
is the use of FPGA development boards for cosimulation in
order to characterize the NoC operation. Its essence is that a
prototype NoC is loaded on the FPGA as part of the model,
and the results are processed on the workstation.

The proposed methodology addresses several NoC design
and modeling challenges:

− automation of themodeling process by reducing the time
required to develop a NoC model;

− development of a special parameterized NoC model
providing separate modeling of NoC components and a
NoC as a whole;

− synchronization of modeling outputs and outputs
between low-level and high-level models.

Application of the method of separate NoC modeling in
conjunction with the generator of low-level models allows to
automate the process of synthesis of specialized parameter-
ized low-level NoC models, which shortens the developer’s
resource costs by reducing the time for the preparation of
specialized models. Due to these factors, the process of veri-
fication the NoC communication subsystem operation can be
accelerated up to 15 times.

Figure 11 shows the dependence of the speed of obtaining
data describing the network operation on the number of nodes
using the NoC methodology of automated end-to-end design,
which is the basis of the developed ECAD in comparison with
the classical approach based on the use of low-level modeling
with the help of event-based models (using ModelSim as an
example). In order to evaluate the speed of obtaining results,
modeling of the passage of one data packet was carried out.

VOLUME 12, 2024 48759



E. V. Lezhnev et al.: Electronic Computer-Aided Design for Low-Level Modeling of Networks-on-Chip

FIGURE 11. Comparison of the speed of obtaining NoC results using the
tools developed and ModelSim.

The increment of time required to obtain NoC results,
using the proposed methodology, grows linearly in contrast
to the increment of time using ModelSim. This is because
in event-driven modeling using ModelSim, signals are calcu-
lated at each point in time. With the proposed technique, due
to cosimulation, results are obtained on the prototype, and
the dependence of the time to obtain results on the size of
the network is expressed in terms of the path length required
for a packet to traverse, as well as the clock frequency of
the prototype. The diameter for topologies with increasing
number of nodes grows in a stepwise manner rather than
linearly, as shown in [51]. For this reason, the increase
in the time required to obtain results using the proposed
technique should also increase in jumps. The graph flattens
out by decreasing the frequency of the prototype as the
number of nodes in the network increases. It is also worth
noting that (using the proposed technique) the increase in
the required simulation time as a function of the number of
nodes in the network does not grow as fast as when using
ModelSim.

It should be noted that we are not comparing the speed
of NoC modeling in ModelSim with execution on an FPGA
but two different methodologies when (instead of manually
setting up, developing and then executing an HDL model)
automated tools that allow the model to be generated end-to-
end, configured, synthesized, and run using automated means
are used. The cost of performing all these steps is more than
offset by the gain in speed of cosimulation and multiple runs
of several simulations in a row.

In Section II, different types of NoC behavioral modeling
were presented. When analyzing simulation results obtained
from high-level models and low-level models, one of the tasks
is to synchronize the obtained data. This task is quite time
consuming, as the developer needs to analyze the results and
compare them betweenmodels. Additional complexity in this
is created: despite the fact that high-level and low-level model
can investigate the same NoC configuration, the implementa-
tion of some of its components, such as routing algorithm,
may differ in various models, which leads to difficulties in
checking the results for their correctness. As a result of our
analysis of the NoC design subject area and during the review
of low-level NoC models, no tools were found that allow the

description of NoC configurations to be compared between
models of different levels of abstraction.

The proposed methodology, in terms of using a specialized
low-level model generator, allows us to solve this problem.
To use the core model generator in C#-to-Verilog mode, it is
necessary to specify the description of the routing algorithm
in C# language. The low-level model is created automatically
based on the rules of translation of the algorithm description
from C# to Verilog language. Thus, the synthesized low-level
NoC model in the part of the routing algorithm description
will fully coincide with the high-level model in which this
algorithmwas implemented. This ensures that the twomodels
are fully consistent because one is the source model for the
other. It should be noted that to provide this possibility, the
algorithm description in the high-level model must be imple-
mented in a certain way, in accordance with the requirements
and constraints of the generator of the low-level model.

To synchronize the other parameters of the different level
models, a configuration file is used, which is input to the
developed HDLNoCGen ECAD. This configuration file can
also be used in high level models for their parameterization.

VI. APPROBATION OF THE DEVELOPED ECAD IN THE
REAL TASKS OF NoC DESIGN
All the proposed solutions, methods, and techniques com-
bined in a single ECAD were used in various studies of
different aspects of the NoC functioning. For example,
in [10], with the help of the developed ECAD, data were
obtained for comparing the routing algorithms of the NoC
communication subsystem. With the help of algorithm anal-
ysis tools and topology analysis and visualization tools, the
correctness of high-level descriptions of the studied routing
algorithms was shown. Using the HDL code generator based
on a specialized translator which was used in the mode of
operation according to the model core prototype, specialized
models of the NoC communication subsystem were obtained
for the number of nodes from 9 to 100, where the value of the
number of nodes was formed as N = k2, k > 3 (k is a natural
number). The use of the developed ECAD made it possible
to achieve a network size of up to 100 nodes and speed up
the process of obtaining results up to 10 times. Accurate esti-
mates of the consumed chip resources were obtained using a
specialized low-level model of the NoC communication sub-
system, based on which graphs were built, and approximation
functions were calculated for interpolation and extrapolation
of the theoretical estimate of chip resources for networks with
a different number of nodes.

In [37], using the developed ECAD, with the help of the
HDL code generator, specialized low level models of the NoC
communication subsystem were synthesized to test the per-
formance of the proposed routing algorithm. By means of
packet generation controls, the correctness of the algorithm
proposed was proved.

In [52], an assessment of the chip resources required to
implement the NoC communication subsystem based on the
routing algorithm proposed was made. The developed ECAD
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made it possible to check the correctness of the routing
algorithm implemented in a high-level language for NoC
implementations with hundreds of nodes. With the help of
ECAD tools, low-level parameterized models of the NoC
communication subsystem with the routing algorithm under
study were synthesized, and the results of low-level mod-
eling were also obtained. The data collection and storage
tools included in the developed ECAD allowed comparing
the routing algorithm proposed with other algorithms for the
selected topology in order to determine an algorithm that is
more compact in terms of the required chip resources.

In [53], using the development methodology implemented
in ECAD HDLNoCGen, a modification of the high-level
BookSim NoC model was carried out, as a result of which
the number of topologies that can be explored using this
model was expanded, and new routing algorithms were
added. In addition, the structure of the configuration file was
modified to add the support for new topologies and routing
algorithms. Also, the structure of the configuration file was
adapted for use in HDLNoCGen ECAD to match model set-
tings and match modeling results, which made it possible to
perform the end-to-end NoC design by combining high-level
and low-level modeling results.

The developed tools, low-level model, methods and tech-
niques of design and modeling (which are the basis of the
ECAD developed) significantly reduced the resource costs
for creating special parameterized low-level NoC models,
reduced the time for their preparation and for obtaining
modeling results. The conducted extensive testing proved
the applicability of the solutions proposed and demon-
strated the reliability of the results obtained, as well as their
reproducibility.

VII. CONCLUSION
The main result of this work is the solution of an actual sci-
entific and applied problem related to automating the process
of developing low-level models of NoC communication sub-
systems (which makes it possible to speed up the modeling
process up to 15 times), as well as increasing the size of
the simulated NoC by developing a new low-level model of
its communication subsystem, which (due to the universal
communication interface of the NoC components) allows
modeling both the network as a whole and its individual
components without the need to modify the whole model.

Modeling individual NoC components gives an opportu-
nity to evaluate their impact on the network separately and
(based on the data obtained) make a parametric selection of
the optimal settings for the operation of the selected NoC
component. Also, separate modeling of NoC components
makes it possible to speed up the process of modeling both
the network as a whole and the components under study.

Based on the model of the NoC communication subsys-
tem proposed, the ECAD architecture in the form of the
HDLNoCGen software, which allows automating the process
of preparing and generating an HDL description of the model
in the Verilog language, is developed and implemented.

The developed model allows modeling a parameterized NoC
communication subsystem to obtain an estimate of the num-
ber of consumed logical blocks and registers required for
communication subsystem prototyping. All the components
of the communication subsystem are implemented as sepa-
rate modules due to which the resource costs for adding the
necessary components for the study are reduced because of
the absence of the need to completely rework the model code
every time.

The developed ECAD and low-level modeling automation
methods applied in the studies of the operation of routing
algorithms and the topology influence on the NoC operation,
as well as the data on the consumed resources for networks
with different parameters obtained are presented. Based on
these results, graphs and dependencies are constructed, and
they confirm the applicability of the solutions proposed,
as well as demonstrate the reliability and reproducibility of
the results obtained.
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