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ABSTRACT Accurate indoor positioning is becoming increasingly important, especially in highly
automated industrial environments with robots. In addition, LED-based lighting is also being used more
and more frequently in such application fields. In the present work, the possibility to exploit the LED
lighting infrastructure with a novel approach for implementing an accurate indoor positioning system is
investigated. For this purpose, a demonstrator luminaire LEDPOS is proposed and evaluated that combines
visible light sensing based on backscattered reflections to accurately estimate the two-dimensional position
of a retroreflective foil at the floor while providing simultaneously an unimpaired room illumination.
In particular, the same LED elements are shared for illumination and for the sensing functionality.
Furthermore, the algorithm for data evaluation and position determination is based on a machine learning
approach that is implemented on the edge in the luminaire. Thus, the presented approach allows for a
simple and cost-efficient implementation in different applications. The experimental characterization of the
LEDPOS demonstrator in a real-world scenario shows that a very good positioning accuracy can be achieved,
in which the average error for the two-dimensional position of the retroreflective foil within an area of 0.64

m? remains in the range of 3 cm.

INDEX TERMS Indoor positioning, LED as sensor, machine learning, visible light sensing, visible light
positioning.

I. INTRODUCTION

The steady increase in LED-based lighting systems in recent
years has raised a great deal of interest to investigate
visible light technologies for various applications [1]. The
visible part of the electromagnetic spectrum, traditionally
associated only with lighting, has now emerged as a kind of
revolutionary technology for communication (Visible Light
Communication — VLC [2], [3]), positioning (Visible Light
Positioning — VLP [4], [5], [6], [7], [8]), and sensing appli-
cations (Visible Light Sensing — VLS [9], [10]). In general,
VLS systems can use variations in light intensity, color
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and polarization to extract valuable information about the
environment [9]. This enables applications such as occupancy
detection, environmental monitoring and intelligent lighting
control [11], [12], [13], [14], [15], [16]. Further, VLP,
representing a variant of VLS for localization purposes, can
provide the basis for location-based services indoors [17],
[18]. VLS and VLP can be realized by various components
for the detection of light such as photodiodes or CMOS
sensors. Generally less studied is the use of LEDs as sensing
elements, as LEDs are primarily designed for lighting.
However, due to their inherent light-emitting and light-
detecting properties, LEDs can also be used as sensors and
not only as light sources [19], [20], which has opened new
avenues for innovation and research. This convergence of
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lighting and sensing functions in a single device holds great
potential for cost-effective and scalable solutions in the fields
of sensing and positioning.

The topic of indoor positioning has also been a challenge
for many years and is being addressed with various tech-
nologies aiming to provide accurate and reliable localization
within enclosed spaces. The most common positioning
system, the Global Navigation Satellite Systems (GNSS)
[21], [22], can be weakened or even completely blocked
indoors [23]. Therefore, other technologies and methods,
mainly radio frequency (RF) based solutions [24], [25],
Wi-Fi [26], [27], Bluetooth [28], ultra-wideband (UWB)
[29], [30], ultrasound [31] and radio frequency identifi-
cation (RFID) [32], [33], [34] have been investigated for
indoor applications. However, these systems often have
limitations in terms of accuracy, reliability and performance
in complex indoor environments. In addition to these
technologies, Visible Light Positioning (VLP) is another
promising alternative for indoor positioning [4]. VLP is
generally considered to belong to the technologies that
can provide high position accuracy in the centimeter range
under ideal conditions [35], [36], [37]. This property makes
VLP well-suited for applications that require high-precision
location, such as indoor navigation, asset tracking and
location-based services. Further, VLP offers the advantage of
being immune to electromagnetic interference, allowing for
applications in RF-sensitive environments such as hospitals
and industry. Moreover, since visible light cannot penetrate
opaque media like walls, interference between different
systems is reduced. Another advantage of VLP compared
to RF technologies is the ability to easily shape light-
beams using apertures, concentrators or lenses. This allows to
confine VLP systems to certain areas within a room without
disturbing the remaining space. Therefore, these general
properties of light are well suited to scenarios where room
level restrictions are required, allowing the implementation
of independent positioning systems in each room or even
multiple positioning systems in one single room [38].

Finally, as a potential part of green Internet of Things
(IoT) technologies, VLP opens up opportunities for energy-
efficient and sustainable indoor positioning solutions.
As VLP systems can be seamlessly integrated into the
existing lighting infrastructure and, in addition, also make
use of the already present light sources in luminaires, cost-
effective and scalable solutions become possible. Thus, the
ubiquitous presence of LED lighting can be leveraged with
minor need for additional infrastructure by deploying VLP
systems. This also minimizes implementation costs and
simplifies the adoption of this technology [39].

The remaining parts of this work are structured as
follows. Section II presents the contributions, challenges
and resulting design goals of this work, followed by
the related work in Section III. The architecture of the
proposed LEDPOS system, the hardware and measurement
algorithm, as well as the experimental setup for evaluation are
described in Section IV. The selection and implementation
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of the two-dimensional positioning algorithm is discussed
in Section V and the evaluation of measurement results is
provided in Section VI. A discussion and outlook on future
work is given in Section VII. Finally, the conclusion is drawn
in Section VIIIL.

Il. CONTRIBUTIONS, CHALLENGES AND DESIGN GOALS
In this work, a novel LEDPOS demonstrator luminaire
is investigated that is capable of accurately determining
the two-dimensional position of a retroreflective foil by
evaluating the backscattered light while simultaneously
providing unimpaired room illumination. It is important to
note that the system does not require any additional light
sensitive device such as a photodiode or camera. Instead,
the LEDs of the luminaire are switched alternately between
illumination and sensing modes at a frequency that is
kept beyond the limits perceived by the human eye, thus
maintaining a flicker-free lighting quality. In addition, all data
processing and the machine learning classification algorithm
for actual position determination of the retroreflective foil is
computed on the edge in the luminaire. The combination of
lighting and sensing functionalities as well as the practical
implementation of these features into a system for a real-
world scenario poses a number of challenges, which are
discussed below. First, the contributions of this work are
summarized as follows:

o The electronic design for the development of the
proposed LEDPOS demonstrator luminaire is presented.
In essence, this contains a circuit design that enables
the simultaneous measurement of reflected light and
illumination by LEDs.

o The developed measurement method for processing
LED sensor data, to enable two-dimensional positioning
estimation by machine learning, is described with its
target feature for edge computing.

e In detail to the previous item, the selection and
implementation of an appropriate supervised machine
learning based algorithm to predict the two-dimensional
position of a retroreflective foil is given.

o The experimental setup to finally verify and validate
the proposed LEDPOS demonstrator luminaire in a real-
world environment is presented.

The challenges of using an LED as a sensor and the
implementation of a two-dimensional positioning algorithm
on the edge in a luminaire are discussed in the following
subsections.

A. CHALLENGES OF USING LED AS A SENSOR

Due to the physical similarity of the pn-junction of a
photodiode and an LED, it is possible to use the photoelectric
effect to operate an LED as a receiver. However, LEDs
are generally not designed to be used as photodiodes and
therefore, their sensitivity and bandwidth are much lower
than those of photodiode detectors. For sensing applications,
a high signal-to-noise ratio (SNR) is crucial, particularly
when very weak or attenuated signals are to be detected, as is
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the case with an LED as sensor [40]. The sensitivity spectrum
of an LED is also a property relevant for sensing purposes.
When used as a photodiode, an LED is only sensitive to
incident photons of the same or a smaller wavelength than that
of its own emission, due to the bandgap structure of different
semiconductor materials [41]. Another issue associated with
LEDs is their sensitivity to temperature variations, which
can affect their sensory performance and accuracy [42].
Usually, temperature changes alter the electrical and optical
properties of the LED, resulting in variations of the detected
signals. Regarding applications with combined illumination
and sensing purposes, cross-talk and interference can also
significantly affect the performance of LEDs as sensors.
Crosstalk refers to the unwanted coupling of the light emitted
from the LED with detection, leading to interference and
inaccurate measurements. Last but not least, in contrast to
other publications using LEDs as a sensor (e.g. [43]) a
major challenge is to use the same LEDs as sensor as well
as for flicker-free illumination. The combination of these
functionalities further increases the complexity to accurately
measure the reflected light, as switching between these modes
generates higher temperature variations and thus additional
noise.

B. CHALLENGES OF MACHINE LEARNING ALGORITHMS
FOR EDGE COMPUTING

Microcontrollers are commonly engaged for edge comput-
ing, but typically have limited computational resources in
terms of processing power, memory and storage capacity.
Thus, the implementation of complex machine learning
algorithms on microcontrollers can be challenging due to
resource constraints [44]. First, limited memory capacity
may restrict the size and complexity of models that can be
deployed on microcontrollers. Secondly, the selection of an
appropriate algorithm is crucial, because algorithms differ
significantly in their computational power and memory size
requirements. Therefore, the adaption of existing algorithms
by optimizing them for low-power or low-memory operation
poses a challenge to work efficiently for edge computing
on microcontrollers. Data acquisition, preprocessing and, for
example, feature extraction techniques need to be carefully
designed to cope with limited resources [45].

C. DESIGN GOALS

The design goals for the LEDPOS demonstrator and its
evaluation are defined based on the challenges described
above and to meet the overall objectives of this work:

1) Accurate measurement of backscattered reflections
using white LEDs as a sensor: High sensitivity
is essential to accurately detect and measure even
weak backscattered reflections where the resulting
photocurrent can be in the small nanoampere range.
To this end, two points are of major importance. First,
the selection of a proper LED is crucial. On the
one hand, it is well known that the sensitivity of
white LEDs in particular is poor compared to colored
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2)

3)

4)

ones [46]. On the other hand, since the LEDPOS
demonstrator is designed for a real-world application,
illumination with white LEDs is an integral part of the
system requirements. Therefore, a white LED capable
of capturing a wide range of reflections and low
intensities needs to be selected to allow for accurate
measurements in different scenarios. Secondly, the
design of the transimpedance amplifier (TIA), which
is connected to the sensing LED and responsible to
convert the resulting photocurrent into a proportional
voltage, is crucial in terms of the detectable range,
bandwidth and hence the overall accuracy of the
system.

Noise and temperature optimized hardware design:
In close relation to the previous design goal, the second
target for the hardware design is to minimize noise
throughout the electronic printed circuit board (PCB).
Noise can degrade the performance of electronic
circuits and thus affect the accuracy of measurements
or signal processing. Therefore, layout, grounding and
shielding techniques should be carefully considered
to minimize noise sources and ensure clean signal
paths. In addition, the selection of components with
low noise characteristics and the implementation of
appropriate filtering mechanisms are also essential
to reduce noise in the system. Another important
design consideration is optimization with regard to
temperature effects. Temperature variations can have a
significant impact on the performance and reliability
of electronic circuits, especially when it comes to
LEDs. Therefore, the design should focus on thermal
management techniques to ensure stable operation over
time.

Deployment of a supervised machine learning based
positioning algorithm on a microcontroller: From
the multitude of available machine learning algorithms,
approaches to create a model for position determination
based on labelled training data (supervised methods)
are investigated. The algorithm finally selected should
provide high positioning accuracy to map new input
features to the corresponding two-dimensional position
while taking into account the typical constraints for
edge computing on a microcontroller in terms of
computational resources including processing power,
memory and storage capacity. The performance of
the algorithms considered is compared and evaluated
using metrics such as localization accuracy, distance
differences and error metrics to ensure reliable and
accurate positioning results. Further, the algorithms
need to be optimized regarding complexity, memory
requirements and efficient data structures for efficient
deployment on a microcontroller.

A scalable, real-world experimental setup for a
reproducible evaluation of the LEDPOS demon-
strator system: The experimental test setup and test
environment for an evaluation of the LEDPOS system
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should support adjustable positions of a retroreflective
foil on the floor below the ceiling-mounted LEDPOS
system to analyze the performance of the system
for position determination under various scenarios
and configurations of reflected light. The use of
a retroreflective foil is mandatory to reduce the
impact of additional reflections from the environment.
In addition, a retroreflective foil is readily available,
low-cost and can be attached to various devices, such
as a robot. Further, the setup must provide reproducible
data collection in terms of repeated conditions and
positions and should also be adaptable to different
ambient light conditions.

In summery, the LEDPOS demonstrator presented in
this work contributes significantly to the advancement of
backscattered based indoor visible light positioning with
its realization addressing the outlined challenges. The main
advantage and contribution is that no additional photodiodes
or CMOS sensors need to be utilized, since the LEDs
themselves are used as both light sources and sensors. Con-
sequently, in terms of energy efficiency and sustainability,
the approach presented here of using LEDs as sensors offers
unprecedented opportunities for retrofitting, as only LEDs are
used, identical to existing lighting, and no space is required
for additional photosensitive devices.

lIl. RELATED WORK

The related work in the field of using LEDs as sensors
in general and for the application of VLP in particular is
reviewed in the following subsections.

A. LED AS SENSOR

The basic use of an LED as a photosensitive device was
confirmed more than 20 years ago [19], [20]. At present,
research is increasingly focusing on the use of LEDs as
transceivers, especially in the field of VLC, with an emphasis
on basic communication properties such as transmission
speed, distance and error rate. To improve these target
properties, the selection of a suitable LED for transmission
and reception of light is paramount. The photodetector
characteristics of different colored low-power LEDs available
on the market were analyzed and methods for measuring
the response sensitivity and bandwidth demonstrated [46].
It was found that the response sensitivity and bandwidth can
be improved by increasing the reverse bias voltage on the
LED. Furthermore, LEDs in the higher visible wavelength
range (yellow, orange, red) showed significantly better
properties compared to the lower wavelength spectrum (blue,
green). The white LED tested showed no photosensitive
properties at all. Commercially available high-power SMD
LEDs were investigated in [47] and the results showed good
photosensitive properties compared to low-power LEDs, but
also to photodiodes. Again, the yellow, orange and red LEDs
gave the best results in terms of sensitivity. In [48], low-
power RGB LEDs were tested for their transmitter and
receiver characteristics. It was found that a combination of
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the green LED chip as emitter and the red LED chip as
receiver gave the best results for the measurement distance of
3 cm. In [49], LED-LED communication with a transmission
rate of 100 Mbit/s was demonstrated using low-power LEDs
(red and orange) over a distance of a few centimeters.
On the receiver side, a TIA was used in combination with
a digital equalizer to avoid bandwidth limitations. Similarly,
the capability of yellow LEDs as receivers for communication
speeds above 3 Gbit/s was demonstrated at a distance of
2 m with a green laser diode for transmission [50]. A multi-
input multi-output (MIMO) VLC system for half-/full-duplex
communication was demonstrated using RGB LEDs at a
transmission rate of 40 or 20 kbps and a distance of
10 cm [51].

As already stated before, the extremely low photocurrents
pose a major challenge when using LEDs as sensors. Thus,
an alternative method for measuring the photocurrent of an
LED was presented based on the correlation between the
magnitude of the photocurrent and the discharge time of
the LED capacitance [52] and [53]. In [54], a LED sensor
device was investigated for colorimetric analysis, and in [55],
[56] similar configurations were tested for colorimetric flow
analysis, pH as well as phosphate determination. However,
in all this works, two separate LEDs were used for sensing
and illumination. The application of LEDs for a miniaturized
spectrometer device was studied in [57], with the LED
components acting as detectors in different wavelength
ranges. Finally, a single RGB LED (Cree XLamp MC-
E Color) was investigated for simultaneous color sensing
and LED control [58], but in fact there is rather limited
published work on the application of LEDs as sensors.
In [59], RGB LEDs are used for multiple tasks, such as
communication, energy harvesting and sensing. For the
sensing scenario, the detection of sunlight and the detection
of wavelength variations to sense the health of a plant are
demonstrated. However, for the sensing scenarios, the RGB
LEDs are not switched between sensing and illuminating,
which challenges the use of an LED as a sensor instead of a
photodiode.

One more study is to be mentioned that investigates
occupancy determination in a 30 m? office setting and uses
the LED lighting infrastructure for illumination and sensing.
Contrary to the approach presented in this work, arrays of
LEDs are used to overcome the problem of sensing the
extremely small photocurrents caused by the reflectance
variations of the occupants in the room, and second, the
evaluation algorithm for signal analysis runs on an external
server [43]. Thirdly and most importantly, in [43] the
LEDs are switched between illumination and sensing every
10 minutes, whereas in this work the LEDs are switched
at frequencies above the perception threshold of the human
eye, making the dual use of the LEDs truly undetectable to a
human observer. In [60], the testbed shown in [43] was used
to demonstrate improved occupancy detection based on LED
lighting using Bayes filters and neural network classification,
especially in dynamic and regular patterns.
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B. VISIBLE LIGHT POSITIONING

As discussed in the introduction, Visible Light Position-
ing (VLP) has emerged as a promising technology for
indoor positioning and localization, taking advantage of the
widespread deployment of LED lighting infrastructure. VLP
systems can use different methods and techniques to estimate
the position of a receiver or an object in an indoor envi-
ronment. This section provides an overview of the different
methods used in VLP, including geometry-based methods,
Angle of Arrival (AoA), Received Signal Strength (RSS),
Time of Arrival (ToA), Time Difference of Arrival (TDoA),
proximity-based methods and fingerprinting. In addition,
the differences between device-free and device-based VLP
systems are discussed in the context of the green Internet of
Things (IoT). Recent reviews on these topics can be found,
e.g., in [8], [35], [36], [37], [61], [62], and [63].

Geometry-based methods in VLP rely on the geomet-
ric relationship between the transmitters (LEDs) and the
receiver to estimate the receiver’s position. These methods
use the known locations of the LEDs and measure the
distances or angles between the receiver and multiple LEDs
to determine the position (see, for example, [64], [65]
for implementation examples). Geometry-based methods
provide accurate positioning when the geometry of the
environment is well defined, but are sensitive to errors in
distance or angle measurements. The receivers used in these
methods are commonly based on photodiodes, cameras or
photomultipliers [66] that provide data such as angles for the
incident light or the light intensity for position calculation [4],
[67]. AoA estimation is a widely used technique in VLP
systems [68]. It involves capturing the incoming light signals
from the LED transmitters and estimating the angles of arrival
to determine the position of the receiver. Hong et al. [69]
showed an AoA based VLP system using quadrant-solar-cell
and third-order ridge regression machine learning with an
resulting average position error of 3.09 cm.

RSS can also be used as a parameter in VLP systems to
estimate the position of a receiver. The receiver measures
the strength of the received light signals from several
LED transmitters. Then RSS-based methods estimate the
receiver’s position based on the received power, taking into
account signal attenuation due to the distances between
the receiver and the transmitters [68]. RSS measurements
can be susceptible to environmental factors such as signal
attenuation, reflections and interference. However, with
proper calibration and signal processing techniques, RSS-
based VLP systems have shown promising results in terms
of accuracy and cost-effectiveness [70]. In [71], a RSS-
based VLP system is shown with simulation results indicating
a positioning accuracy in the low double-digit centimeter
range.

Time-based methods, including ToA and TDoA, rely on
precise time measurements to estimate the position of the
receiver. ToA-based VLP systems measure the time it takes
for light signals to travel from the LEDs to the receiver and
calculate the corresponding distances [4], [68]. TDoA-based
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VLP systems use differences in signal arrival times from
multiple LEDs to estimate position and require synchronized
clocks between the LEDs and the receiver. However, the
enormous speed of light in combination with the rather small
distances pose a challenge for accurate ToA and TDoA
measurements. The high precision of clock synchronization
required for these measurements makes these approaches
impractical for VLP [39]. Consequently, ToA is commonly
used in ultrasound-based systems where signals travel at a
comparatively slower rate, but remains unexplored for an
implementation in VLP [38]. In [72], a 3D ToA localization
approach using sound waves is elaborated, which allows
positioning accuracy between 10 cm and 20 cm.

Fingerprinting is another popular approach for VLP that
uses a database of pre-collected signal measurements to
estimate the position of the receiver. The receiver measures
the signal characteristics of the LEDs and compares them
with the training database. The position is then estimated
based on the closest matching fingerprints. Fingerprinting-
based VLP systems can achieve high accuracy in complex
indoor environments with a sufficient number of refer-
ence measurements. However, maintaining and updating
the fingerprint database can be challenging in dynamic
environments. In [73], a fingerprinting VLP system based
on RSS using a weighted k-nearest neighbors algorithm
approach is proposed. The experiments showed an average
positioning error of 3.04 cm in an area of approximately 9 m?.
Recently, also different machine learning algorithms were
investigated in combination with simulations to reduce the
fingerprinting database for VLP with a photodiode receiver in
a real-world scenario. Besides the need for an active receiver
in this approach, the localization algorithm was implemented
on a 2.6 GHz CPU with 8 GB RAM [74].

Another differentiation commonly discussed in the litera-
ture pertains to the configurations of VLP systems, namely
device-based and device-free configurations. Device-free
systems do not require specialized receiver equipment at the
object of interest [37]. Instead, they simply rely on detecting
variations in the received light signal caused by the movement
or presence of objects in the environment. This can be
achieved through changes in RSS, AoA or other measurable
parameters. Device-free VLP has attracted interest for appli-
cations such as occupancy detection, tracking, and context-
aware services. By leveraging existing lighting infrastructure
and avoiding the need for dedicated receivers at objects of
interest, device-free VLP systems offer cost-effective and
scalable solutions for indoor positioning. Sometimes such
device-free configurations are also referred to as Backscat-
tered VLP (BVLP) and studies conducted for such setups
range from receivers in the ceiling light [75], receivers on the
walls [76], to receivers integrated into the floor [77]. In [78],
a device-free VLP system is presented which achieved
median errors of 0.68 m, 1.20 m and 0.84 m depending on
the test environment. Contrary to device-free configurations,
device-based VLP systems use specialized receiver devices
such as photodiodes, cameras or photomultipliers at the
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object of interest to capture and process the light signals
for accurate positioning. In general, these systems provide
greater control over the received signals, enabling higher
accuracy and more advanced localization techniques.

IV. LEDPOS DEMONSTRATOR AND METHODS

This section presents the system architecture and hardware
design of the LEDPOS demonstrator with its key properties.
These include the use of standard white-light LED compo-
nents and a microcontroller to realize a scalable VLP system
for a real-world scenario, based solely on the backscattered
reflections from a passive retroreflective foil and requiring
no further active components on an object of interest. Thus,
this approach is considered to comply with device-free and
BVLP configurations as discussed in Section III. Further
on, the method for the combined illumination and sensing
functionality is described and finally the experimental setup
for the evaluation of the LEDPOS demonstrator for VLP is
shown on an area of 1.44 m? on the floor below the ceiling
mounted demonstrator. Please note that in the evaluation of
the results (see Section VI) the total area of 1.44 m2 (1.2 m
x 1.2 m) is further divided into subsets of 0.64 m? (0.8 m x
0.8 m) and 0.16 m? (0.4 m x 0.4 m). It is to be mentioned
here that initial investigations on this approach were already
presented in [79] and that the current work is based on these
studies. However, the LED sensing capability is significantly
improved by the new hardware design presented as well as
the algorithm, allowing for increased position accuracy and a
system that is scalable for real-world environments.

A. SYSTEM ARCHITECTURE

An overview of the system architecture and its main
functionality is given in Fig. 1. The demonstrator system
consists of one luminaire containing four white-light LEDs
that are additionally equipped with reflectors with a 20°
beam angle. The parallel illumination and sensing tasks
are realized by three LEDs for lighting and one LED for
concurrent detection. The steps for data acquisition and
position determination by machine learning algorithms on the
implemented microcontroller are indicated in the flowchart of
Fig. 1 at the right. Consequently, the LEDPOS demonstrator
provides an approach for implementing an autonomous VLP
system into the existing lighting infrastructure. Notably,
this approach does not require any additional photosensitive
components.

B. LEDPOS HARDWARE

The concept for illumination and sensing tasks in parallel is
based on four controllable white LEDs (Cree XLamp MC-
E White 4000K) that are perpetually toggled between light
emission and light sensing states. Therefore, each LED has
its own transceiver circuit that handles these illumination
and sensing intervals. In the following, the main parts of
the demonstrated luminaire hardware are described in detail.
A representation of the finally assembled PCB is provided in
Fig. 2a and 2b. The corresponding block diagram is shown
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in Fig. 2¢, where each block is mapped to its corresponding
position on the assembled board. It contains four identical
transceiver circuits with corresponding LEDs and PWM
drivers as well as the TIA stages and the microcontroller
board is attached to the bottom side of the developed PCB.
The entire hardware of the luminaire is supplied externally
with 12 V DC from a laboratory power supply. To ensure
a stable and undisturbed voltage, protection and filtering
circuits are implemented in the supply section of the PCB.
Further, a linear voltage regulation circuit is used for the 3.3 V
supply of the microcontroller unit and the TIA stages.

1) TRANSCEIVER UNIT

Each of the four equivalent designed transceiver unit circuits
consists of a white LED, switching components, and a
transimpedance amplifier circuit followed by an analog-
digital converter (ADC). In general, the transceiver unit is
responsible for alternately switching the corresponding LED
to a zero-biased state (light receiving mode) and a forward-
biased state (light emitting mode), see Fig. 3a showing the
current flows during the zero-biased state in red and the
forward-biased state in blue.

In the zero-biased state, the n-channel metal-oxide semi-
conductor (nMOS) transistor Q1 is open, while the second
nMOS transistor Q2 is conducting. Thus, the anode of the
LED and the LED driver output are connected to ground,
while the cathode of the LED is connected to the TIA input.
During this phase, incident photons at the LED generate a
photocurrent, which is converted into a proportional voltage
by the TIA stage. Due to the fact that the photocurrent is in
the nA to A range, a two-staged TIA design is applied. It is
therefore also important that the amplifier’s input bias current
is as low as possible, which has been taken into account in
the selection of the operational amplifier. In order to reduce
the noise level caused by the buck converter, a first order
low-pass filter with a cutoff frequency below the switching
frequency of the LED buck driver (400 kHz) is added between
the first and the second TIA stage. Finally, the voltage output
of the second TIA stage is acquired by an ADC pin of the
microcontroller unit.

In the forward-biased state, exactly opposite to the zero-
biased state, the nMOS transistor Q1 is conducting, while the
second nMOS transistor Q2 is open. Here, the cathode of the
LED is connected to ground potential, while the anode of the
LED is connected to the LED driver output. This results in
a current flow from the driver through the LED and operates
the LED in the direction of illumination.

Each nMOS transistor is driven by a pulse-width modu-
lation (PWM) pin of the microcontroller unit connected to
the gate of the transistor, i.e. a high level at the gate results
in current flow between the drain and source (transistor
is closed). Conversely, a low level at the gate results in
a high resistance in the drain-source path (transistor is
open). Typically, both transistors Q1 and Q2 are driven by
the same PMW signal to enable the sensing and emitting
functionality, but naturally with an inverter put in front of
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FIGURE 1. LEDPOS system architecture and schematic setup for evaluation. The LEDPOS luminaire is mounted on the ceiling and the retroreflective foil

at the floor can be positioned in an area of 1.2 m x 1.2 m.

Q2. Simultaneously, the LED driver is controlled by the same
PWM signal as the transistor Q1, which ensures that Q1 is
closed (PWM signal high) when the LED driver is active for
illumination. Due to the fact, that the PWM signal for the LED
driver is almost in phase for Q1 and Q2 (Q2 inverted), it was
observed that the simultaneous switching of both transistors
can cause a short circuit current if both transistors are closed
during their transition time. This can occur in the range
of picoseconds to nanoseconds and results in an undefined
behavior at the input of the TIA stage causing a higher noise
level at the ADC input. Therefore, to ensure a reliable and
noise reduced operation, a certain period of time is waited
between the closing of one transistor and the opening of the
other transistor. This time period is usually referred to as
dead-time in the PWM settings, see Fig. 3a.

2) LED DRIVER

The LED buck driver circuit to maintain a constant current
incorporates a step-down converter IC together with passive
components such as inductors, resistors, capacitors, and
diodes. When power is supplied to the step-down driver
circuit (4.5 V to 32 V input supply range), the switching
transistors rapidly turns on and off at a high frequency.

46450

Energy is stored in the inductor during the on-states, and the
stored energy is released to the LED during the off-states.
By controlling the switching frequency and duty cycle, the
buck driver adjusts the average current through the LED
to maintain the desired constant value. The implemented
nMOS design has an internal switching frequency of 400 kHz
and is able to provide a maximum LED current of 2 A.
It should be noted that switching the buck driver at this high-
frequency can generate electromagnetic interference (EMI).
Therefore, to reduce the EMI as well as damp voltage spikes
and transients within the LED buck driver switching circuit,
additional EMI filters, ferrite beads and a RC snubber are
used in the LED driver circuitry.

3) MICROCONTROLLER UNIT

The hardware of the proposed LEDPOS luminaire is driven
by a STM32 Nucleo-G474 microcontroller board mounted
on the bottom side of the PCB, see Fig. 2b. The STM32-
G474RE microcontroller is a member of the STM32G4
family developed by STMicroelectronics. Based on the Arm
Cortex-M4 core, the microcontroller operates at a maximum
frequency of 170 MHz and offers a wide range of peripherals
and interfaces. It further provides 512 kB of flash memory
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FIGURE 2. Image of the assembled LEDPOS hardware board with its functional blocks. (a) PCB top view with four transceiver circuits, (b) bottom view
with a microcontroller attached to the PCB, and (c) corresponding block diagram of the LEDPOS hardware. The red numbers labelling each block are
also indicated in (a) and (b).
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FIGURE 3. LEDPOS transceiver unit for simultaneous illumination and measurement of the backscattered light. (a) Schematic circuit of one
transceiver unit indicating the light receiving mode in red and the light emitting mode in blue. (b) Measurement concept for the four
transceiver units. The points in red indicate the consecutive measurement modes of each transceiver unit over time.

and 128 kB of random-access memory (RAM). It also was the comprehensive set of analogue peripherals, such as
includes a comprehensive set of communication interfaces, 12-bit ADCs, DACs and comparators, which allow precise
including multiple USART, SPI, I12C and CAN interfaces, analogue measurements of the TIA stages output. In addition,
which enable a seamless connectivity to external devices and this controller includes a single-precision floating-point unit
systems. The main reason for choosing this microcontroller (FPU) capable of accelerating floating point operations,
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which are further on used in processing of the algorithm for
positioning.

C. MEASUREMENT CONCEPT

For simultaneous illumination and measurement of the
reflected light which is backscattered from the retroreflective
foil, a concept is applied, where the four transceiver units
of the LEDPOS hardware are either in illumination mode
(LED forward-biased) or in measurement mode (LED zero-
biased). This concept has already been introduced in [13]
and [79]. To provide sufficient illumination, three of the
four transceivers always are in illumination mode, while one
transceiver LED is in measurement mode for capturing the
reflected light. After measuring at one LED, the transceiver
modes are switched and the next LED is employed for
sensing. Thus, a total of four measurement intervals at each of
the four LEDs are required to obtain one dataset or one cycle
from all four transceiver units. This concept is illustrated in
Fig. 3b. The duration of sensing at one LED is set to 4 ms and
therefore, complete datasets or cycles containing the readings
from all four transceivers units are available every 16 ms.
The ADC acquires the data for a duration of 2 ms within
each 4 ms interval (see the PWM dead-time issue discussed
above) at a sample rate of 500 kS/s. Finally, the resulting
1000 samples for each measurement interval of 2 ms are
averaged, to obtain their arithmetic mean. Thus, a dataset
of one measurement cycle contains four means which are
related to the detected light intensities at each of the four
LEDs as an input to the position determination algorithm
(see Section V).

Finally, it should be pointed out that the proposed
measurement principle, together with the design of the
demonstrator setup eliminates crosstalk, as the light from
the three transmission LEDs cannot affect the fourth sensing
LED.

D. EXPERIMENTAL SETUP

The experimental setup for system evaluation consists of
the proposed LEDPOS demonstrator, a quadratic-shaped
retroreflective foil of 10 cm x 10 cm and a two-dimensional
linear axis for reproducible positioning of the foil at the floor
below the LEDPOS demonstrator luminaire. The luminaire
contains the hardware PCB in a 3D printed housing and
is mounted on the ceiling of a laboratory rail system at
a height of 2.7 m above the floor. The retroreflective foil
(3M™ Diamond Grade™ 4090) is attached to the two-
dimensional linear axis, which is fixed to the laboratory
floor, see Fig. 4 for an image of this setup. The accessible
experimental area underneath the luminaire is elaborated
by light simulations, showing that a size of 1.2 m x
1.2 m is illuminated at the floor. Note that the luminaire
is positioned in the center of this area and the emitted
illuminance was measured with a mobile spectrometer to
be 82 Ix. The result of the illuminance simulation for the
test area using the ReluxDesktop simulation software [80]
and the given hardware configuration is shown in Fig. 5.
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The two-dimensional position of the retroreflective foil is
controlled and monitored by a Python script and an USB
connection to a computer. For visualization, training and
testing purposes, the microcontroller unit of the luminaire
is also connected to a computer via USB. All together this
setup allows simultaneous control of the linear axis, while the
measurement data are transmitted to a computer for a given
position of the retroreflective foil.

V. TWO-DIMENSIONAL POSITIONING ALGORITHM

This section describes the two-dimensional position determi-
nation of the retroreflective foil by the LEDPOS demonstra-
tor. First, the data processing of the captured reflections and
the feature extraction are outlined. Then, in order to predict
the position, a comparison of different supervised learning
algorithms is performed to find an optimized solution in
terms of position accuracy and the available resources
of the chosen microcontroller. Finally, the training of the
model and its implementation on the microcontroller are
described.

A. PREPROCESSING AND FEATURE EXTRACTION

As outlined in Section IV-C, four mean values related to
the detected light intensities at each of the four LEDs are
provided as a dataset of one measurement cycle for position
determination. To further reduce the effects of peaks due to
disturbances and noise, a moving average algorithm is used
for preprocessing these four means. Thus, moving average
ADC values are then obtained for each LED after each
measurement cycle of 16 ms, which are used as the basis for
feature extraction and as the input to the machine learning
algorithms.

At first the goal for position determination is defined by
specifying a step size of 5 cm in x- and y-axis directions
for the possible positions of the retroreflective foil in the
total test area of 1.2 m x 1.2 m. This gives 625 possible
positions (output labels) for the foil at the floor which by far
exceeds the number of possibilities in our previous work [79].
Due to the fact, that the model of the supervised learning
algorithm is computed and stored on the microcontroller,
memory consumption, processing speed and other parameters
must be taken into account for feature selection in view of
this large number of output levels. However, the selection of
meaningful features is a crucial step to construct an accurate
supervised learning model. Consequently, several possible
features such as the ratio, the difference, the correlation and
other metrics between the four moving average ADC values
of the respective transceiver units, were analyzed and finally
four features selected. These selected features, which were
found to give the best performance, are basically rescaled
moving average values of the four transceiver measurements
by mapping the moving average values to a range from O to
65535 and represented by a 16-bit integer, with the minimum
and maximum sensor values automatically determined with
each measurement cycle.

VOLUME 12, 2024



C. Fragner et al.: LEDPOS: Indoor VLP Based on LED as Sensor and Machine Learning

IEEE Access

FIGURE 4. Image of the measurement setup in a laboratory room for evaluation of the LEDPOS
demonstrator. The ceiling mounted LEDPOS hardware and the retroreflective foil at the two-dimensional

linear stage are shown in the insets.
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FIGURE 5. Illuminance simulation of the experimental area at the floor
(axis dimensions are given in mm).

B. TRAINING DATASET GENERATION
The generation of a training dataset involves the collection,
transmission and processing of data, which are obtained from
the experimental setup. This training dataset is used then
for the creation of machine learning models with various
machine learning algorithms to finally select a suitable
algorithm for positioning.

The training dataset is generated by collecting the LED
sensor data as described in Section V-A and by labelling
these measurements with the known position data from the
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2D linear axis (see Section IV-D). Thus, the resulting training
dataset consists of 5 columns containing 4 features and 1 label
which is the actual two-dimensional position of the foil. For
the generation of the training data, as well as for further test
runs, the step size of 5 cmis used in the areaof 1.2 m x 1.2 m.
For each of the 625 possible positions of the retroreflective
foil, 100 readings are taken for each feature at 100 ms
intervals resulting in a training dataset with 62500 rows.
In total, 3 such datasets were created and feature values
averaged to cancel out inaccuracies as for example caused by
small position deviations of the 2D linear stage. Furthermore,
such training datasets were generated first in the absence of
ambient light, i.e. with the room lighting switched off and
the blinds closed (“‘without ambient light’’), and second, with
the fluorescent room lights in the laboratory switched on but
blinds still closed (“‘with ambient light™).

C. SELECTION OF A SUPERVISED LEARNING ALGORITHM
In general, implementations of the most common supervised
learning algorithms in microcontroller spaces are well tested,
see for example [45]. However, the computational limitations
of the selected microcontroller in terms of limited memory
and processing power need to be taken into account to ensure
an efficient and effective deployment of machine learning
models.

Typically, training-based VLP algorithms rely on machine-
learning techniques [81], [82] such as Support Vector
Machine (SVM) [83], Random Forest (RF) [84], K-Nearest
Neighbor (k-NN) [85] and Artificial Neural Network (ANN)
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TABLE 1. Comparision of different supervised learning algorithms according to selected performance metrics for two sizes n of gererated training

datasets.

MAE

RMSE

Algorithm < y < v CA Mean Error Distance n
k-Nearest Neighbours 0.581 0.156 15.225 3.549 | 99.82% 0.615 mm 62500
8.963 3.095 | 59.106 | 35.495 | 97.62% 10.303 mm 6250
Random Forest 0.488 0.208 13.311 4.427 | 99.91% 0.577 mm 62500
9.467 3.311 75.594 | 36.445 | 98.12% 10.629 mm 6250
Decision Tree 1.64 0.76 30.258 19.12 | 99.82% 2.039 mm 62500
18.682 | 11.987 | 91.788 | 82.546 | 98.15% 25.43 mm 6250
Neural Network 31.87 13.58 127.74 | 61.52 | 80.03% 38.12 mm 62500
63.13 25.37 179.63 88.26 | 64.23% 75.59 mm 6250

[86]. For the selection of a suitable algorithm in this work,
several promising algorithms are applied to the generated
training dataset and evaluated for their performance. Metrics
such as accuracy, precision, recall and Fl-score to quantify
the classification performance are commonly employed.
Further, cross-validation can also be used to estimate the
generalization ability of an algorithm across different data
subsets and, in addition, the predicted two-dimensional
coordinates can be compared with the actual coordinates to
quantify the position accuracy. Here, the following metrics
are used for comparison and evaluation of the selected
machine learning algorithms: the mean absolute error (MAE),
which is basically indicating the mean deviation on the x-
and the y-axis in mm, the root mean square error (RMSE),
which is the standard deviation of the residuals, the mean
error distance, which is the mean Euclidean distance in
mm between the predicted and the actual two-dimensional
position and the classification accuracy (CA), which is the
ratio of correct predictions to the total number of input
samples. The corresponding equations are expressed as
follows:
Doy i — xil

MAE = &=~ | (1)
n

RMSE —= M’ 2)
\ n

> \/(xyi - x)ﬁ)z + (y.Vi - yxz')2

Mean Error Distance = s

n
3

cA Number of correct predictions

n

“

The predicted value for the i position in the training
dataset is y; and x; refers to the actual value of this position.
The total amount of observations in the dataset is specified
by n. To test the algorithms on datasets with different size,
reduced training sets are created from the primary dataset
by considering only every 107 row, resulting in 10 mea-
surements per position and a total size of n = 6250 rows.
In connection with the size of the dataset the hyperparameters
of each supervised learning algorithm are tuned to produce
the best results in terms of the metrics evaluated in the
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comparison. For the evaluation of the algorithms the Python
packages scikit-learn (k-Nearest Neighbours, Random Forest
and Decision Tree) and TensorFlow (Neural Network) are
used.

Table 1 gives an overview and a comparison of the
results obtained with four investigated supervised learning
algorithms, k-NN, RF, ANN and Decision Tree. The above
described metrics are calculated for each algorithm and for
two sizes of the training dataset. The results show that k-
NN and RF give the best results in terms of accuracy and
error metrics. It can also be see that the size of the training
dataset has a significant influence on the performance
metrics. Considering the computational constraints for the
implementation on a microcontroller, the k-NN algorithm
offers some advantages over RF and is therefore selected for
the two-dimensional positioning algorithm in this work.

D. K-NEAREST NEIGHBORS ALGORITHM APPROACH

In general, the k-NN algorithm is well-suited for micro-
controller applications because it does not require extensive
training or model parameters. Instead, it relies on the stored
training dataset to make predictions. Furthermore, the k-
NN algorithm can be implemented on a microcontroller in
a straightforward manner, as it mainly involves distance
calculations and voting. These operations are associated
only with small computing efforts and can be performed
efficiently on microcontroller hardware. Another advantage
of k-NN is its ability to handle online learning, where new
data can be incrementally added to the existing training
dataset in the flash memory of the microcontroller. This
capability is valuable in scenarios where real-time learning
and adaptation are essential, e.g. in possible extensions for
future applications.

The k-NN algorithm is a lazy, non-parametric learning
algorithm that does not assume a specific data distribution.
In supervised learning, labelled training data is essential for
predicting the outcome of new samples. Once the model has
been constructed, the k-NN algorithm permanently stores the
training data in memory. When new feature data x become
available, the goal of the k-NN algorithm is to identify the
k nearest neighbors of x from the training data. This process
allows a classification by the label of the input data x. The
value of k represents a positive integer that determines the
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number of nearest neighbors to be considered. For example,
if k = 1, the input data x is assigned to the class of its single
nearest neighbor. In the model used in this work three nearest
neighbors are considered (k = 3).

For the implementation of the k-NN algorithm, the
Euclidean distance function is used to calculate the distance
between all data points. This distance is given by the
following formula:

(v — i) )
1

d(x,y) =

m
=1 i=

Here the features data vector is represented by x; and
vj,i specifies the respective labelled training data point. The
number of rows in the training dataset is N and m the quantity
of features per row. The weighted k-NN algorithm adopts a
strategy where the weights w(x, y) assigned to neighbors are
derived from the inverse of their distances to the query point,
which is expressed as follows:

w(x,y) = 6)

d(x,y)’

Consequently, the corresponding weights are subject to
variation as they are influenced by the relationship between
the neighbors and the feature set x [87]. This approach is
based on the understanding that closer neighbors have a
greater similarity, thus a higher weight value to the query
point and therefore also a higher influence on the prediction
process. By summing up weights, the algorithm takes into
account the relative importance of each neighbor, resulting
in improved accuracy and performance. For given neighbors
and weights the weighted k-NN rule assigns the feature
set x to the class ¢ that yields the highest sum of weights
among its representatives within the neighborhood #;, which
is expressed as follows:

k
x «— argmax |:Z Wn,-BC(ni):| , N
i=1

where

1 if neighborn; € ¢

Bc(ni) = [ ®)

0 otherwise

represents a binary indicator function for the class c,
in dependency of the nearest points in the training set [88].
By assigning weights to neighbors based on their distances,
the algorithm can adaptively adjust their influence on the final
prediction.

When implementing the weighted k-NN algorithm on a
microcontroller, it is crucial to optimize the computational
efficiency by considering the specific weighting function that
best suits the problem at hand.

E. IMPLEMENTATION OF THE 2D-POSITIONING
ALGORITHM

To deploy the positioning algorithm, the recorded training
dataset is transferred to the non-volatile memory area of
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the microcontroller. For this purpose, the comma-separated
dataset (CSV-file) is converted to corresponding C program-
ming language source (.c) and header (.h) files by a Python
script, where the data is stored in multi-dimensional arrays.
Due to the fact, that the complete dataset consisting of
n = 62500 rows and 5 columns would consume 625 kB
of memory (2 bytes per 16-bit unsigned integer entry), the
reduced dataset with n = 6250 rows is considered for the
implementation of the algorithm. The pseudocode of the
implemented algorithm is provided in Algorithm 1.

Algorithm 1 Proposed Two-Dimensional Positioning
Classification Algorithm

Input: features x[0...m — 1]
Output: Predicted position label
1 begin

2 fori =0tondo // n = number of rows
in dataset
3 for j = 0tomdo // m = number of
feature columns
4 Calculate euclidean distance d(x, y) between
incoming data and training dataset, see (5)
5 Calculate corresponding weights w(x, y),
see (6)
6 end
7 end
8 Sort results according calculated to weights
9 Calculate sum of weights for the k nearest
neighbours
10 Compute the category (position), see (7)
11 Return predicted label

12 end

Due to the size of the data set and the calculations required,
one iteration for position determination takes approximately
200 ms, which is many times longer than the iteration of
a measurement cycle (16 ms). This leads to the problem
that the classification result is not available in real time
after each measurement cycle. Therefore, the computation
of the introduced algorithm is continuously interrupted by
the measurement process to guarantee an up to date position
analysis for the retroreflective foil.

The accuracy, stability and time complexity of the
proposed algorithm heavily depend on the number of stored
data points in the training data set, together with the noise
that occurs in the data. As described, the size and the quality
in terms of noise of the training dataset is fixed due to
the amount of flash memory of the microcontroller and
the hardware itself. Thus, the remaining parameter for the
convergence of Algorithm 1 is the number of the nearest
neighbors k, which was found to give an optimum accuracy
when three nearest neighbors are considered.

VI. EVALUATION OF THE LEDPOS DEMONSTRATOR AND
RESULTS

A test scenario is applied in analogy to the generation of
training datasets to evaluate and validate the performance of
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FIGURE 6. Mean error distances in x-axis (a) and (d), mean error distances in y-axis (b) and (e) and total mean error distances (c) and (f) obtained from
test runs for system evaluation under two environmental conditions - without ambient light (top row) and with ambient light (bottom row). The axis

dimensions as well as the mean error distances are given in mm.

TABLE 2. Mean error distances in dependency of the experimental area in m and the ambient conditions.

Conditions Mean Absolute Error X-axis Mean Absolute Error Y-axis Mean Error Distance Total
12x1.2m | 0.8x0.8m | 04x04m | I.2x1.2m [ 0.8x0.8m | 04x04m | 1.2x1.2m | 0.8x0.8m | 0.4x0.4m

without

ambient 156.2 mm 19 mm 4.9 mm 339 mm 18.4 mm 1.1 mm 441.2 mm 30 mm 5 mm
light
with

ambient 130.5 mm 23.7 mm 16.3 mm 132 mm 12.3 mm 5.6 mm 213 mm 29 mm 18 mm
light

the developed LEDPOS demonstrator system with the imple-
mented two-dimensional positioning algorithm described in
the previous section. The main goal is to quantify the accuracy
for position determination of the retroreflective foil in the
specified area of the experimental setup. Thus, the two-
dimensional linear axis is used again to control x- and y-
positions of the retroreflective foil and the reflected light
was captured by the LEDPOS demonstrator and converted to
input features for the positioning algorithm at each position
of the foil. As before, the area for evaluationis 1.2 m x 1.2 m
and is segmented with a 5 cm grid in both directions x and
y. Test runs are performed by acquiring 50 predictions for
each of the 625 positions, which then are averaged for each
position and compared to the actual position obtained from
the 2D linear stage control.

The positioning accuracy of the proposed LEDPOS
demonstrator for 2D indoor positioning via BVLP is evalu-
ated for two controlled conditions. The first scenario is related

46456

to a dark environment, i.e. without any ambient light sources
such as the installed laboratory room lighting or daylight
entering through the windows when the blinds are open.
In this case, the only illumination in the test room comes from
the LEDs of the LEDPOS demonstrator itself (3 LEDs used
alternately for lighting, see Section IV-C). To evaluate the
performance of the LEDPOS system in combination with the
interference of additional light sources, in the second scenario
the fluorescent room lights in the laboratory are switched
on in addition to the LEDs of the demonstrator system. The
illuminance determined in the center of the experimental area
for these two situations is 82 Ix (“‘without ambient light’’) and
260 Ix (““‘with ambient light™”) respectively. The illuminance
distribution for the “without ambient light” scenario in the
total experimental area can be estimated from the simulation
result shown in Fig. 5. Please note for comparison that for
office workplaces an illuminance from 300 Ix to 500 Ix is
required.
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Fig. 6 visualizes the total mean error distance as well as the
mean error distances for the two directions of the linear stage
at every position in the test area. This summarizes the results
from the performed test runs of the system and the outcome
is compared for both tested ambient light conditions. The
results show that the position of the retroreflective foil can be
predicted with high accuracy in the center of the experimental
area (white spots). Without ambient light the total mean error
distance is in the range of 5 mm in the area of 0.4 m x
0.4 m and 30 mm in an area of approximately 0.8 m x 0.8 m.
These areas are also indicated in Fig. 5 and it can be seen
that high positioning accuracies match pretty well with areas
of high illuminance as determined from the light simulations.
Outside the center area, the accuracy of the two-dimensional
position classification decreases, which can be related to the
decreasing illuminance and the associated decrease in the
light intensity reflected from the retroreflective foil towards
the sensing LED of the LEDPOS demonstrator at the ceiling.
This decreased reflected light intensity in the outer regions
results in a low SNR and therefore also the signal variation
of the raw data and the associated variation of features at
different positions becomes too small for highly accurate
predictions by the positioning algorithm. This demonstrates
the limitations of the proposed LEDPOS system with its
implemented machine learning algorithm for on the edge
calculations on a microcontroller. Small sensor signals when
using the LED illumination for sensing in combination with
thermal variations and hence an increased noise between
several test runs prevent high accurate position determination
in areas with low illuminance. In comparison, when using
the same algorithm on a standard PC with much higher
computing power and memory compared to the employed
microcontroller, larger training datasets could be used for
example to cope with low prediction accuracies in areas with
low illuminance. However, it is pointed out that there is still
room for improvement by increasing the light intensity of
the LEDPOS demonstrator itself, as the illumination levels
applied are far below the requirements for workspaces (see
above).

Finally, Table 2 summarizes some numerical results for the
mean error distances evaluated for three different sizes of the
experimental area and for the two environmental conditions
with and without ambient light. Three conclusions are drawn
from these results:

1) Position determination is performed with high accuracy
in the range of several mm by the proposed LEDPOS
demonstrator with implemented on the edge calculation
as long as there is sufficient illumination in the target
area.

2) A decreasing positioning accuracy is related to vanish-
ing feature differences caused by small sensor signals.

3) A comparison of the two environmental conditions
shows that the additional ambient light on the one hand
improves the total mean error distance for the overall
experimental target area of 1.2 m x 1.2 m, but on the
other hand decreases the high position accuracy in the
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FIGURE 7. Simulated illuminance distribution (without ambient light) for
three areas in the experimental plane as a function of the distance
between the LEDPOS system and the experimental plane.

center area of 0.4 m x 0.4 m (for the area of 0.8 m x
0.8 m the total mean error distance is more or less the
same for both conditions).

The performance of the LEDPOS demonstrator is further
investigated for varying distances between the system and
the retroreflective foil which refers to the target plane of
positioning. For this purpose, the illuminance of the LEDPOS
demonstrator is simulated for several planes at different
distances from the system, similar to Fig. 5 which refers to
a distance of 2.7 m. Furthermore, the resulting illuminance
is examined separately in three areas of the experimental
plane (see also Fig. 5) according to the analysis of the mean
error distances in Table 2. The results are summarized in
Fig. 7, which shows the effect of varying distances between
the LEDPOS luminaire and the respective experimental
plane under consideration. It can be seen that reducing the
distance from the ceiling height of 2.7 m to smaller distances
significantly increases the illuminance in the inner area of
the experimental plane and moderately in the intermediate
area. In contrast, the increase in illuminance in the outer
area was found to be negligible under the given conditions
of the setup. With regard to the mean error distances of the
positioning algorithm, it is therefore to be expected that the
positioning accuracy will neither improve for the outer area,
as the illumination level there is more or less unchanged at
a low level, nor for the inner area, where the positioning
accuracy is already high and is limited by other restrictions of
the system. Only for the intermediate area of the experimental
plane it is to be expected that the positioning accuracy will
increase with smaller distances between the retroreflective
foil and the LEDPOS system.

VII. DISCUSSION AND FUTURE WORK

In general, the proposed LEDPOS demonstrator successfully
exploits the capability of LEDs used as sensors, allowing
simultaneous measurements of reflected light while provid-
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ing flicker-free illumination with standard white-light LEDs.
Based on this and the method of BVLP, a device-free and
efficient two-dimensional positioning in indoor environments
is demonstrated. Signal processing algorithms and machine
learning techniques are implemented on a microcontroller of
the demonstrator resulting in a self-contained, reliable system
with a high positioning accuracy. The mean error distance
in a real world arrangement is demonstrated to be as low as
5 mm as long as there is sufficient illuminance in the target
area.

So far, a number of challenges regarding practical deploy-
ment have not been addressed, such as permanently changing
light conditions, disturbing reflections and interferences,
light blockages, or tilted conditions of the retroreflective
foil with moving objects. However, it is assumed that many
of these issues can only be solved for a very specific
environment, whereas the aim of the present work is to
demonstrate a general approach for indoor positioning by
VLP. To sketch the envisaged solution in more detail, one
can think of automated guided vehicles in logistics, for
instance, where it does not represent a restriction that a
retroreflective foils is attached to this vehicle in a fixed
horizontal orientation and a fixed height. In contrast to indoor
positioning by geometry based approaches like RSS or AoA,
where certainly more than one lighting point is needed,
the proposed LEDPOS system can already realize indoor
positioning within a certain area covered by the illumination
field of one system (““VLP unit cell”). It is expected that
the combination of a passive retroreflective foil on the object
of interest with only one ceiling mounted LEDPOS system
can be implemented with low deployment costs. Another
advantage of the proposed approach is that the field of view
for the illumination and for the sensing functionality in such
a “VLP unit cell” inherently matches for all designs of
the illumination optics, as the LEDs are employed for both
sensing and illumination. Contrary, it might be difficult to
realize this by independent components in a miniaturized
manner (e.g. separate photodiode for sensing in addition to
LED illumination).

Concerning scalability, it is even possible to imagine
using the current version of the LEDPOS demonstrator for
larger indoor spaces than were investigated in the current
experimental setup simply by using additional LEDPOS
systems. However, optimizing the system and the connection
of several luminaires for positioning are aspects that need
to be considered in future work. Furthermore, the system’s
sensitivity to ambient light conditions, as indicated by the
comparison of the two ambient lighting situations studied,
remains one of the major challenges for future investigations.
The proposed approach of using a retroreflective foil, which
in principle reflects the incident light back in the same
direction, reduces the effects of disturbances from unwanted
reflections or changes in ambient light, but of course
cannot eliminate all influences. Fluctuations in the ambient
light levels can cause variations in the measured signals
and, thus potentially affect the position accuracy. Future
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studies need to address this issue and explore techniques to
mitigate the impact of ambient light variations on the system
performance. Nevertheless, the results obtained demonstrate
that our approach can be combined with other ambient
light sources and show that it is possible to retrofit an
LED-sensing luminaire to monitor a specific area of a
room without having to adapt or modify the existing room
lighting.

The position accuracy achieved in this work is consid-
ered to enable several practical implementations of indoor
positioning applications. The LEDPOS system, used in
environmental conditions with constant illumination, can
improve or facilitate functionalities and processes. For
example, in industrial environments, the system is able to
estimate and track the two-dimensional position of objects
such as autonomous robots to which a retroreflective foil can
be easily attached. Other applications are related to detect
trespassing of humans or robots in defined safety zones
and in general, indoor positioning is expected to become of
increasing importance for areas such as warehouse automa-
tion, collaborative robotics, or any industrial processes, where
precise localization is crucial for efficient and safe operations.

VIIl. CONCLUSION

The hardware design, the positioning algorithm, a strategy
for implementation and the experimental evaluation in a real-
world setting are presented for the LEDPOS demonstrator,
which uses LEDs as sensors and an on-the-edge algorithm
to implement an indoor positioning system based on BVLP.
It is demonstrated that the two-dimensional position of
a retroreflective foil at the floor can be calculated from
reflections backscattered to the ceiling mounted device with
an average distance error being as low as 5 mm with respect to
the actual position, while providing unimpaired illumination
with standard white-light LEDs.

Some potential industrial applications are outlined, where
high precision indoor positioning can leverage the efficiency
and facilitate new functionalities and processes. As the
proposed demonstrator can be combined with the existing
lighting infrastructure and the positioning algorithm is based
on non-parametric machine learning, the system can be used
independently and implemented with low installation effort.
In addition, the use of LEDs as light sources and sensors
enables very compact luminaire sizes, since no additional
photosensitive devices have to be integrated, thus retrofitting
existing luminaires can be achieved in a straightforward
manner.

Future work needs to address the challenges consid-
ered with varying ambient light conditions and strategies
to combine several systems for a deployment in large
areas.
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