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ABSTRACT In this study, machine learning algorithms in IoT IDS (Internet of Things Intrusion Detection
System) systems are comprehensively compared from various aspects. Accuracy, precision, and training
time are evaluated. The effects of data preprocessing techniques including normalization, outlier removal,
standardization, and regularization on the datasets are examined. Furthermore, the impact of dataset balanc-
ing, considering both balanced and imbalanced scenarios, on machine learning performance is investigated.
The contribution of feature selection on the four different datasets is also analyzed. Based on findings, it is
observed that certain preprocessing operations provide significant advantages in various ML algorithms,
whereas others have very low impact, and their performance varies depending on the dataset and feature
selection. The aim of this study is to facilitate the complexity and lengthiness of machine learning processes
and algorithm selection, providing insights for future academic research. By addressing this objective,
an effort is made to shed light on simplifying the utilization of machine learning algorithms. The challenges
arising from the complexity of machine learning processes in IoT IDS systems are addressed by this study.
This contribution can greatly benefit researchers in their academic endeavors. This multifaceted approach
proves beneficial when comparing the methods under consideration, fostering a scientific discourse on their
efficacy within contexts.

INDEX TERMS IoT attack detection, IoT IDS, ML algorithm comparison, machine learning preprocessing,
machine learning in IoT IDS.

I. INTRODUCTION
In today’s world, IoT (Internet of Things) is considered a
technology of great importance. IoT enables different devices
connected to the internet to communicate with each other and
exchange data. This technology provides numerous benefits,
such as simplifying our lives, optimizing business processes,
and increasing environmental sustainability. There are vari-
ous fields where IoT can be used, including Smart Home and
City Systems, Industrial Applications, Healthcare, Logistics,
Agriculture, and Transportation [1], [2]. From a personal
usage perspective, security is highly important in IoT. IoT
devices have the ability to access personal and sensitive data
and can pose security risks as they are connected to net-
works [3], [4]. Many IoT devices may have low-level security
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measures and can be vulnerable to malicious attacks [5].
Therefore, special attention must be given to the security
of IoT devices. Similarly, when it comes to industrial pur-
poses, it is evident that the security of IoT is of utmost
importance. The confidentiality of the data transmitted in
industrial IoT applications can be crucial as it may include
sensitive information obtained from sensors [6], [7]. This data
may include critical information related to product design in
the production process or other critical organizational data
[8]. In cases where data security is not ensured, information
can fall into the hands of unauthorized threat actors, lead-
ing to the exposure of trade secrets and unfair competition
situations. In addition to data security, destructive attacks
by threat actors can disrupt business continuity, damage the
brand value of an organization, and leave customers in dis-
tress [9], [10], [11]. The development and widespread use
of IoT has provided attackers with several advantages that
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were not available before [12], [13]. IoT presents a wide
attack surface due to the multitude of devices connected to
the internet. Each IoT device can be a potential vulnerability
or weak point. Attackers can target many devices simulta-
neously or turn them into a botnet for attacks [14]. This
enables attackers to launch larger-scale and more effective
attacks. The limitations in the capacity of IoT devices create
increased security vulnerabilities, making it easier for attack-
ers to target and carry out attacks. Similarly, IoT devices
can collect large amounts of data about users [15]. This data
may include personal, financial, or health-related informa-
tion. Attackers can access this data and engage in activities
such as identity theft, fraud, or other malicious activities.
The ability of IoT devices to communicate with each other
and other networks enables new attack vectors [16]. These
risks highlight the importance of IoT application security,
which has the potential to affect various segments of society.
As seen, IoT security encompasses many dimensions that
continue to expand every day, and traditional methods may be
insufficient to ensure security [17]. Machine Learning (ML)
can detect anomalies by learning normal operating patterns.
It can analyze normal behaviors in IoT systems and detect
abnormal activities that do not conform to the established
patterns [17], [18]. This can also be effective against new
and unknown attacks [20]. Machine learning models can
learn over time, which means that even if attackers change
their attack methods or develop new tactics, security systems
can update themselves [21]. This feature is important for
detecting current attacks and enhancing defense capabilities.
In conclusion, machine learning can provide a more effective
approach to IoT security compared to traditional methods.
The capabilities of anomaly detection, real-time monitoring,
scalability, learning, and analysis of complex relationships
offer significant advantages for enhancing the security level
of IoT networks.

IoT systems generally generate a large amount of complex
data. This data can be obtained from various sensors, devices,
and other sources. The complexity of the data structure
means that the algorithm needs to effectively analyze this
data and produce results with high accuracy. Therefore, it is
important to choose an algorithm that can process IoT data
in the best possible way and handle unstructured data. IoT
applications are typically large-scale and distributed systems.
Therefore, the right machine learning algorithm should be
able to process large amounts of data and provide scalability.
Otherwise, the algorithm may face performance problems
as the system expands. Thus, memory consumption, proces-
sor power consumption, and energy consumption should be
considered in model selection. In machine learning, training
time is also an important factor. Training time refers to the
time spent on training the model [22]. Faster training time
allows the model to be trained more quickly and results to
be produced faster. Particularly when working with large
datasets or complex models, fast training time is important
for performance and efficiency. Training time can affect the
amount and quality of data used to train a machine learning

model. If the training time is too long, it may be difficult to use
more data or access higher-quality data. This can impact the
overall performance of the model. Optimizing training time
is important for achieving better results within a limited time
frame. It helps to make more efficient use of resources and
reduce costs. In conclusion, the selection of the right machine
learning algorithm in the context of IoT should consider
factors such as the complexity of data structure, real-time
processing requirements, data security, scalability, and fault
tolerance.

In IoT networks, just like in traditional networks, Intrusion
Detection Systems (IDS) are effectively used for detecting
attacks. IDS is a security measure used to detect and
respond to attacks on a network or system. By monitoring
network traffic or system logs, IDS attempts to identify
known attack signatures or abnormal activities. Machine
learning-supported IDS systems offer various advantages
over traditional IDSs [23], [24]. The detection of abnormal
behaviors, extraction of meaningful relationships from large
and complex data, and their ability to learn all indicate the
advantages of machine learning-supported IDS systems in
enhancing IoT security.

One other crucial aspect of IoT security is the accurate
classification of attacks. Attacks on each IoT system can
vary significantly. Therefore, organizations may require dif-
ferent approaches, customized or hybrid machine learning
models, to prevent the attacks they are most vulnerable to.
However, determining which IoT attacks can be more accu-
rately detected using specific machine learning algorithms
or combinations of algorithms is a significant challenge
[25], [26]. Knowing which machine learning approach is
more successful in detecting specific IoT attacks will enhance
the effectiveness of hybrid solutions employing multiple
models.

In this study, comprehensive comparisons were made to
select the most suitable machine learning model for IoT IDS,
considering the mentioned factors. The contribution of the
article can be summarized as follows:

• A comparison has been made among the most used
machine learning classifiers based on various perfor-
mance metrics in IoT datasets.

• The binary classification performance of ML algorithms
has been examined.

• The performance of ML classifiers has been evaluated
in terms of training time, accuracy, precision, recall, and
f1-score.

• The impact of scaling methods on accuracy has been
investigated.

• The impact of feature selection on performance has been
studied.

• The performance of algorithms in balanced and imbal-
anced datasets has been investigated, considering accu-
racy and f1-score metrics.

• Investigated using four different IoT datasets to deter-
mine which attacks could be detected with higher
accuracy and f1-score by which classifier.
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• Identifying which classifiers are more successful in
detecting specific attack types, and consequently, deter-
mining which combination of classifiers will yield
higher accuracy in preventing a particular IoT attack.

The remaining parts of this article are organized as follows.
The second section includes works related to machine learn-
ing supported by IDSs. The third section examines machine
learning classifiers, performance metrics, and IoT datasets.
The fourth section presents the performance comparisons,
which are the essence of the study. In the last part of the study,
the obtained data is evaluated, and attention is drawn to the
future research areas in this field.

II. RELATED WORKS
In recent years, technological advancements have not only
made human life easier but have also brought forth numerous
challenges in terms of information security. The expanding
computer networks, increasing number of malicious users,
and evolving security vulnerabilities have made them a target
for attacks. The working algorithms of systems developed
for attack detection and prevention have become an impor-
tant field of study to minimize vulnerabilities in computer
networks. The long response times of traditional intrusion
detection systems and the failure of signature-based sys-
tems to detect current attacks have increased the significance
of machine learning and deep learning approaches. The
comparison of these algorithms, developed for identifying,
classifying, and preventing security risks, using different met-
rics has led to an increasing number of recommendations for
intrusion detection systems.

In the study [27], researchers aimed to develop an IDS
using ensemble learning methods. They made recommen-
dations regarding Denial of Service (DoS) attacks based on
analyses conducted using CIDDS-001, UNSW-NB15, and
NSL-KDD datasets. In another study [28], researchers per-
formed an evaluation using the MQTT-IoT-IDS2020 dataset,
specifically targeting the deficiencies found in older datasets
and their associated attack classes. The study involved a
comparison of several classification algorithms, including
k-Nearest Neighbor (k-NN), Support Vector Machine
(SVM), Naive Bayes (NB), Random Forest (RF), Deci-
sion Tree (DT), and Stochastic Gradient Descent (SGD).
Reference [29] assessed existing Network Intrusion Detec-
tion System (NIDS) tools and datasets, contributing to
identifying IoT challenges and proposing solutions. The
widely used datasets include KDDCUP99 and NSL-KDD.
Reference [30] presented a comparative analysis of selected
Intelligent IDS using Microsoft Azure ML Studio (AML-S)
platform and datasets containing malicious and benign IoT
network traffic. Reference [31] focusing on the analysis of
recently published UNSW-NB15, Bot-IoT, and CSE-CIC-
IDS2018 datasets, this study emphasized the contribution
of data using machine learning algorithms such as Random
Forest (RF), Support Vector Machines, Keras Deep Learning
models, and XGBoost. Reference [32] established a com-
parison point for various classification models in different

datasets. It showed that some fast-converging algorithms
had lower performance, whereas algorithms requiring longer
convergence demonstrated more successful outcomes.

In [33], researchers conducted a comparative analysis of
various ML models for intrusion detection using the UNSW-
NB15 dataset. Integrated MLmodels achieved 99% accuracy
in both binary and multi-class classifiers. In [34], researchers
compared k-Means-based, decision tree-based, and hybrid
IDS models. Despite achieving a lower detection rate, the
Hybrid IDS proved to be more accurate compared to the other
two approaches.

Hidayat et al. proposed a hybrid feature selection tech-
nique using a random forest model and Pearson correlation
coefficient based on the TON_IoT dataset [35]. The dataset
underwent training utilizing Adaboost, decision tree, multi-
layer perceptron, and Long Short-Term Memory (LSTM)
networks for multi-layer detection. The research findings
indicated that machine learning techniques exhibited superior
efficacy in attack detection, as evidenced by enhancements in
accuracy, precision, and recall metrics.

Ahmad et al. found that intrusion detection systems need to
be trained beyond limited datasets and application scopes by
using different datasets [20]. They proposed a hybrid model
by sequentially using autoencoders. They expanded TCN
architectures to use causal points in a layered manner. Their
analysis using MLP, CNN, and LSTM showed that CNN had
a higher accuracy rate compared to the others.

Zhang et al. conducted a study [36] where they analyzed
research from the past decade. They worked with NSL-KDD
and KDD CUP99 datasets, exploring community learning,
machine learning, and deep learning techniques. Compar-
ison results, based on metrics like Area Under the Curve
(AUC), F1 score, and accuracy, favored community learning
algorithms. Additionally, the study delved into the impact of
training iteration numbers on deep learning algorithms.

Gamage and Samarabandu evaluated advanced deep
learning models such as feed-forward neural networks,
autoencoders, deep belief networks, and long short-term
memory networks using NSL-KDD, CIC-IDS2017, and CIC-
IDS2018 up-to-date datasets [37]. The study unveiled that
deep feed-forward neural networks demonstrated high accu-
racy values across all four datasets, considering accuracy,
F1-score, training, and inference time. Additionally, the
researchers noted that two widely used semi-supervised
learning models, autoencoders, and deep belief networks,
failed to surpass supervised feed-forward neural networks.

In study [38],SVM, Naïve Bayes, decision trees, and
random forests were employed to detect anomalies in net-
work traffic. The researchers evaluated the UNSW-NB15
dataset in terms of detection accuracy, construction time,
and prediction time. Their findings concluded that the
RF algorithm demonstrated high accuracy in classifying
attacks.

In [39], researchers focused on utilizing deep learning
algorithms to develop an intrusion detection system.They
concluded that deep learning surpassed machine learning due
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to its capability to effectively handle large datasets, detect
zero-day attacks, and incorporate self-learning capabilities.

III. BACKGROUND
Machine learning classification is a specific field that
focuses on the classification or tagging of data based on
its attributes [40]. The objective is to develop algorithms
or models capable of automatically assigning new, unseen
data points to predefined categories. Essentially, classifica-
tion algorithms learn from labeled training data to make
predictions or decisions about the class labels of unknown
instances. Datasets play a crucial role in machine learning
and data analysis. They are vital resources that enable the
training, evaluation, and validation of machine learning mod-
els, facilitate feature extraction and analysis, support fairness
assessment, and promote research reproducibility. Datasets
form the backbone of data-driven approaches and contribute
to the advancement of machine learning and data science.

In this section, classifier algorithms used in machine
learning, performance metrics, and IoT datasets used in the
study will be briefly explained.

A. MACHINE LEARNING CLASSIFIERS
There are numerous machine learning classifiers employed
in Machine Learning-supported IDS design. In this section,
commonly used classifiers, which are also evaluated in this
study, are briefly discussed.

1) NAÏVE BAYES GAUSSIAN (NBG)
Naïve Bayes Gaussian (NBG) is a simple probability-based
classification algorithm [40], [41], [42]. This algorithm relies
on the assumption of independence among features in the
dataset. Therefore, the training and prediction of the model
can be performed quickly. Speed can be a crucial factor in
detecting network attacks, and NBG can fulfill this require-
ment. Network attacks often exhibit diverse features, and
the independence assumption can be beneficial in detecting
such attacks. This allows the algorithm to capture specific
features of attacks and reflect patterns that define an attack.
Since network attacks often need to be classified against
normal traffic, NBG can be an effective choice for binary
classification tasks. However, it has disadvantages such as not
considering the true dependencies among features and being
tightly bound to the independence assumption.

2) K-NEAREST NEIGHBOR (KNN)
K-Nearest Neighbors is a simple and popular classification
algorithm that offers a proximity-based classification
approach [43], [44]. When confronted with a new network
traffic sample, the KNN algorithm identifies its nearest neigh-
bors (with a specific value of K) and classifies it based on
the majority class. This way, it can detect new attacks that
exhibit similarity to known attack patterns. KNN can be used
with various types of data structures in intrusion detection.
For example, network traffic data can be numerical, categor-
ical, or have complex structures. KNN can work with these

different data structures and assess similarity by calculating
the distance measure for each data point. KNN is suitable for
real-time intrusion detection [45], [46]. During the training
phase, the algorithm retains the learning data and quickly
utilizes the necessary data points for classification. This
makes it ideal for swiftly detecting instantaneous attacks.
However, it can be computationally expensive depending on
the size of the dataset [47]. Distance calculations must be
performed for all training data points for each new sample.
Hence, the computational time can significantly increase for
large datasets or high-dimensional data. Additionally, it may
produce biased results in the presence of class imbalances.
For instance, if the majority class vastly outweighs the others,
the KNN model may favor the majority class and produce
incorrect classifications [48]. To address class imbalances,
data sampling techniques or class weighting methods can
be employed to achieve a proper balance between classes.
Moreover, if a particular feature contains much larger values
compared to others, it can disproportionately influence the
KNN algorithm and diminish the contributions of other
features. Therefore, it is important to normalize the features
using techniques like Min-Max scaling or Z-Score normal-
ization to bring the features to the same scale.

3) ADAPTIVE BOOSTING (ADABOOST)
Adaptive Boosting is an ensemble method that combines
weak classifiers to create a strong classifier [49]. It achieves
high accuracy and classification performance [50]. In IDS
systems, accurate classification is crucial, and Adaboost can
be effective in achieving this goal. Adaboost can be used
to evaluate feature importance. During the training of each
weak classifier, the importance levels of features can be
determined [51]. This algorithm helps identify which features
are most effective in detecting attacks and eliminating unnec-
essary ones. Adaboost learns weak classifiers gradually by
updating their weights, boosting the importance of misclas-
sified examples while reducing that of correctly classified
ones. This adaptive nature enables Adaboost to excel with
challenging examples. However, it may face performance
issues with imbalanced datasets. In instances of significant
class imbalance (e.g., when the attack class is much smaller),
Adaboost may misclassify the majority class. In such cases,
careful data sampling or weight adjustment may be necessary.
Additionally, if the training data contains noise or misleading
information, the Adaboost model can learn these patterns,
potentially impairing its generalization performance [52].
To mitigate this risk, appropriate hyperparameter tuning and
limiting the complexity of weak classifiers [53], such as
decision trees, are necessary to control overfitting.

4) EXTREME GRADIENT BOOST (XGBOOST)
XGBoost, an algorithm based on gradient boosting, is specif-
ically designed to achieve high performance and prediction
accuracy in classification and regression problems [54].
It constructs a model by combining multiple decision trees
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and updates them step by step to minimize predefined errors.
The incremental updates and error reduction of the trees
enable XGBoost is used to obtain more precise and reli-
able results in attack detection due to its fast and scalable
algorithm. It performs well on large datasets due to its par-
allel computing capabilities. In IoT environments, where a
vast amount of data flows from numerous devices, XGBoost
can swiftly process this data, expediting the detection of
attacks. XGBoost offers flexibility through the adjustment
of various hyperparameters [55] allowing the algorithm to
be fine-tuned for attack detection and tailored to different
scenarios. By incorporating regularization techniques and
controlling tree size, XGBoost mitigates the risk of overfit-
ting, thereby producing more dependable results in IoT attack
detection.

5) SUPPORT VECTOR CLASSIFIER (SVC)
Support Vector Classifier is a classification algorithm com-
monly used in problems like intrusion detection. SVC
creates a hyperplane to effectively classify data points and
performs classification using the support vectors on this
hyperplane [28]. Support Vector Machine is proficient in
handling non-linear datasets, which is crucial in intrusion
detection [56] where data frequently exhibits intricate struc-
tures and non-linear relationships [57]. It can adapt to such
data and classify them by utilizing kernel functions. SVC
can be resistant to outliers during the classification process.
Outliers can lead to misleading results in intrusion detection.
However, the support vectors and the classification process
of SVC can minimize the impact of these outliers. SVC has
a regularization parameter to improve the generalization per-
formance of the classification model. This parameter reduces
the risk of overfitting and allows the model to better fit the
overall dataset. In intrusion detection, the ability of the model
to correctly detect new attacks is important, and good gener-
alization performance provides an advantage in this aspect.
SVC can be computationally expensive for high-dimensional
features, particularly when dealing with non-linear data and
complex kernel functions [58]. This can increase the compu-
tation time, leading to performance problems in large-scale
intrusion detection systems.

6) LOGISTIC REGRESSION (LR)
Logistic regression is a commonly used machine learn-
ing algorithm for binary classification problems [59], [60].
Logistic regression offers a simple and interpretable model.
Understanding the key features describing attacks in an IoT
environment is crucial for effective detection. Logistic regres-
sion provides coefficients, aiding in the interpretation of
feature impact and contribution to the model. This facilitates
attack analysis and offers interpretable results to designers.
Additionally, logistic regression is known for its speed in
both training and prediction times. Given the necessity for
real-time attack detection in IoT environments, a fast model is
essential. Logistic regression meets this requirement by being

trained quickly and capable of swiftly detecting real-time
attacks. Moreover, logistic regression is versatile, capable
of handling both numerical and categorical features. Since
IoT datasets often comprise various feature types, logistic
regression’s ability to work with diverse data types makes it
suitable for such datasets. As a linear classification model,
logistic regression has limitations in capturing nonlinear rela-
tionships. Consequently, it may not fully capture complex
attack patterns in an IoT environment.

B. PERFORMANCE METRICS
Performance metrics in machine learning are used to evaluate
how well a model or algorithm performs and how effective
it is. Performance metrics quantitatively assess various per-
formance measures of a model, such as accuracy, precision,
recall, f1-score and training time [61], [62], [63]. The selec-
tion of these metrics reflects our goal to evaluate algorithms’
performance and optimize decision-making processes in
security sensitive IoT environments, considering both accu-
racy and speed. These metrics are utilized for comparing dif-
ferent models or algorithms. To make the appropriate model
selection among them, evaluating which model better aligns
with the desired performance metrics is crucial. For instance,
in classification problems, metrics such as accuracy rate or
precision are pivotal for assessing the model’s ability to
classify correctly.Machine learningmodels are typically con-
figured with hyperparameters, which can impact their perfor-
mance. Performance metrics assist in evaluating the results of
different hyperparameter adjustments, aiding in the selection
of the correct parameters to achieve optimal performance.
These metrics are also instrumental in refining a developed
model. Likewise, they are utilized to comprehend the nature
and characteristics of a dataset. Various performance metrics
can assess features of the dataset, such as imbalance, error
distribution, or class separability. This information is crucial
for correctly utilizing the dataset and can significantly impact
the success of the model. Confusion matrix is a tool used to
evaluate the classification performance of amodel in machine
learning. It demonstrates the relationship between the true
classes and the predicted classes by the model. The confusion
matrix consists of four key concepts as shown in Fig.1.

FIGURE 1. Confusion matrix is a tool used to evaluate classification
performance.

True Positive (TP), represents the number of examples
that the model correctly predicts as positive. These are the
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examples that belong to the positive class and are correctly
classified as such by the model. True Negative (TN), rep-
resents the number of examples that the model correctly
predicts as negative. False Positive (FP), represents the
number of examples that the model incorrectly predicts as
positive. FalseNegative (FN), represents the number of exam-
ples that the model incorrectly predicts as negative. Various
evaluation metrics are used based on these four concepts.
Accuracy: Shows the ratio of correctly classified examples

by the model to the total number of examples Eq. (1).

accurcay =
TP+ TN

TP+ TN + FP+ FN
(1)

Precision: Indicates the ratio of correctly predicted positive
examples by the model to the total number of positive predic-
tions made by the model Eq.(2).

precision =
TP

TP+ FP
(2)

Recall or Sensitivity: Indicates the rate of correctly detected
positive examples Eq. (3).

recall =
TP

TP+ FN
(3)

F1-Score: Represents the harmonic mean of precision and
recall, considering both precision and recall values Eq. (4).

F1 − Score =
2 ∗ precision ∗ recall
precision+ recall

(4)

Receiver Operating Characteristic: The Receiver Operat-
ing Characteristic (ROC) curve is a graphical representation
of the model’s performance in binary classification prob-
lems. It plots the true positive rate (sensitivity) against the
false positive rate (1 - specificity) at various classification
thresholds [64]. The curve illustrates the trade-off between
sensitivity and specificity for different threshold values.
A model with a higher ROC curve that is closer to the top-left
corner indicates better performance. The Area Under Curve
(AUC) is the area under the ROC curve and provides a single
scalar value that represents the overall performance of the
model [65]. It ranges between 0 and 1, where a value of
1 represents a perfect classifier, whereas a value of 0.5 rep-
resents a random classifier. A higher AUC indicates better
discrimination power and overall model performance.
Calibration Plot: Calibration in the context of machine

learning refers to the alignment between the predicted proba-
bilities from a classification model and the true probabilities
of the predicted outcomes, ensuring that the model’s confi-
dence estimates are accurate [66], [67], [68] Calibration plot
also known as reliability curve.

In a perfectly calibrated model, the reliability curve would
resemble a 45-degree diagonal line from the bottom left to
the top right, as illustrated in Fig. 2. This indicates that the
predicted probabilities align precisely with the true proba-
bilities. When a reliability curve closely follows this line,
it suggests that the model is well-calibrated. However, if the
reliability curve deviates above the perfect calibration line,

FIGURE 2. Calibration plot ensures the model’s confidence.

it signifies that the model’s predicted probabilities are too
high. Conversely, if the curve falls below the line, it indicates
that the predicted probabilities are too low. The choice of
evaluation metrics depends on the specific problem and the
desired performance characteristics. ROC curve and AUC are
suitable for binary classification tasks, but precision, recall,
F1 score, or specific domain-related metrics may be more
appropriate in different contexts.

C. DATASETS
In this study, four datasets containing IoT data have been
used for the evaluation of machine learning classifiers. These
inherently imbalanced datasets comprise records, feature
counts, and the percentage distribution of attacks, as depicted
in Table 1.

TABLE 1. Datasets used in the study.

UNSW_NB15 [79], [80], [81], [82], [83]; The UNSW-NB
15 dataset, which has been extensively studied academically,
was created by the IXIA PerfectStorm tool at the Australian
Cyber Security Center’s (ACCS) Cyber Range Lab. The
dataset comprises normal traffic and nine attack types, includ-
ing Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,
Reconnaissance, Shellcode, andWorms. The dataset contains
2,540,044 records and 49 features. In the study, a Testing
Dataset consisting of 82332 records was used.

IoT-ID20 [74]: IoT Network Intrusion Dataset consists of
625783 records and 86 features. The dataset includes four
attack classes consisting of Mirai, Scan, DoS, and MITM
ARP Spoofing, as well as one Normal class.

The distribution of the dataset is provided in Table 3.
The IoTID-20 dataset is also not balanced; Mirai attacks
comprise more than 66% of the dataset. CICIDS2017 [75];
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TABLE 2. Distribution of classes in the DS1 dataset.

TABLE 3. Distribution of classes in the DS2 dataset.

The CIC2017 dataset provided by the Canadian Institute for
Cybersecurity contains 80 features. The dataset consists of
2,830,743 records with 14 attack classes and one Benign
class [76]. The distribution of these traffic types is provided
in Table 4.

TABLE 4. Distribution of classes in the DS3 dataset.

Infiltration, Web Attack - SQL Injection, and Heartbleed
have been removed from the dataset due to their very low
frequencies. Additionally, the database has been reduced
based on the frequency percentages of the traffic. In this
study, a total of 283,076 records have been selected from
the dataset based on the percentage distribution of traffic.
CICIoT2023 [77]; The dataset comprises 46,686,579 records
and 47 features. Within the dataset, 33 distinct attack traffic
types have been consolidated into 7 categories, alongside
a Benign traffic class. By scaling according to frequencies,
466,868 records have been selected from this dataset, creating
a training dataset. The distribution of traffic in the dataset is
presented in Table 5.

TABLE 5. Distribution of classes in the DS4 dataset.

In the study, alongside imbalanced datasets, balanced train-
ing datasets were created where attack and benign trafficwere
equally distributed. Evaluations on these balanced datasets
have also been taken into consideration.

IV. PERFORMANCE COMPARISONS
During the creation of a machine learning model, various
pre-processing steps are undertaken. These processes signifi-
cantly impact the performance of a well-constructed learning
model. However, comprehending the extent of their influence
on accuracy, despite being time-consuming, is crucial.

A. METHODOLOGY
In this study, the effects of Scaling, Normalization, Outlier
Removal, Balancing, Feature Selection, and Regularization
processes have been analyzed across various classifiers and
different datasets. The impacts ofmachine learning classifiers
on different datasets have been examined, and accuracy,
precision, recall, and time values have been presented in
tables. The performance metrics of each classifier on four
different datasets were averaged, and the contribution of
each process to the classifier’s performance was investigated.
Furthermore, the contribution of each process to the classi-
fiers was calculated on an average basis, and its effectiveness
on the four different datasets was evaluated. Both binary
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classification and multi-class classification have been con-
sidered separately in the evaluations.

In the study, the performance of ML classifiers was eval-
uated by conducting assessments on both balanced and
imbalanced datasets. This allowed for the measurement of the
classifiers’ effectiveness under different conditions.

B. HARDWARE AND ENVIRONMENT
In this study, hardware with 128 GB RAM, Intel(R) Xeon
CPU 3.00 GHz, NVIDIA GeForce RTX 3090 features were
used. The model was trained and evaluated with Python 3.8
and common libraries used for machine learning.

C. ATTACK DETECTION PERFORMANCE
In Machine Learning, binary classification can be employed
to assess whether a traffic in IoT datasets constitutes an attack
or not. In this section, the impact of pre-processing steps on
the accuracy of identifying whether traffic in various datasets
constitutes an attack has been examined. The results obtained
without any preprocessing on balanced datasets are shown in
Table 6. The Accuracy, Precision, Recall, and Learning Time
for each classifier are provided in the table. The last row of
the table contains the average values.

TABLE 6. Performance metrics of attack detection before pre-processing
on balanced datasets.

1) REMOVING OUTLIERS ON IMBALANCED DATASET
Outlier removing in ML refers to the process of identifying
and eliminating data points that deviate significantly from
the majority of the dataset, aiming to improve model per-
formance and robustness [78]. The performance evaluations
after removing outliers with a deviation of %1 is presented in
Table 7.

TABLE 7. ML classifier performances after outlier removal.

An average basis analysis reveals an increase of 0.6% in
Accuracy, 1.21% in Precision, and 0.2% in Recall. Never-
theless, in this scenario, the time has risen by 0.02 seconds.
When evaluated on a classifier-specific basis, the outlier
removal process has the most significant impact on the SVC
with a contribution of 4.43%. When considering its effect on
training time, it has resulted in an additional 0.35 seconds for
the SVC.

By examining the values in Table 6 and Table 7 for other
classifiers, various insights can be derived, and the contribu-
tion levels can be measured.

2) SCALING ON IMBALANCED DATASET
Scaling is one of the preprocessing steps applied in machine
learning, and it affects the overall model performance [79].
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FIGURE 3. The change in accuracy after the outlier removal.

Table 8 displays the effects of min-max scaling on the perfor-
mance of ML classifiers.

TABLE 8. Performance of ML classifiers after scaling.

When analyzing the accuracy, the impact of the scaling
process is most noticeable in the SVC classifier. For instance,
the accuracy for DS1, which was previously 68%, increased
to 88.37% after scaling.

On average, across the four datasets, a 22% increase in
accuracy is observed. However, the effect of scaling on SVC
is not only an increase in accuracy but also a significant

FIGURE 4. The change in accuracy after the scaling.

reduction in training time. Looking at the average values
for the four datasets, the initial time of 10.85 seconds has
decreased to 3.77 seconds. Considering the overall aver-
age of all classifiers across all datasets, the overall impact
of scaling on accuracy has risen from 89.25% to 93.65%.
In terms of training time, it has decreased from 2.25 seconds
to 1.75 seconds. This implies an approximate reduction of
22%. In terms of training time, in the assessment conducted,
the fastest classifier on average is the GNBwith 0.04 seconds,
followed by the DT classifier with 0.18 seconds. However,
despite this, GNB’s accuracy value is 80.82%, whereas DT’s
accuracy is 97.29%. In cases where training time is consid-
ered insignificant, the highest accuracy of 98.38% belongs to
the XGBoost classifier. To assess the impact of scaling on the
other classifier, Table-6 and Table-8 values can be compared.

3) FEATURE SELECTION
Feature selection is the process of choosing a subset of
relevant and significant features from the original set of
variables to enhance model performance and reduce com-
plexity [80]. In this section, the impact of the Analysis of
Variance (ANOVA) feature selection technique on accuracy
has been evaluated. ANOVA is a statistical technique used to
identify the most relevant features by measuring the varia-
tion in the target variable across different categories of each
feature [81], [82]. Additionally, the best parameter selection,
which best reflects the classifiers’ performance, has also
been conducted. The classifiers’ accuracies are presented in
Table 9 using the best parameters of the classifiers along with
the top 10 features on balanced datasets.

TABLE 9. Performance of classifiers after best parameter and top-10
feature in balanced dataset.
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When comparing accuracy based on the best parameters,
an increase is observed in almost all classifiers compared to
the initial values (Table.6). The highest increase of 21.95% is
achieved by the SVC, followed by a 14.97% increase in the
Logistic Regression classifier. On average, considering the
usage of best parameters and the top 10 features, accuracy
has been enhanced by 4.7%, resulting in an accuracy rate
of 93.42%. In the AdaBoost classifier, a decrease of 1.80%
in accuracy has been observed. Overall, when evaluated, the
XGBoost classifier has demonstrated the highest successful
accuracy of 97.02%. The effects of the feature selection
process on accuracy on average are presented in the graph
shown in Fig. 5.

FIGURE 5. The change in accuracy after feature selection.

In the examination conducted on a percentage basis, the
highest increase is observed in the LR classifier with 3.67%.
In the Adaboost classifier, there is a decrease of 1.6% in
accuracy.

TABLE 10. Performance of classifiers after best parameter and top-10
feature in imbalanced datasets.

In imbalanced datasets, there is an average decrease of
approximately 1% in accuracy performance. In other words,
if the dataset is balanced, a 1% increase in accuracy is
observed. When the dataset is balanced, the highest perfor-
mance improvement of about 4% is achieved with LR. The
number of features in a dataset is an important consideration
and can significantly impact the performance, efficiency, and
interpretability of a model. The effectiveness of an intrusion
detection classifier is contingent on the quantity of features in
the detection and classification [83]. For DS1, the accuracy
obtained by different classifiers in this context are given in
the graph in Fig.6.

FIGURE 6. Accuracy based on the number of features for DS1.

While the number of features in the GNB classifier has
increased, no significant difference in accuracy has been
observed. However, both XGB and RF have demonstrated a
substantial increase in accuracy. To ascertain if these find-
ings differ across datasets, the same test was conducted on
four different datasets, and the average F1-score values are
illustrated in Fig.7.

FIGURE 7. F1-score performance of classifiers according to the average
values of four different data sets.

It has been observed that as the number of features
increases in all classifiers except GNB, the accuracy value
increases. The highest accuracy values were observed in the
DT and RF classifiers.

4) TRAINING TIME GRAPH
In the study, the training time values of various classifiers
depending on the number of features are presented in the
graph shown in Fig.8.

As depicted in the graph, GNB and DT classifiers demon-
strate no significant increase in training times as the number
of features increases. However, in contrast, RF and AdaBoost
classifiers show a substantial increase. This increase in train-
ing times may lead to delays in the model’s performance.
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FIGURE 8. Variation of training time based on feature count.

5) ROC CURVE ON IMBALANCED DATASET
AUC indicates better discrimination power and overall model
performance. In this section, AUC values have been calcu-
lated for the top 10 features and best parameters. The AUC
values of the classifiers in imbalanced datasets are presented
in Table 11.

TABLE 11. AUC values of classifiers in imbalanced datasets.

From an AUC perspective, on average across the four
different datasets evaluated, the XGBoost algorithm achieved
the highest performance, followed by the RF classifier. GNB,
on the other hand, exhibited the poorest performance with
87.22%.

6) AUC FOR BALANCED DATASETS
According to the ANOVA analysis, the performance achieved
in the DS4 dataset using the top 10 selected attributes and
the best parameters is depicted in the AUC curves graph
in Fig.9.

AUC values for the DS1, DS2, DS3 and DS4 datasets
are provided in Table 12. The obtained values in the
study have been detailed in the tables located in the
Appendix.

In the evaluation conducted on an average basis, the clas-
sifier with the highest AUC value is XGBoost at 0.9842.
followed closely by the Random Forest classifier at 0.9823.
The lowest AUC value is observed with the GNB classifier
at 0.8874.

FIGURE 9. The learning curves and AUC values of classifiers in Balanced
DS4.

TABLE 12. The AUC values of classifiers in the four datasets.

7) RELIABILITY CURVE
In this section, the reliability curves of machine learning
classification algorithms have been evaluated. These curves
for all four datasets are shown in the graphs between 2a and
2d included in the Appendix. Fig.10 displays the reliability
curve graph for the DS1 dataset.

The reliability curve of classifiers might take an S-shape.
This suggests that the model is either overconfident or under-
confident. Overconfidence means that the model’s predicted
probabilities for the positive class are too extreme, whereas
under confidence means the model’s predicted probabilities
are too conservative. It has been observed that the most reli-
able classifiers for the DS1 dataset are XGBoost and Logistic
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FIGURE 10. Reliability curves of classifiers.

Regression classifiers. The worst performance is exhibited by
classifiers showing an S-shape, namely SVC, RandomForest,
and Adaboost classifiers.

8) MULTI CLASSIFICATION ACCURACY
In the evaluation of multi-classification performance, four
separate datasets have been considered. In this section, the
evaluation results for DS3 have been detailed in tabular form.
Interpretation for the other datasets has been made based on
averages. Additionally, for the DS2 dataset, the top 10 fea-
tures selected according to ANOVAwere determined, and the
multi-classification performance of the classifiers was eval-
uated. Accuracy was calculated here using the one-to-many
approach. The confusion matrices (CM) for the evaluation
are provided in Table 13 - Table 20. Underneath the classifier
names in the tables, the overall accuracy values are displayed.

TABLE 13. Confusion matrix for KNN.

KNN achieved an overall accuracy of 79.17%. The high-
est correct classification rate was 99.98% for DoS attacks,
followed by 94.36% for MITM ARP attacks. The lowest
success rate, on the other hand, was achieved at 80.69% for
classifying Mirai traffic.

TABLE 14. Confusion matrix for GNB.

For GNB, the highest correct classification rate was
99.92% for DoS attacks. It also achieved a 94.62% correct

detection rate for MITM ARP attacks. The lowest perfor-
mance, with only a 69.48% correct classification rate, was
observed in Scan attacks. The overall accuracy value was
measured at 62.53%.

TABLE 15. Confusion matrix for XGB.

For the XGB classifier, the highest classification success
rate was 99.99% for DoS attacks. It was followed by a 95.45%
detection rate for MITM ARP attacks. The least successful
classification, with only 81.02% accuracy rate, was observed
for Mirai traffic. The overall accuracy value was measured at
80.88%.

TABLE 16. Confusion matrix for AdaBoost.

The Adaboost classifier achieved an overall accuracy of
74.30%. The highest correct classification rate was 99.99%
for DoS attacks, whereas the lowest performance, with only
a 74.98% correct classification rate, was observed in Mirai
attacks.

TABLE 17. Confusion matrix for LR.

When examining the classification performance of Lin-
ear Regression, it achieved an overall accuracy of 76.64%.
Although it showed a high accuracy of 96.91% in detecting
DoS attacks, it performed poorly in detecting Mirai and Scan
attacks. The accuracy values for both attacks were measured
at 78.95% and 75.10%, respectively.

The RF classifier achieved an overall accuracy of 81.23%.
It obtained accuracy rates of 99.99% for DoS attacks and
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TABLE 18. Confusion matrix for RF.

95.44% for MITMARP attacks. The least successful classifi-
cation was for Mirai traffic, with an accuracy rate of 81.47%.

TABLE 19. Confusion matrix for DT.

When examining the performance of the Decision Tree
classifier, it achieved an overall accuracy of 76.40% as shown
in Table 20. It demonstrated high accuracy in detecting DoS
attacks with 99.99%. However, the detection accuracy for
Mirai traffic was measured at a lower 81.47%.

TABLE 20. Confusion matrix for SVC.

The SVC classifier achieved its highest performance in
the detection of DoS attacks with an accuracy of 99.88%,
followed by a 95.29% accuracy in detecting MITM ARP
attacks. However, the classifier did not detect any traffic
as Benign or Scan, resulting in a 0 True Positive for these
classes. The overall accuracy value was calculated as 76.40%.
A table specifying which types of traffic were most accu-
rately detected by which classifier for this dataset is provided
(Table 21).

TABLE 21. Classifier that detects the type of traffic with the best accuracy.

The most successful classification achieved by classifiers
has been in DoS attacks. XGB, RF, and DT, which demon-
strate ensemble learning methods, have detected DoS attacks

TABLE 22. Classifiers achieving the best f1-Score for attacks in the DS1.

TABLE 23. Classifiers achieving the best f1-Score for attacks in the DS2.

TABLE 24. Classifiers achieving the best f1-Score for attacks in the DS3.

TABLE 25. Best accuracy and classifiers for the attacks in the DS4.

with a high accuracy rate of 99.99%. The lowest accuracywas
experienced in detecting Mirai attacks. RF and DT achieved
an accuracy rate of 81.47%. It can be concluded that ensem-
ble learning algorithms show success for this dataset. The
confusion matrices for all datasets are provided in detail in
the Appendix. In the evaluation for DS1, KNN achieved a
successful result with an accuracy of 79.45%. However, the
KNN classifier relatively underperformed in classifying vari-
ous attacks. The highest correct classification was 94.53% for
‘‘Generic’’ attacks, followed by 94.35% for Benign traffic.
The least successful classification was with 0% accuracy
for ShellCode and Worms. The GNB classifier achieved
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TABLE 26. ROC curves according to Top 10 features in balanced datasets.
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TABLE 27. ROC curves according to Top 10 features in unbalanced datasets.
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FIGURE 11. Calibration Curve charts for four unbalanced datasets.

its highest classification accuracy of 100% for ShellCode
attacks. The second-highest classification accuracy was 58%
for Generic attacks. The accuracy for Benign traffic was 55%.
The least successful classification was 0% for the Worms
category. The overall accuracy was measured at 41%. XGB
achieved a 95% accuracy in classifying Generic attacks and

94% accuracy in classifying Benign traffic. However, it had
0% accuracy for Backdoor, ShellCode, and Worms. XGB’s
overall accuracy was measured at 82%. For Adaboost, the
highest accuracy value was 85% for Generic traffic. Similar
to XGB, it had 0% accuracy for Backdoor, ShellCode, and
Worms. Adaboost achieved an overall accuracy of 63%.
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FIGURE 11. (Continued.) Calibration Curve charts for four unbalanced datasets.

When looking at the CMmatrix for the LR classifier, detec-
tion accuracy for Analysis, Backdoor, ShellCode, andWorms
was 0%. The highest accuracy was 91% for Generic traffic.
LR’s overall accuracy was measured at 63%. The Random
Forest classifier also achieved 0% accuracy in classifying
BackDoor, ShellCode, and Worms attacks. However, it cor-
rectly classified Generic and Benign traffic with 95% and
94% accuracy, respectively. RF’s overall accuracy was 81%.
According to the DT classifier, Worm and Backdoor detec-
tion could not be performed. However, it correctly classified

Generic and Benign traffic with 95% and 93% accuracy,
respectively. Overall, the accuracy value was measured at
81%. Accordingly, correct classification for Analysis, Back-
door, Recon, ShellCode, andWorms is 0%. However, Benign
traffic was correctly classified with 99% accuracy. In total,
the accuracy value was measured at 67%. Accordingly, it has
been observed that the SVC classifier can accurately detect
normal traffic with high accuracy, but it struggles to detect
certain types of traffic. Therefore, if a model is to be devel-
oped for detecting traffic with 0% accuracy, it may be more
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TABLE 28. Confusion matrix (CM) tables of classifiers for DS1 dataset when all features and default parameters are used.
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TABLE 28. (Continued.) Confusion matrix (CM) tables of classifiers for DS1 dataset when all features and default parameters are used.
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TABLE 29. Confusion matrix (CM) tables of classifiers for DS2 dataset when all features and default parameters are used.
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TABLE 29. (Continued.) Confusion matrix (CM) tables of classifiers for DS2 dataset when all features and default parameters are used.

beneficial to use SVC for detecting normal traffic, followed
by the hybrid use of other classifiers.

XGBoost algorithm achieved the highest performance in
the imbalanced dataset based on the top 10 features. However,
it can be said that there is generally very low success in clas-
sifying ShellCode, Worms, and Backdoor traffic, especially.
No classifier could detect Worms traffic at all. Therefore,
the performance in Worms detection was measured at 0%
for all classifiers. For DS1, which types of attacks were
most accurately classified by which algorithm are shown in
Table 22. In the table, the f1-Score metric was used instead
of accuracy.

For DS2 dataset, the classifiers that achieved the highest
accuracy in detecting traffic types and their accuracy values
are provided in Table 23.

The highest F1-score value for this dataset is 99.97% in
detecting DoS traffic, achieved by the XGBoost classifier.
However, the F1-score performance in detecting Scan traffic
is 33.54%, achieved by the KNN classifier. The best classifi-
cation and accuracy values for the DS3 database are presented
in Table 24.

FTP-patator traffic has been detected with 100% accuracy
by KNN, RF, GNB, and DT classifiers. Similarly, PortScan,
DDoS, and Benign traffic have been detected with over 99%
accuracy by various classifiers. However, classifiers have
achieved a maximum of 10% accuracy in detecting XSS
traffic. It can be observed that XGB is more successful than
other classifiers for this dataset, and this is confirmed by
its overall accuracy value of 97.25%. The best-performing
classifiers in traffic classification for another dataset, DS4,
are provided in Table 25.

According to the table, the classifier that can most suc-
cessfully detect DDoS attacks is Logistic Regression with
99.77% accuracy. For DoS attacks, Random Forest achieved
the highest performance at 99.30%, and for Mirai attacks, the
highest accuracy was obtained with XGBoost at 99.36%. The
lowest detection success is observed for Web attacks, with a
mere 0.8% achieved by the Decision Tree algorithm.

V. CONCLUSION
This study aimed to evaluate the performance of different
machine learning classifiers on four distinct datasets for the
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TABLE 30. Confusion matrix (CM) tables of classifiers for DS3 dataset when all features and default parameters are used.

purpose of detecting IoT attacks. Performance assessment
involved the examination of critical metrics such as accuracy,
training time, f1-score, and AUC, enabling a comparison of
the capabilities of various classifiers. Additionally, the impact
of various preprocessing techniques on performance was
explored, revealing that these processes had a relativelyminor
effect on some classifiers but significantly enhanced the per-
formance of others. The results obtained contributed to the

identification of the most suitable classifiers for combating
IoT attacks. It was observed that certain classifiers exhibited
superior ability in detecting specific attack types and could
be further optimized through specific preprocessing steps.

This study assessed the multi-class performance of the
classifiers, which is crucial for IoT security as different clas-
sifiers may excel in detecting different attack types, offering
valuable insights for the enhancement of defense strategies.
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TABLE 30. (Continued.) Confusion matrix (CM) tables of classifiers for DS3 dataset when all features and default parameters are used.

We demonstrated which classifiers achieved successful
results in detecting specific types of attacks. Since we eval-
uated the performance of different algorithms in various IoT
datasets in our study, selecting the most suitable algorithms
for hybrid security solutions could be easier. Hybrid systems
can achieve more precise attack detection by combining dif-
ferent algorithms. Understanding which algorithm is better at
detecting specific types of attacks enables us to enhance these
solutions more effectively. Consequently, it can be observed

which combination of classifiers might potentially yield more
accurate results if a hybrid model is to be developed for
certain attack types.

By examining the effects of scaling and outlier removal
processes on accuracy, we demonstrated the importance of
data preprocessing techniques. This can help us understand
the challenges faced when dealing with real-world IoT data.
This information shows us how to adjust enhance algorithm
performance while processing real-time data.
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TABLE 30. (Continued.) Confusion matrix (CM) tables of classifiers for DS3 dataset when all features and default parameters are used.

The wide range of applications in IoT has led to the devel-
opment of solutions in many sectors, consequently increasing
the demand for security. However, the expectations from
each IoT solution can vary; for some, training time might
be crucial, while for others, it could be of secondary impor-
tance. Similarly, the reliability of the algorithm might hold
more value than accuracy. Therefore, to ensure diversity and

inclusivity in metric selection, multiple metrics have been
utilized in the study’s results.

In conclusion, this research made a significant con-
tribution to the field of IoT attack detection, providing
essential insights into which classifiers or combinations of
classifiers can be optimized through specific preprocessing
techniques. These findings can serve as a valuable resource
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TABLE 30. (Continued.) Confusion matrix (CM) tables of classifiers for DS3 dataset when all features and default parameters are used.

for researchers and industry professionals aiming to enhance
IoT security. The outcomes of this study may also guide orga-
nizations seeking to improve their strategies for safeguarding
IoT devices.

APPENDIX
TABLES AND FIGURES
See Tables 26–30 and Fig. 11.
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