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ABSTRACT The popularity of Commercial Electric Vehicles (CEVs) has experienced a surge in recent
years, particularly in urban vocational contexts, as a means of advancing towards the goal of attaining
net-zero emissions by 2050. The return-to-base charging strategy, which involves charging CEVs at depots,
has become a prevalent practice for smaller CEV fleets. Nevertheless, for larger CEV fleets, the limited
charging capacity at depots presents a significant challenge, leading to a reliance on both limited depot
charging infrastructure and public charging infrastructure. This reliance can have a substantial impact on
both the operational costs and the sustainability of logistics services. To address these challenges, this study
proposes a new charging strategy for managing the charging of large CEV fleets. The proposed strategy
coordinates the charging of CEVs at depots and public charging stations. The strategy is formulated as a
constraint optimization problem and takes into consideration operational schedules, demand charges, and
the characteristics of public charging stations. The results of this study demonstrate the effectiveness of the
proposed strategy in optimizing CEV charging at different stations, preserving the continuity of logistics
services, and reducing total travel costs by 30% compared to existing solutions. This study offers a solution
to the challenges faced by large CEV fleets in their efforts to achieve cost-effective and sustainable charging
solutions.

INDEX TERMS Heavy commercial electric vehicles, return-to-base, transportation, vehicle routing, vehicle-
to-grid, optimization, peak demand, electric trucks.

NOMENCLATURE
ABBREVIATION
AS Allocation Schedule.
CEV Commercial Electric Vehicle.
OSLS Operational Schedules during Logistic Services.
OSPT Operational Schedules during parkigng Times.
SoC State of Charge.

PARAMETERS AND VARIABLES
TChn,i Charging time of nth CEV at public station i.
Tmaxn,i Maximum charging time at public station i.
Tminn,i Minimum charging time at public station i.
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ECap Energy capacity of CEV.
t̄Endn Shifted ending time of charging due of OSPT.
0 Set of charging schedules at public stations.
AIn,t Availability index of nth CEV at time slot t.
� Set of generated feasible solutions.

W Set of CEVs assigned to depot stations with
partial charging.

V Set of customer excluded due toW .
W Set of CEVs excluded from logistic service.
83 Set of routes contained in solution 3.
ρc Cost of not serving one customer.
ρD Cost per unit of distance.
ρd Demand cost of depot charging.
ρPi,t Energy pricing rates of station i at time t.
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ρDt Energy pricing rates of depot station.
ρv Cost of running one vehicle.
CD Total charging cost at depot stations.
CP Total charging cost at public stations.
CT Overall cost of logistics services.
Chn Minimum charging time of nth CEV at depot

station based on Pmax .
dij Travel distance between customers i and j.
EDepot Total energy to charge all CEVs at depot.
EPi,n Total energy charged in nth CEV at public

station.
Ei Remaining energy at arrival to node i.
EDn Energy charged in nth CEV at depot station.
E In Initial energy at arrival to depot for vehicle n.
Enearn Required energy of CEV to reach nearest

station.
EPublic Total energy charged in nth CEV along route.
ERv0,n Remaining energy at departure from depot.
F Set of public charging stations.
Li Earliest arrival time of customer i.
Pi Charging power of station i.
Pmax Power capacity of depot station.
PDen,t Charging rate of nth CEV at depot station.
r Energy consumption of CEV.
S Set of depot charging stations.
T Sei Service time at customer i.
T Trij Travel time between nodes i and j.
T Ari Arrival time at node i.
T Lei Leaving time from node i.
T Pli Plug time at station i.
TWi Waiting time at station i.
tEndn Ending time of charging nth CEV at the

depot.
tFinishn Finish time of OSPT of nth CEV.
tOperaten Start time of OSPT of nth CEV.
tStartn Starting time of charging nth CEV at the

depot.
Ui Latest arrival time of customer i.
V Set of customers that need to be serviced.
V
′′

Set of all vertices including stations.
v0,vN+1 Depot nodes.
vi Customer i node.
W Set of CEVs used in logistic service.
xij Decision variable of route selection.

I. INTRODUCTION
Many governments have set targets and policies for
zero-emission vehicles by 2030 and 2040 in order to achieve
net-zero carbon emissions and meet global climate goals by
2050 [1], [2], [3]. In response to this, there has been an
increase in the electrification of commercial vehicles with
gross vehicle weights ranging from 3.5 to 15 tonnes [4].
A wide variety of applications can be achieved through the
use of these vehicles, including long-haul and vocational

work applications [5], [6], [7]. Commercial vehicles used in
vocational work applications, such as urban freight and deliv-
ery vehicles, are more suited to be electrified because of their
limited weight and range, and their potential for overnight
charging [1], [5], [8], [9]. In such applications, CEVs operate
according to operational schedules during logistics services
provided to customers. Thus, many logistic service providers,
such as UPS, DHL, JD, Walmart Inc, FedEx, Anheuser-
Busch, Amazon, and TNT have incorporated CEVs into their
fleets [5], [9], [10].

During the early stages of CEV adoption, CEVs are
commonly charged at the depot using a ‘‘return-to-base’’
strategy, where a charging station is dedicated to each
CEV so that it can be charged overnight or between shifts
[11], [12], [13]. The public charging of CEVs along routes
may be necessary for applications with longer routes and
also to provide ancillary services to the grid [12], [14],
[15], [16], [17]. However, as the adoption of EVs in the
fleet increases, the existing power infrastructure may be
unable to accommodate the additional capacity and thus the
number of charging stations in the depot [11], [18]. Adding
charging stations will require upgrading depot networks and
distribution grids, which is a costly and time-consuming
undertaking [1], [19]. To reduce the capital cost of network
upgrades and facilitate the adoption of CEVs, it is necessary
to allow a number of CEVs to share existing charging stations
at the depot, as depicted in Fig. 1 [11], [20]. For this to
happen, the charging process for CEVs must be coordinated
properly to determine the proper allocation of CEVs to the
depot stations and their charging starting times.

The charging of CEVs at depots also presents challenges
related to the peak demand for charging loads and the demand
costs that are applied to commercial and industrial locations
in addition to the energy charge [21]. It is therefore important
to coordinate the CEV charging at the depot so that this
impact is minimized to reduce the increase in depot charging
costs [21], [22], [23]. Furthermore, CEV charging at the depot
can be affected by the special operational schedules during
parking time (OSPT), during which CEVs are moved for
maintenance, washing, and loading the next day’s cargo [11],
[24]. These schedules significantly affect the charging of
CEVs, both in terms of the period for charging and the time
at which charging starts. Depending on the duration of OSPT,
CEVs may need to be reallocated to different depot stations
after returning from OSPT.

The challenges of depot chargingmay affect the fulfillment
of CEVs’ energy requirements at the depot; thus, public
charging infrastructure is essential to maintain the continuity
of CEVs during logistics services [12]. Public charging
stations differ according to their location, charge power rates,
wait times, and TOU tariffs [25], [26], [27], [28], [29]. It is
important to consider these variants when scheduling CEV
charging at public charging stations in order to ensure the
lowest possible charging costs. Since CEVs charge at public
stations while providing logistics services, routes used to
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FIGURE 1. CEV charging at public and depot charging stations.

reach the public stations should be as short as possible to
reduce the overall travel distance and the logistics company’s
costs [5], [12].

In the literature, researchers have presented several charg-
ing systems which are intended to manage the charging of
EVs fleet at parking locations. Authors in [30] presented
a charging strategy for coordinating the EV charging at
different types of charging stations installed in parking lots.
The proposed strategy assigns EVs to the charging stations,
then uses a charging algorithm to determine when it should be
charged. Reference [31] developed a charging system for EVs
at parking locations based on real-time optimization. In this
algorithm, a peak load limitation-oriented demand response
program is proposed along with the objective of maximizing
the load factor of the EV on a daily basis. In [21], a real-
time charging algorithmwas proposed for EVs at commercial
charging locations. A key objective of this strategy is to
reduce the demand charges for charging station hosts as well
as to accommodate local and utility demands. In [22], a smart
charging system is proposed that coordinates the charging of
commercial EVs at their depots. The proposed system aims
to minimize depot station demand charges while taking into
account the operational conditions of EVs during parking
periods. In the previous works, however, parking locations
were assumed to have sufficient charging stations for each
vehicle that arrived. Furthermore, these studies assumed EVs
had sufficient battery banks to accomplish their trips and

return to their parking locations, so public charging was not
taken into account.

Several studies [32], [33], [34], [35] have proposed smart
charging strategies for EVs at public charging stations that
took into account charging times, travel timess, waiting times,
and charging costs. Nevertheless, these studies did not take
into account the charging problems associated with CEVs
and their OSLS. To consider OSLS of CEVs, many works
in literature have incorporated the CEVs public charging
problem into the vehicle routing problems [36], [37], [38],
[39], [40], [41] to ensure the continuity of CEVs during
logistic services. Yang et al. [42] developed a model for
solving the routing and CEV charging at public stations
simultaneously, taking public station characteristics, time
window, and battery size into account. Authors in [43]
introduced a mixed heuristic algorithm to solve routing
and CEV charging for large-scale distribution problems.
In [44], a bi-objective bilevel programming framework was
developed to identify the location of charge stations, with
the goal of minimizing travel time and charging costs.
Wang et al. [45] have included public stations’ detours in
optimizing the routes of CEVs to consider the importance
of charging stations’ location. The optimization model also
considered real-time traffic data and the cost of regenerative
braking. In [46], a two-stage simulation-based heuristic
based on Adaptive Large Neighborhood Search was proposed
to optimize the routing of CEVs and charging at public
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stations with stochastic waiting times. In stage one, routes are
determined by using expected waiting times at the stations,
while stage two penalizes time-window violations and late
returns to the depot in order to correct the infeasible solution.

To include the variable energy consumption, Authors
in [47] and [48] have proposed an optimization model for
CEV routing considering dynamic energy tariffs and energy
consumption of CEVs. The energy consumption model in
these studies enabled the partial charging of CEVs at public
stations to ensure that a given vehicle would not run out of
charge along the route. Authors in [49] and [50] have inves-
tigated the public charging of CEVs when charging stations
provides both battery swapping and fast charging for CEVs.
In their studies, CEVs may be charged fully or partially in
accordance to the energy requirements and time windows
constraints. The CEV charging at depot charging stations has
an impact on optimizing routes and public charging of CEVs,
thus should be considered [5]. Thus, the authors of [10]
proposed a bi-level optimization model to solve the routing
and charging problems of CEVs at different charging stations
along its route, including the depot. The max-min ant system
algorithm is used to generate fixed feasible routes at the upper
level. A heuristic algorithm was then developed to optimize
CEV charging at public and depot stations. In [51], vehicle-
to-grid (V2G) services and the stochastic demand of charging
stations have been taken into account in routing and charging
problems. The study scheduled the CEV charging at public
and depot stations based on routing problem constraints.
An optimal solution was reached by combining a custom
Genetic Algorithm (GA) with embedded Markov decisions
and trust region optimization methods.

In our previous work [12], we investigated the possibility
of using public charging stations in addition to depot charging
for small CEV fleets. In [12], we assumed that a depot would
have enough charging stations for every arriving CEV, which
would also be available for charging during the entire parking
period. The assumption applies to depots with a small fleet
of CEVs whose OSPT periods do not interfere with their
charging cycles. The work in [12], however, is inadequate
for large CEV fleets and/or depots with a limited number of
charging stations.

As discussed above, the charging and routing problems
for CEVs have been studied in the literature with various
algorithms proposed to address these issues. However, a sig-
nificant gap in literature remains in regards to the efficient
charging of large CEV fleets at depots with limited charging
infrastructure. The existing literature has mainly focused on
the immediate accessibility of charging stations for each
CEV that reaches the depot. However, it is well-established
that upgrading the power infrastructure to accommodate the
addition of charging stations for a large fleet of CEVs at
each depot is expensive and not practical in many cases.
Additionally, there is a lack of research on the impact of
operational schedules during CEV parking times on the
charging process. Thus, it is imperative to consider these
variants in optimizing the routing and charging problems for

large CEV fleets to achieve cost-effectiveness and continuity
of logistics services.

This paper aims to address the previously mentioned gap
in the literature by proposing a new charging strategy. This
strategy aims to resolve the charging and routing problems of
large CEVs fleets at depots and public charging stations. The
goal of the proposed strategy is to maximize the benefits for
logistics providers by reducing total travel costs and ensuring
the continuity of logistics service. The main contributions of
this paper are:
1) To the best of the authors’ knowledge, this paper is the

first of its kind that coordinates the charging process of
a large CEV fleet at both depots with limited charging
infrastructure and public charging stations, while taking
into account the operational schedules of the CEVs
during parking times and the provision of logistics
services.

2) The proposed charging strategy provides a systematic
and optimal approach to allocate and manage the charg-
ing process of the large CEV fleet at depots, thereby
effectively utilizing the limited charging infrastructure
among the CEV fleet.

3) The strategy incorporates multiple variants of the CEV
charging problem, including the costs associated with
peak demand at depots, the locations, delays, and
characteristics of public charging stations, and partial
recharging of CEVs.

4) This paper also evaluates the impact of various variants
for charging the large CEV fleet at both depots and
public charging stations on the routing problem of these
vehicles, with the aim of enhancing the benefits for
logistics providers.

This paper is organized as follows. In Section II, the
mathematical model formulation is introduced. In Section III,
the proposed strategy is illustrated. Section IV presents
results and performance analyses. The conclusion of the
paper is presented in Section V.

II. MATHEMATICAL MODEL FORMULATION
A. PROBLEM DEFINITION
This paper addresses the problem of charging a set of
CEVs with a limited number of charging stations installed
at their depot while also dealing with the routing and
public charging problems for the CEVs. Let W be the
set of CEVs used to service the set of customers V =

{v1, v2, v3 · · · , vN }. During the driving cycle, the vehicles
depart from the depot (v0) and serve several customers in
accordance with OSLS before returning to the depot (vN+1).
The OSLS of CEVs define the service time (T Sei ) a CEV
spends servicing the customer as well as the time windows
(Li, Ui) at which the customer should be serviced, where
Li represents the customer’s earliest arrival time and Ui
represents the customer’s latest arrival time. To maintain
operational schedules, CEVs preferred to be charged at depot
charging stations S = {s1, s2, s3 · · · , sM } with the energy
required to complete their daily driving cycles. Increasing
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adoption of CEVs may exceed the number of charging
stations in the depot due to power constraints and capital costs
of charging infrastructure. Therefore, CEVs should be able
to share chargers at the depot by scheduling charging times
optimally. Let tStartn and tEndn denote the starting and ending
time of charging nth CEV at the depot that satisfies

tARn ≤ t
Start
n , tEndn ≤ tDPn (1)

where tARn and tDPn denote the arrival and departure times of
nth CEV at the depot. Hence, the charging period of nth CEV
can be represented by availability index as follow

AIn,t =
{
1, t ∈ [tStartn , tEndn ]
0, Otherwise

∀t ∈ T ,∀n ∈ W (2)

where T = {1, 2, 3, ....} indicates the set of time slots of
length 1t that divide CEV dwell periods at depot. When
CEVs have OSPT that overlap with their charging times, their
availability index should be updated. Let tOperaten and tFinishn
indicate the start and finish times of the OSPT of nth CEV,
then AIn,t is updated as follows

AIn,t =


1, t ∈ [tStartn , tOperaten ]
1, t ∈ [tFinishn , t̄Endn ]
0, Otherwise

∀t ∈ T ,∀n ∈ W

(3)

where t̄Endn represents the shifted ending time of charging nth
CEV because of OSPT. Due to the simultaneous charging of
CEVs, the peak demand of a depot increases significantly
compared to the base-load demand. In turn, this increases
peak demand costs, which are much higher than energy costs
for commercial enterprises. Optimizing the power rates of
charging stations can mitigate the impact of peak demand on
CEV charging costs at depots. LetPDen,t represents the decision
variable for the charging power rate of nth CEV at time t ∈ T ,
which is defined as follows

0 ≤ PDen,t ≤ Pmax (4)

Pmax is the power capacity of depot station. Energy charged
in the nth CEV at the depot station is calculated as follows

EDn =
∑
t∈T

PDen,t ·AIn,t ·1t (5)

Thus, the total energy required to charge all CEVs at depot
stations is defined as

EDepot =
∑
n∈W

EDn (6)

CEV charging at depot stations may increase the peak
demand of the aggregate load profile at the depot, which is
composed of the base load profile and the total charging load
profile. let PBat indicates the base-load power of the depot at

time slot t ∈ T . The increase in peak demand of depot load
profile can be expressed as follows

PDepot = max{PBat +
∑
n∈W

(PDen,t ·AIn,t ) :

t ∈ T } − max{PBat : ∀t ∈ T } (7)

Increasing the adoption of CEVs in the depot and strict
operation schedules during parking times can limit the energy
that can be charged in CEVs at depot charging stations,
requiring charging of these vehicles at public charging
stations F = {f1, f2, f3 · · · , fM }. A public charging station
can differ in terms of its charging power rate, location, energy
costs, and waiting time. Charging CEVs at public stations
should therefore be scheduled in such a way that both the
charging time and cost areminimized. Let TChi,n be the decision
variable for the charging time of the nth CEV at the public
station, which is defined as

Tmini,n ≤ T
Ch
i,n ≤ T

max
i,n ∀i ∈ F (8)

where Tmini,n and Tmaxi,n define the limits for the minimum
and maximum charging times at the station respectively. The
total energy charged in nth CEV at public station i ∈ F is
calculated as follows:

EPi,n =
∫ TPli +T

Ch
i,n

TPli

Pi dt (9)

Pi represent the power capacity of the public station i, and
T Pli represents the plug time of CEV at the station. T Pli is
calculated based on the arrival time (TAri ) and the waiting
time (TWi ) of CEV at station i, where T Pli = T Ari + TWi .
The total energy charged in nth CEV along its driving cycle
defines as

EPublic =
∑
n∈W

∑
i∈F

EPi,n (10)

In addition to the energy charged at depots, the energy
charged at public stations should be sufficient to complete the
driving cycle of a CEV. The lack of public charging stations
along specific routes and time window constraints may result
in insufficient energy being charged in CEVs, resulting in
many consumers being left out. Let W represent the set of
CEVs that do not receive the required amount of energy from
public and depot charging stations, where W ⊂ W . As a
result of the CEVs in W , a set of customers V ⊂ V are
not serviced. Maximizing logistics company profits requires
minimizing customers in V and therefore CEVs in W . This
can be achieved by solving the routing problem of CEVs to
find routes with sufficient public stations while still meeting
OSLS.

The goal of solving CEV routing problems is to select the
routes that maximize logistics companies’ benefits. Routes
for CEVs should be optimized in terms of travel distance and
availability of public charging stations so that trip costs can
be reduced and logistics services will not be disrupted. let
V ′ = V ∪ F represents the set of all costumers and public
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charging stations nodes, and V ′′ = V ′ ∪ v0 ∪ vN+1 indicates
the set of system nodes including depot. Any route between
two nodes i and j is determined by the binary variable xij,
which is defined as follows

xi,j =


1, If route i to j is selected

0, Otherwise

(11)

Considering feasible paths between customers and detour
distances to reach charging stations, the total distance (DT )
of the trip can be calculated as follows

DT =
∑
i,j∈V ′′

(dij · xij) (12)

di,j denotes the travel distance between nodes i, j ∈ V ′′.
Routes between a depot and all other nodes determine the
number of vehicles that will be used to provide the logistic
services. The number of vehicles leaving the depot can be
calculated as follows

|W | =
∑
j∈V ′′

x0j (13)

Considering that there may be insufficient energy charged
in CEVs as a result of a lack of public charging stations, the
number of CEVs which complete their drive cycle can be
calculated as follows

Z = |W | − |W | (14)

B. PROBLEM FORMULATION
This paper aims to maximize the benefits of logistic
companies operating fleets of CEVs by optimizing their
routing and charging with a limited number of charging
stations located at depots and public locations. Therefore,
the objective function of the optimization problem can be
formulated to minimize the overall cost (CT ) of logistics
services as follows

Min CT = DT · ρD + Z · ρv + |V | · ρc
+ EPublic · ρPi,t + EDepot · ρ

D
t + PDepot · ρd (15)

As shown in (15), the overall cost of logistics services can
be broken down into six terms. The first term represents the
cost of distance traveled by all CEVs, where ρD is the cost
per unit of distance. In the second term, the cost is related to
running the vehicles used to service all customers, where ρv
represents the cost per vehicle. The cost in the third term is
associated to the number of unserviced customers, where ρc
represents the cost of not providing services to one customer.
In the fourth and fifth terms, the energy cost associated with
charging CEVs at public and depot stations is indicated. ρPi,t
and ρDt are the energy pricing rates for public and depot
stations, respectively. The last term indicates the cost of
increase in the peak demand of depot and ρd is the demand

charge rate. The following constraints are subject to objective
function in (15):

ERv0,n = EDn + E
I
n, ∀n ∈ W (16)

Enearn ≤ ERv0,n ≤ E
Cap
n , ∀n ∈ W (17)

Enearn = min{(d0,j · r) ∀j ∈ F} (18)

ERi,n ≥ 0 ∀i ∈ V ′′ (19)

ERj,n =


ERi,n − (di,j · r),
∀i ∈ V ′′|F,∀j ∈ V ′′|v0, xij = 1

ERi,n + E
P
i,n − (di,j · r),

∀i ∈ F,∀j ∈ V ′′|v0, xij = 1

(20)

ERi,n + E
P
i,n ≤ E

Cap
n ∀i ∈ F, n ∈ W (21)∑

j∈V ′′,i̸=j

xi,j = 1 ∀i ∈ V (22)

∑
i∈V ′′

xi,j −
∑
i∈V ′′

xj,i = 0 ∀j ∈ V ′′ (23)

Qj ≤ Qi − cixi,j + C(1− xi,j)

∀i ∈ V ′′|vN+1,∀j ∈ V ′′|v0, i ̸= j

(24)

0 ≤ Qi ≤ C ∀i ∈ V ′′ (25)

Li ≤ T Ari ≤ Ui ∀i ∈ V
′′ (26)

T Arj ≥ T
Le
i + T

Tr
ij

∀i ∈ V ′′|vN+1,∀j ∈ V ′′|v0, i ̸= j

(27)

T Lei =


T Ari + T

Se
i , ∀i ∈ V ′′|F

T Ari + T
W
i + T

Ch
i,n , ∀i ∈ F

(28)

The charging process in the depot is subject to con-
straints (16)-(18). Constraints (16) and (17) define the amount
of energy that must be charged before departing the depot.
According to constraint (18), each CEV must be charged
with at least a certain amount of energy. Constraints (19)
and (20) determine the amount of energy left at each
node. CEV battery capacity in each station is ensured by
constraint (21). Constraints (22) and (23) ensure that each
customer is assigned only once and that outgoing arcs match
incoming arcs at each node. Each customer’s load capacity is
determined by constraints (24) and (25). The time allowance
for each customer is determined by constraints (26)-(28).

III. PROPOSED STRATEGY
Managing the charging of a fleet of CEVs at a depot with
limited charging stations can be achieved by scheduling
their charging times based on the operational conditions
of the vehicles. This paper focuses on CEVs utilized in
urban freight and delivery services, including those managed
by prominent companies such as UPS, DHL, JD, Walmart

VOLUME 12, 2024 46047



B. Al-Hanahi et al.: Charging Strategy for Large Commercial Electric Vehicle Fleets

FIGURE 2. Flowchart of the proposed optimization strategy.

Inc, and FedEx. These CEVs adhere to strict operational
timetables crucial for providing delivery services to clients.
Furthermore, the demand for these CEVs is presumed to be
consistent and fixed within the study’s framework. However,
our strategy is designed to accommodate minor variations,
such as slight delays in CEV departure or arrival times,
or minor fluctuations in demand, ensuring that the system can
adapt within defined tolerance levels. The strategy adjusts for
slight variations by considering a tolerance factor within each
customer’s scheduled time windows, enabling flexibility in
service delivery without significant disruption.

Since the charging costs at depots are directly related to
energy consumption and demand charges, it is imperative to
optimize the charging time and power to avoid a significant
increase in peak demand. In light of the limited number
of depot stations and strict OSPT, it may be necessary to
schedule the CEV charging at public charging stations in
order to ensure the flow of logistic services. Considering the
lack of public charging stations, it is necessary to optimize
the routes for CEVs in order to facilitate public charging and
reduce the total travel cost.

In order to address the aforementioned requirements,
the strategy depicted in Fig. 2 is proposed. The proposed
strategy utilizes a hierarchical approach to solve the routing
and charging problems optimally in order to avoid local
optimal solutions and high computational time incurred by
individual-based metaheuristic algorithms [10], [28]. In this
section, we begin by providing the overall process of the
proposed strategy. Following this, the main components
of the proposed strategy, including: the generation of

operational schedules, the depot allocation system, the depot
optimizer, and the public optimizer, are described in detail.

A. PROCESS OF PROPOSED STRATEGY
As shown in the flowchart, the proposed strategy is initialized
by solving the routing problem using Ant Colony Optimizer
(ACO) to identify the initial solutions of feasible routes.
ACO is a probabilistic technique inspired by the natural
foraging behavior of ants, designed to solve computational
problems. It enhances optimization paths by mimicking the
pheromone trails left by ants during their movement. This
method entails artificial ants depositing pheromones based on
solution quality, utilizing pheromone evaporation and heuris-
tic information to guide decision-making. Widely applied in
network routing, scheduling, and combinatorial optimization,
ACO is praised for its adaptability and effectiveness in
handling complex scenarios, though it requires meticulous
parameter tuning and significant computational resources.
Its proficiency in generating viable routes for the Electric
Vehicle Routing Problem has been underscored in various
studies, as demonstrated in references [10], [49].

The initial solutions are used to generate the OSLS of
CEVs included in the solution. Each CEV’s OSLS includes
vehicle details (battery capacity, energy consumption), details
about the customer being serviced (location, time window),
details about the selected route (customer order, distance),
and details about public stations (location, power capacity,
waiting time).

Once the OSLS of CEVs are defined, the allocation
system is used to assign the CEVs to the depot charging
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stations. CEVs arriving at the depot may be assigned to the
charging stations with full or partial charging requirements,
or excluded from the charging process, depending on station
allocation status and charging demands of CEVs. After
assigning CEVs, the depot optimizer is used to optimize the
CEVs charging at the depot charging stations. Considering
that CEVs assigned and charged partially at the depot should
be charged during their driving cycle, the proposed strategy
utilizes a public optimizer in order to schedule the charging
of the CEVs at public charging stations.

As the charging costs at the depot and public stations
are determined, the proposed strategy calculates the overall
logistics cost by adding the distance cost of the route
selected, the cost of used vehicles, and the cost of excluded
customers as indicated in (15). A new population of feasible
route solutions is then generated once the local and global
pheromones of ACO have been updated by the best-fit
solution at the beginning of the process. ACO runs several
iterations before reaching the global best solution, which is
found to be the route with the lowest overall cost.

B. OPERATIONAL SCHEDULES GENERATION
In the proposed strategy, OSLS are generated by using the
ACO algorithm to solve routing problems, which has been
used in a number of works, such as [10] and [49]. During
each iteration, the ACO generates a population of feasible
solutions � = {31, 32, .., 3a} that satisfy all customers’
loading and time window requirements. In �, solutions are
arranged in ascending order according to their distance,
where each solution may contain a single route or multiple
routes. Let 83 = {ϕ1, ϕ2, .., ϕK } denotes the set of routes
included in solution 3 ∈ �. Each route in 83 is assigned
one CEV, therefore the set of vehicles included in solution 3

is W3.
The routing problem in the proposed strategy focuses on

determining which routes would provide sufficient public
charging stations while reducing the distance traveled.
Therefore, the solution 31 ∈ � with the shortest distance
is selected, and the charging requirements of CEVs included
in this solution are examined. Each route ϕ ∈ 831

should be assigned the public charging stations available
between its nodes. Since there may be more than one
station along the path between any two nodes, the station
assignments are generally determined by their proximity to
both nodes. Accordingly, the public station with the least
increase in distance between the two nodes is assigned;
provided that only one station is visited between any two
nodes.

In our research, we adopt the M/M/k/R queuing model to
predict waiting times at public charging stations, a method-
ology built upon defined operational assumptions. This
model operates under a stochastic setting where arrivals
and service times follow exponential distributions. Here,
k represents the number of service channels (charging points)
while R indicates the overall system capacity, including
both the service channels and any available waiting spaces.

The selection of this model is guided by its proven
effectiveness and successful applications in related studies,
as cited in references [52] and [53], illustrating its reliability
in efficiently managing the dynamics of charging station
utilization and customer wait times.

Following the assignment of public stations, the OSLS
for each CEV in W31 will be generated. The operational
schedules of CEVs in W31 is used by depot and public
optimizers to optimize the charging process of CEVs. In the
event that CEV charging at public or depot stations cannot
be scheduled due to constraints breaches in operational
schedules, the route is considered infeasible. Here, the OSLS
is regenerated considering the route32 ∈ �, and this process
continues until CEV charging at depots and public facilities
is scheduled.

C. CEV ALLOCATION SYSTEM AT THE DEPOT
Most studies in the literature assume that parking lots and
depots have sufficient charging stations for parked vehicles.
In spite of this, due to the increased adoption of CEVs and the
power limitations of depots, charging stationsmay sharemore
than one CEV during charging times. In view of the fact that
CEVs have different levels of charging requirements (parking
times and charging demands), they should be assigned to the
charging station appropriately in order to meet their charging
requirements. Accordingly, an allocation system is designed
to decide the appropriate charging station and the order in
which the CEVs will be assigned for charging, as shown in
Algorithm 1.

In the allocation system, the required charging demand
(EreqD,n) and the minimum charging demand (EminD,n) of each
CEV on arrival at the depot are determined by its OSLS.
A CEV’s minimum charging demand represents the min-
imum energy that is required to be charged at the depot,
provided that the remaining energy can be charged at public
charging stations found along the chosen route. As illustrated
in Algorithm 1, the allocation system begins assigning the
arriving nth CEV to the appropriate charging station based on
its EreqD,n. In the allocation process, the minimum time required
to satisfy the charging demand is determined based on the
full power rate of the depot station. Starting charging time
of the arrival CEV at the station is determined by the ending
charging time of the previous CEV in the queue. Therefore,
the waiting time of the arrival CEV at each station is defined
as the sum of charging times of all CEVs assigned at that
station.

When the waiting times at depot charging stations exceed
the parking time of an arrival CEV, the allocation system
considers rearranging the CEVs assigned at the stations in
order to ensure that the arrival CEV can be properly assigned.
In the event that the arrival CEV cannot be assigned with
EreqD,n, the allocation system considers the EminD,n of the arrival
nth CEV and repeats the allocation process. CEVs assigned
with minimal charging demands are included in W , which
indicates the CEVs that are assigned and charged partially
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Algorithm 1 CEV Allocation System at Depot Stations

Input: S, WA, E
req
D,n, OSLS.

Output: AS, W , W
1: Set stations’ assigned time (ATS )← 0.
2: Set CEVs’ charging time (Chn)← 0
3: for n ∈ WA do
4: Initialize Selected Stations← 0
5: Calculate Chn based on EreqD,n and Pmax
6: Calculate EminD,n .
7: if Stations status not busy then
8: Assign CEV to a station and Update status.
9: Update ATS ← ATS + Chn for the station.

10: else
11: while CEV is not assigned or excluded do
12: Select a station to assign the nth CEV to its queue

or between its allocated CEVs
13: Selected Stations← Selected Stations+1.
14: if ATS + Chn < tDPn then
15: Assign the CEV to the station.
16: Update ATS ← ATS + Chn for the station.
17: else
18: if Selected Stations = |S | then
19: if CEV not inW then
20: Initialize Selected Stations← 0
21: Calculate Chn based on EminD,n , Pmax
22: Add the nth CEV← W
23: else
24: if Allocated CEVs inW then
25: Add the nth CEV← W
26: end if
27: Initialize Selected Stations← 0
28: Reduce changing times of allocated CEVs

at stations and include inW .
29: end if
30: end if
31: end if
32: end while
33: end if
34: end for
35: Updated Information of AS, W , W

at the depot stations. In some cases, the allocation system
may be unable to assign arrival CEVs even with the minimum
charging demand, due to the lack of public charging stations
along the driving cycle and high charging demand. Due to
this, the allocation system adds the arrival CEV to the list of
excluded vehiclesW .
Once all arrival CEVs are assigned to charging stations,

the allocation system generates AS, W , and W at the depot.
AS identifies the order in which CEVs are assigned at each
station and their charging requirements. This information is
used in the next steps of the proposed strategy, as described
in the following section.

Algorithm 2 Depot Charging Algorithm
Input: The population Size, Iteration Number, AS, OSPT
Output: CD, tStartn , tEndn , PDen,t , ∀t ∈ T & ∀n ∈ WA
1: Set α, β, δ, and fitness values of GWO
2: Define the parking interval of each CEV.
3: Initialize charging period ([tStartn , tEndn ]) ∀n ∈ WA based

on AS and parking interval.
4: while Iteration number not met do
5: forWolf in population Size do
6: if CEVs have OSPT then
7: Divide charging periods into [tStartn , tOperaten ],

[tFinishn , t̄Endn ]
8: if t̄Endn > tDPn then
9: t̄Endn ← tDPn

10: Add the nth CEV← W
11: end if
12: Calculate AS1 based on AS, [tStartn , tOperaten ]
13: Call Algorithm 1 to calculate AS2 based on

[tFinishn , t̄Endn ]
14: end if
15: Define AIn,t for each CEVs.
16: Using Cplex to solve the optimization problem for

PDen,t , ∀t ∈ T & ∀n ∈ WA
17: Calculate CD based of PDen,t ∀t ∈ T & ∀n ∈ WA
18: if CD is assigned high values then
19: Return zeros for tStartn , tEndn ∀n ∈ WA.
20: else
21: Update α, β,δ
22: Update [tStartn , tEndn ] ∀n ∈ WA.
23: Check the limits of [tStartn , tEndn ] based on AS and

parking interval.
24: end if
25: end for
26: end while
27: Update CD, tStartn , tEndn , PDen,t , ∀t ∈ T & ∀n ∈ WA

D. DEPOT CHARGING OPTIMIZATION
Following the generation of AS for depot charging stations,
the depot charging problem for CEVs is solved with the aim
of reducing the charging cost of these vehicles. Considering
that charging costs at depots are dependent on energy and
demand rates, as indicated in (7), optimizing the power rate of
depot stations over the charging periods of CEVs can provide
the optimal minimization of charging costs. As the starting
charging time for CEVs impacts their available charging
periods, the optimal scheduling of the tStartn for CEVs is a key
factor in optimizing the power rate of depot stations. Based on
these requirements, the depot optimizer shown inAlgorithm 2
is designed to optimize both the starting charging time for
CEVs and the power rate of depot stations in a hierarchical
manner. In the depot optimizer, GreyWolf Optimizer (GWO)
algorithm and the Cplex solver are used, which have been
successfully applied in many studies [54], [55].

46050 VOLUME 12, 2024



B. Al-Hanahi et al.: Charging Strategy for Large Commercial Electric Vehicle Fleets

Algorithm 3 Public Charging Algorithm

Input: OSLS, F , W , EDn , E
req
D,n.

Output: CP, TChi,n ∀i ∈ F & ∀n ∈ W
1: Set fitness value, Charging schedules, 0
2: for n ∈ W do
3: Initialize CP← 0
4: Define ϕn ∈ 83 and assigned public stations (Fn).
5: Calculate the energy required to be charged atFn based

on EDn , E
req
D,n.

6: Calculate Tmini,n , Tmaxi,n based on OSLS at each station
i ∈ Fn.

7: Define 0 based on Tmini,n ,Tmaxi,n , ∀i ∈ Fn.
8: for (charging schedule in 0 ) do
9: for i ∈ Fn do

10: Define detour distance to the station
11: Update Tmini,n ,Tmaxi,n based on charging times at

previous stations along ϕn & detour distance
12: if Tmini,n > Tmaxi,n then

13: TChi,n ← 0
14: else
15: Update TChi,n based updated Tmini,n ,Tmaxi,n &

previous charging schedule.
16: end if
17: Update charging schedule in 0 based on TChi,n
18: end for
19: end for
20: Calculate fitness values for charging schedules.
21: Define charging schedule with lowest fitness value
22: CP← CP + min{Fitness values}
23: end for
24: return CP, Optimum charging schedules of CEVs

The depot optimizer is initiated by using the GWO
algorithm to generate the initial population of tStartn and tEndn ,
∀n ∈ W31 . In the GWO, the starting and ending times
are determined based on the AS of depot stations, where
the charging demand and order of CEVs remain unchanged.
Following the determination of the charging times for CEVs,
the charging period AIn,t for each CEV is calculated in
accordance with (2). When a CEV’s OSPT overlaps with
its calculated charge period, the depot optimizer divides the
charging period into two periods as shown in (3). As a result,
AS is divided into two allocation schedules (AS1 and AS2) in
accordance with the charging periods in (3). AS1 is defined by
updatingAS to include tOperaten of OSPT, whilstAS2 is defined
by applying Algorithm 1 to CEVs returning to the stations
from OSPT.

In the case where the AS2 overlaps with the departure time
of CEVs, the depot optimizer reduces the charging periods in
AS2 and compares the total charged energy with the EminD,n of
CEVs. When the total charged energy exceeds the EminD,n , the

depot optimizer adds the CEV in W ; otherwise, the CEV is
included inW . The depot optimizer uses the Cplex optimizer

to solve optimally the depot charging problem and calculate
the depot charging costs. After performing the previous steps
for the maximum number of iterations, the depot optimizer
chooses the optimal solution that has the lowest depot
charging cost and the least number of CEVs included inW .

E. PUBLIC CHARGING OPTIMIZATION
CEVs charging at public charging stations is necessary
when energy charged at depot charging stations is not
sufficient to meet their operational schedules. The CEVs that
require charging at public stations have been included in
W throughout the previous steps of the proposed strategy.
The charging of these CEVs at public stations should be
optimized in order to reduce the costs associated with public
charging. To this end, a heuristic algorithm is developed as
a public optimizer to solve the public charging problem,
which is shown in Algorithm 3. The heuristic algorithm is
proposed as opposed to a metaheuristic algorithm to solve the
public charging problem in order to reduce the computational
load.

In the heuristic algorithm, the charging time limits defined
by [Tmini,n ,Tmaxi,n ] at each public station are determined by
considering the logistical constraints of the CEV route
without visiting the public stations. Tmaxi,n is the minimum
difference between the arrival time and the upper limit of
time window (Li − T Arri ) of all nodes located after the
station i along the route. Tmini,n is dependent on the amount of
energy required for the CEV to reach the nearest station from
station i. Whenever CEV charging is scheduled across public
stations, the search space limits are updated accordingly.
Tmaxi,n is updated by taking into account the time it takes to
fully charge the CEV, as well as the time elapsed at previous
charging stations. Tmini,n is updated in accordance with the
CEV’s energy levels when it reaches the station.

Updated Tmini,n and Tmaxi,n are used to optimize public
charging of CEVs at each public charging station. On the
basis of these limits, the heuristic algorithm generates the
possible combinations of charging schedules (0) for CEVs
at public stations along their route. Afterwards, the optimizer
calculates the public charging costs for each charging
schedule in 0, returning the solution with the lowest cost
among all charging schedules.

IV. RESULTS AND PERFORMANCE ANALYSES
Two OSPT scenarios for CEVs and three case studies
are simulated to evaluate the performance of the proposed
strategy. In the case studies, the number of customers served
and public charging stations are different. Case 1 involves
the service of 15 customers and the availability of 4 public
stations. Five public stations and 21 customers are considered
in case 2. In case 3, there are 50 customers and 8 public
stations. During these case studies, two different scenarios
of OSPT for CEVs are investigated. Scenario-I assumes
that the CEVs will be parked until they depart. Scenario-II
involves the CEVs leaving for a specific period of time
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FIGURE 3. TOU energy tariffs of public and depot stations for a day.

before returning to charging stations. In Scenario-II, CEVs
are dispatched uniformly between 22:00 and 1:00 for OSPT,
while OPST lasts between 1.5 and 2.5 hours.

Case studies are based on benchmark instances that are
investigated in works [12], [47], [49], and [56]. A number
of parameters are extracted from these benchmark instances,
including customer and station locations, time windows,
service times, loading capacities, etc. Each of the CEVs in
the depot has a battery capacity of 150 kW, a load capacity of
200 kg, an average speed of 60 km/h.

The optimization of charging schedules and overall effi-
ciency in CEVs is heavily influenced by fuel consumption,
quantified by energy consumption per kilometer. This
metric is determined through tests conducted under various
conditions or simulations that consider variables such as
vehicle dynamics and the efficacy of the electric drivetrain
system. Optimizing vehicle design, routing, and operational
strategies significantly affects energy consumption rates that
can lead to considerable savings [57], [58]. This paper uses
a benchmark figure of 0.9 kW/km for fuel consumption.
In addition, this paper considers eight public charging stations
with power rates of P = [25, 40, 50, 25, 40, 50, 40, 25] kW,
and TOU energy pricing tariffs shown in Fig. 3 [51], [59].

At the depot, there are only three charging stations with
a 19.2 kW charging rate. ToU energy tariffs for charging at
the depot, shown in Fig. 3 follow industrial electricity tariffs
proposed in [59] and [60]. A demand cost of $8/kW is also
included in industrial electricity tariffs. The base-load profile
for a commercial facility is based on the average load profile
of the LGS sector in the service area of South California
Edison [61]. CEVs from the previous shift arrived primarily
between 16:30 and 18:00 according to [62]. The initial SoC
at depots has also been uniformly distributed between 0.2
and 0.4.

A. SIMULATION IMPLEMENTATION
We conduct our simulation using Python 3.7 on a desktop
computer equipped with an Intel Core i7 processor, operating
at 3.19 GHz. Throughout the simulation, which spans a
predefined period, we implement optimization techniques
iteratively. Initially, we utilize ACO to devise feasible routes

that meet logistical requirements prior to the implementation
of charging strategies. The simulation schedules the arrival
of CEVs at depots based on their designated arrival times
and adjusts queuing based on the available data for public
charging stations.

We simulate charging strategies using GWO and Cplex.
GWO determines the optimal start and end times for charging
each vehicle, and the simulation runs for a 24-hour period
to accommodate the integration of Cplex. This integration
allows Cplex to optimize the charging schedules of each
CEV at 15-minute intervals, enabling adjustments during
parking and potentially facilitating the use of V2V charging
technologies.

To mitigate computational demands, we employ a heuristic
algorithm for scheduling CEV charging at public sta-
tions. After establishing optimal charging schedules for
a feasible route, the ACO algorithm generates a new
route, and the simulation proceeds until all iterations are
complete.

For continuous CEV operation, the simulation calculates
the SoC at each node to ensure there is sufficient battery
energy for reaching the next charging station. Routes are
deemed infeasible if the SoC is insufficient. SoC calculation
involves determining the remaining energy at each node
using (20), which factors in distance, fuel consumption, and
energy previously charged energy. Subsequently, SoC at each
node is computed by dividing the remaining energy by the
CEV’s energy capacity.

B. SIMULATION RESULTS
A summary of the simulation results for the case studies under
Scenario-I and Scenario-II is presented in Table 1 and Table 2.
These results can be interpreted as follows.

1) CASE 1: RESULTS AND OBSERVATIONS
In case 1, the number of vehicles used for logistics is lower
than the number of charging stations available at the depot.
Thus, the charging period of each vehicle depends solely
on its availability as indicated in (2) and (3). Using the
proposed strategy, the charging profile of CEVs at depot
stations is coordinated over charging periods to achieve the
lowest depot costs. It is noteworthy that the depot cost in
Scenario-II is higher than in Scenario-I due to the OSPT
for CEVs, which reduces the charging periods of CEVs
during the lower energy tariff intervals. Furthermore, it can be
observed in both scenarios that CEVs travel the same routes
and charge at the same public stations. The reason is despite
the increase in depot costs in Scenario-II, the total travel cost
of this path is still lower than other feasible travel paths.
In the proposed strategy, the travel paths are optimized to
accomplish the minimum travel cost specified in (15) while
ensuring the continuity of CEVs before returning to the depot.
For illustration, let us consider Fig. 4, which illustrates the
optimal routes of the CEVs in Case 1.

Figures 5 and 6 illustrate the SoC of the two CEVs at
each node along their respective routes. According to Fig. 5,
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TABLE 1. Optimization results for cases studies under scenario-I.

TABLE 2. Optimization results for cases studies under scenario-II.

charging CEV 1 at the depot is adequate to serve all customers
and return to the depot. Conversely, Fig. 6 illustrates that to
ensure the continuous operation of CEV 2 along its route,
a visit to station f2 is necessary. A short detour distance
and low TOU tariffs led to f2 being selected over other
stations along the route. The proposed strategy schedules
the visit to f2 station before returning back to the depot
to avoid disrupting logistics services. The SoC of CEVs
at depot arrival in this simulation is set to be greater than
0.15.

2) CASE 2: RESULTS AND OBSERVATIONS
In case 2, there are more vehicles used for logistics than
charging spots at the depot. Consequently, the AS assigns
CEVs to depot stations based on their charging requirements
and arrival times. According to Table 1 for Scenario-I,
CEVs 1 and 4 are assigned to station s1, with CEV 4 being
assigned after CEV 1. AS of CEVs for Case 2 under
Scenario-I is shown in Fig. 7. It can be observed from the
figure that the charging periods for CEV 2 and CEV 3
are dependent on their availability times denoted in (2).
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FIGURE 4. Optimal routes for CEV 1 and 2 under Case 1.

FIGURE 5. SoC at each node of CEV 1’s route under Case 1.

FIGURE 6. SoC at each node of CEV 2’s route under Case 1.

For vehicles that share the same charging station, CEV 1’s
charging period is set longer than that of CEV 4 based on the
availability of the vehicles and the requirement to maintain
a minimum depot charging cost. This is illustrated in Fig. 8,
which shows the SoCs of CEVs at depot stations. As can be
seen in the figure, increasing charging period of CEV 1 allows
the charging rate of s1 to be regulated between 18:00 and
21:00 in order to avoid an increase in the depot cost due to
energy and demand tariffs. As soon as the charging period
for CEV 1 ends, CEV 4 continues to charge at the maximum
rate in station s1 until the required energy is achieved.
Similarly to Scenario-I, CEVs 1 and 4 are assigned to

station s1 in Scenario-II, with CEV 4 assigned after CEV 1.
Since CEVs undergo OSPT, the AS of CEVs are divided
into (AS1, AS2), which represent the periods before and after
the OSPT. AS of CEVs for Case 2 under Scenario-II are

FIGURE 7. AS of CEVs at depot stations for Case 2 under Scenario-I.

FIGURE 8. SoC of CEVs at depot stations for Case 2 under Scenario-I.

shown in Fig. 9. It can be seen that CEV 4 is allocated
before CEV 1 during AS2, because CEV 4 returns fromOSPT
before CEV 1. Although the OSPT reduces the charging
periods for CEVs when compared to Scenario-I, the proposed
strategy optimizes the two charging periods of each CEV
to minimize the depot charging cost as possible. Fig. 10
shows the SoCs of CEVs at depot stations for Case 2 under
Scenario-II. This figure shows how the proposed strategy
optimizes the charging profile of CEV 2 and CEV 3 between
18:00 and 21:00 in order to reduce depot charging costs.
Due to the OSPT, the charging periods for CEV 1 and
CEV 4 are sufficient to charge the required energy before
departure. Accordingly, the depot charging cost increases
slightly compared to Scenario-I. CEVs’ travel paths or public
charging schedules are not affected by this increase in depot
costs as shown in Table 2.

3) CASE 3: RESULTS AND OBSERVATIONS
For case 3, there are eight CEVs that are used for logistical
services. These CEVs have different charging requirements
that need to be met in accordance with their operational
schedules. The proposed strategy assigns CEVs to depot
charging stations based on their full charging requirements.
Whenever charging requirements cannot be assigned fully,
the charging requirements are reduced and assigned as
described in Algorithm 1.

Table 1 for Scenario-I shows that each of the stations s2,
and s3 has three CEVs, and station s1 has two CEVs. For
CEV1, the charging requirement is greater than the CEV
capacity, so it is necessary to visit a public charging station in
order to fulfill its logistical services. Charge requirements for
other CEVs are less than CEV capacity and can be charged
at the depot. Due to the limited number of depot stations,
however, the charging requirement for CEV 8 is reduced in
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FIGURE 9. AS of CEVs at depot stations for Case 2 under Scenario-II.

FIGURE 10. SoC of CEVs at depot stations for Case 2 under Scenario-II.

order to assign it to s3. Therefore, CEV 8 visits the public
stations f4 and f7 so that continuity is maintained until it
reaches the depot. When the CEV is charged at the public
charging station, the energy used during the detour from the
proposed route to the station should be compensated.

In Scenario-II, CEVs undergo OSPT, which reduces the
charging period, thereby reducing energy charged in the
depot. When using the optimized travel routes of Scenario-
I, some of these CEVs experience discontinuity during their
driving cycles. Thus, the proposed strategy defines different
travel paths to ensure the continuity of logistic services while
minimizing total travel costs. Table 2 for Scenario-II shows
that 8 CEVs are used for logistics services based on the new
travel routes. According to the OSPT, these CEVs may be
assigned to depot stations differently in AS1 and AS1. As an
example, CEV 7 is assigned to s3 in AS1 and s1 in AS2.
In addition, it should be noted that 5 CEVs require a visit to
public charging stations during their driving cycle, as opposed
to two CEVs in Scenario-II.

C. PERFORMANCE OF PROPOSED STRATEGY
According to the authors’ knowledge, a number of routing
and charging algorithms have been considered in the
literature, but none have considered charging CEVs with a
limited number of depot charging stations, including OSPT,
TOU tariffs at depots and public charging stations, and
depot demand charges. Because of this, it is not possible to
directly compare the proposed models in the literature. For
comparison purposes, the ACO algorithm was used to solve
the charging problem, taking into consideration different
variants studied in [10], [12], [49], and [51]. In this ACO
algorithm (called the existing/benchmark algorithm in this
paper), the CEV is assigned to the charging station in the

TABLE 3. Comparison of existing/benchmark algorithm and proposed
strategy for case studies 1-3.

TABLE 4. Computational time comparison of existing/benchmark
algorithm with proposed strategy for case 2 under Scenario-II.

depot according to its arrival time. Whenever the CEV starts
charging, it continues to charge at the maximum charging rate
until it reaches its required energy or leaves the depot. CEVs
departing for OSPT return to the same charging station after
OSPT. In addition, the existing/benchmark algorithm assigns
only one public charging station to each path of the route.
Table 3 lists the simulation results for comparison.

Under Cases 1 and 2, the proposed strategy has better
results in terms of reducing the total cost significantly.
The existing/benchmark algorithm responds to different
scenarios similarly because the charging period for CEVs
is only determined by its energy requirements, so there is
no optimization for demand and energy costs. In the case
of large customers, the proposed strategy performs better
in terms of total cost and continuity of logistics service
than the existing/benchmark algorithm. Under Scenario-II
in Case 3, the proposed strategy can save up to 30%
and ensures the continuity of all optimized CEVs, whereas
the existing/benchmark algorithm loses the continuity of
two CEVs. The reduction in costs is achieved through the
optimization of demand charges and TOU tariffs, strategic
assignment of CEVs to depot charging stations, and the
implementation of an efficient routing algorithm. This strat-
egy effectively reduces expenses, improves scalability, and
ensures continuous service, even in situations with extensive
customer demands and constrained charging infrastructure.
According to these results, the proposed strategy can play
a significant role in increasing the adoption of CEVs in the
depot fleet without requiring infrastructure upgrades.

The proposed strategy has been simplified in terms of
computational complexity by proposing a heuristic algorithm
rather than a meta-heuristic algorithm for the public opti-
mizer. In addition, the search spaces of GWO and ACO have
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TABLE 5. Optimization results for case 3 under Scenario-II with different
values of time windows and customers number.

been reduced by updating the space limits and eliminating
repeated solutions, respectively. In this way, the entire
strategy was able to be computed in less time. Table 4 shows
a comparison of the computational time of the proposed strat-
egy and the existing/benchmark algorithm under different
cases. Under Case 1, the proposed strategy displays a similar
computational time to the existing/benchmark strategy.When
the number of customers is increased like in Cases 2 and 3,
the proposed strategy takes more time to converge than the
existing/benchmark algorithm due to the need to allocate and
optimize the CEV charging at the depot. This increase in
computational time is offset by the reduction in the total cost
and maintaining the logistics services, as shown in Table 3.

D. IMPACT OF PUBLIC CHARGING STATIONS AND TIME
WINDOWS
The time windows of customers have a major impact on the
feasibility of routes for CEVs and the possibility of charging
CEVs at public charging stations. This impact is highlighted
by the increasing number of customers being served and the
lack of public stations. Consequently, the proposed strategy
should be evaluated in light of time windows and the lack
of public stations. To investigate this situation, the number
of customers in Case 3 is increased from 50 to 60 while
keeping the number of public stations the same. The proposed
strategy is then evaluated under different time windows as
shown in Table 5. Under the time windows of Case 3,
an increase in customer numbers will result in an increase in
CEVs to compensate for the lack of public stations. There
is an increase in public charging of these CEVs due to
the detour distance to the existing public stations. With the
tight time window of one hour for the |V| customers, the
proposed strategy considers different travel paths for CEVs
to enable their charging at public stations, which increased
the total cost of the logistics. The lack of public stations
and tight time windows ultimately result in a further increase
in CEV numbers for (|V|+10) customers in order to be able
to charge in existing public stations and maintain logistics
services. If customers’ time windows are relaxed by 1 hour,
shorter routes with enough public stations become available,
resulting in fewer CEVs and a lower overall cost.

V. CONCLUSION
This paper proposed a strategy to optimize the routing and
charging process for CEVs considering the limited charging
infrastructure at the depot. As part of the proposed strategy,
the allocation system is designed to assign arrival CEVs

to depot stations appropriately. The proposed strategy used
a combined algorithm of GWO and Cplex optimizers to
manage the charging of assigned CEVs in accordance with
demand charging and operational scheduling during parking
periods. A heuristic algorithm was used to schedule CEVs
charging at public stations along feasible routes of vehicles.
In the proposed strategy, feasible routes are generated by
ACO algorithm in order to minimize travel costs and ensure
continuity of logistics services.

Through extensive simulation case studies, the effective-
ness of the proposed strategy has been confirmed. Two OSPT
scenarios without andwith CEVs leaving for a specific period
before returning to charging stations are simulated. For each
scenario, three case studies involving the service of 15, 21,
and 50 customers with the availability of 4, 5, and 8 public
stations are investigated (Tables 1-2). Based on the simulation
results, it can be concluded that the limited charging
infrastructure at the depot has an impact on the charging
schedules of CEVs and the routes of logistics services.
Results showed that the proposed solution reduced the total
travel cost by up to 30% and ensured continuum of logistics
services, whereas the existing/benchmark algorithm caused
some CEVs to lose continuity (Tables 3-4). In our future
research, we aim to design a strategy capable of addressing
dynamic operational schedules, unforeseen demand, and
routing changes for CEVs, particularly in the context of
a limited CEV Fleet. This strategy will enhance flexibility
and resilience in urban logistics, ensuring adaptability to
the unpredictable nature of delivery services. Furthermore,
we intend to collaborate closely with logistics companies to
obtain essential data for refining our strategy. Our objective
is to implement this strategy in real-world scenarios to
demonstrate its effectiveness and cost savings. Through this
demonstration, we hope to validate the practical advantages
of our approach and encourage widespread adoption among
companies for managing their electric vehicle fleets.

REFERENCES
[1] Int. Energy Agency, Paris, France. (2022). Global Ev Outlook 2022.

[Online]. Available: https://www.iea.org/reports/global-ev-outlook-2022
[2] M. Weiss, P. Dekker, A. Moro, H. Scholz, and M. K. Patel, ‘‘On the

electrification of road transportation—A review of the environmental,
economic, and social performance of electric two-wheelers,’’ Transp. Res.
D, Transp. Environ., vol. 41, pp. 348–366, Dec. 2015.

[3] Int. Energy Agency, Paris, France. (2023). Global Ev Outlook 2023.
[Online]. Available: https://www.iea.org/reports/global-ev-outlook-2023

[4] E. Parviziomran and R. Bergqvist, ‘‘A cost analysis of decarbonizing
the heavy-duty road transport sector,’’ Transp. Res. D, Transp. Environ.,
vol. 120, Jul. 2023, Art. no. 103751.

[5] B. Al-Hanahi, I. Ahmad, D. Habibi, and M. A. S. Masoum, ‘‘Charging
infrastructure for commercial electric vehicles: Challenges and future
works,’’ IEEE Access, vol. 9, pp. 121476–121492, 2021.

[6] T. Ghandriz, B. Jacobson, N. Murgovski, P. Nilsson, and L. Laine, ‘‘Real-
time predictive energy management of hybrid electric heavy vehicles
by sequential programming,’’ IEEE Trans. Veh. Technol., vol. 70, no. 5,
pp. 4113–4128, May 2021.

[7] M. Ammous, S. Belakaria, S. Sorour, and A. Abdel-Rahim, ‘‘Optimal
cloud-based routing with in-route charging of mobility-on-demand electric
vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 20, no. 7, pp. 2510–2522,
Jul. 2019.

46056 VOLUME 12, 2024



B. Al-Hanahi et al.: Charging Strategy for Large Commercial Electric Vehicle Fleets

[8] H. Liimatainen, O. van Vliet, and D. Aplyn, ‘‘The potential of elec-
tric trucks—An international commodity-level analysis,’’ Appl. Energy,
vol. 236, pp. 804–814, Feb. 2019.

[9] B. Borlaug, M. Muratori, M. Gilleran, D. Woody, W. Muston, T.
Canada, A. Ingram, H. Gresham, and C. McQueen, ‘‘Heavy-duty truck
electrification and the impacts of depot charging on electricity distribution
systems,’’ Nature Energy, vol. 6, no. 6, pp. 673–682, Jun. 2021.

[10] Y.-H. Jia, Y. Mei, and M. Zhang, ‘‘A bilevel ant colony optimization
algorithm for capacitated electric vehicle routing problem,’’ IEEE Trans.
Cybern., vol. 52, no. 10, pp. 10855–10868, Oct. 2022.

[11] S. Martin, ‘‘Developing a business model for commercial electric vehicle
charging infrastructure,’’ M.S. thesis, Int. Inst. Ind. Environ. Econ. (IIIEE),
Lund, Sweden, 2016.

[12] B. Al-Hanahi, I. Ahmad, D. Habibi, P. Pradhan, and M. A. S. Masoum,
‘‘An optimal charging solution for commercial electric vehicles,’’ IEEE
Access, vol. 10, pp. 46162–46175, 2022.

[13] O. Sadeghian, A. Oshnoei, B. Mohammadi-Ivatloo, V. Vahidinasab, and
A. Anvari-Moghaddam, ‘‘A comprehensive review on electric vehicles
smart charging: Solutions, strategies, technologies, and challenges,’’ J.
Energy Storage, vol. 54, Oct. 2022, Art. no. 105241. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352152X22012403

[14] C. Le Floch, F. Belletti, and S. Moura, ‘‘Optimal charging of electric
vehicles for load shaping: A dual-splitting framework with explicit
convergence bounds,’’ IEEE Trans. Transport. Electrific., vol. 2, no. 2,
pp. 190–199, Jun. 2016.

[15] H. N. T. Nguyen, C. Zhang, and Md. A. Mahmud, ‘‘Optimal coordination
of G2V andV2G to support power grids with high penetration of renewable
energy,’’ IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 188–195,
Aug. 2015.

[16] H. N. T. Nguyen, C. Zhang, and J. Zhang, ‘‘Dynamic demand control
of electric vehicles to support power grid with high penetration level
of renewable energy,’’ IEEE Trans. Transport. Electrific., vol. 2, no. 1,
pp. 66–75, Mar. 2016.

[17] V. del Razo, C. Goebel, and H.-A. Jacobsen, ‘‘Vehicle-originating-signals
for real-time charging control of electric vehicle fleets,’’ IEEE Trans.
Transport. Electrific., vol. 1, no. 2, pp. 150–167, Aug. 2015.

[18] T. Parker and D. Naberezhnykh, ‘‘Charging point strategies for electric
commercial vehicles,’’ in Proc. IET Hybrid Electric Vehicles Conf. (HEVC
), Nov. 2013, pp. 1–4.

[19] A. Mangipinto, F. Lombardi, F. D. Sanvito, M. Pavi, S. Quoilin, and
E. Colombo, ‘‘Impact of mass-scale deployment of electric vehicles
and benefits of smart charging across all European countries,’’ Appl.
Energy, vol. 312, Apr. 2022, Art. no. 118676. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261922001416

[20] L. Bradley, ‘‘Charging infrastructure strategies: Maximizing the deploy-
ment of electric drayage trucks in Southern California,’’ Inst. Transp.
Studies, UCLA, Los Angeles, CA, USA, Tech. Rep. LAS1903, 2019.
[Online]. Available: https://escholarship.org/uc/item/7pk425v7

[21] G. Zhang, S. T. Tan, and G. G.Wang, ‘‘Real-time smart charging of electric
vehicles for demand charge reduction at non-residential sites,’’ IEEETrans.
Smart Grid, vol. 9, no. 5, pp. 4027–4037, Sep. 2018.

[22] B. Al-Hanahi, I. Ahmad, D. Habibi, and M. A. Masoum, ‘‘Smart
charging strategies for heavy electric vehicles,’’ eTransportation,
vol. 13, Aug. 2022, Art. no. 100182. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2590116822000285

[23] X. Zhu, P. Mishra, B. Mather, M. Zhang, and A. Meintz, ‘‘Grid
impact analysis and mitigation of en-route charging stations for heavy-
duty electric vehicles,’’ IEEE Open Access J. Power Energy, vol. 10,
pp. 141–150, 2023.

[24] R. Prohaska, M. Simpson, A. Ragatz, K. Kelly, K. Smith, and
K. Walkowicz, ‘‘Field evaluation of medium-duty plug-in electric delivery
trucks,’’ Nat. Renew. Energy Lab. (NREL), Golden, CO, USA, Tech.
Rep. NREL/TP-5400-66382, 2016.

[25] Y. Zheng, Z. Y. Dong, Y. Xu, K. Meng, J. H. Zhao, and J. Qiu, ‘‘Electric
vehicle battery charging/swap stations in distribution systems: Comparison
study and optimal planning,’’ IEEE Trans. Power Syst., vol. 29, no. 1,
pp. 221–229, Jan. 2014.

[26] A.Hoke, A. Brissette, K. Smith, A. Pratt, andD.Maksimovic, ‘‘Accounting
for lithium-ion battery degradation in electric vehicle charging opti-
mization,’’ IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 3,
pp. 691–700, Sep. 2014.

[27] Z. Ma, S. Zou, and X. Liu, ‘‘A distributed charging coordination for large-
scale plug-in electric vehicles considering battery degradation cost,’’ IEEE
Trans. Control Syst. Technol., vol. 23, no. 5, pp. 2044–2052, Sep. 2015.

[28] H. Yang, S. Yang, Y. Xu, E. Cao, M. Lai, and Z. Dong, ‘‘Electric vehicle
route optimization considering time-of-use electricity price by learnable
partheno-genetic algorithm,’’ IEEE Trans. Smart Grid, vol. 6, no. 2,
pp. 657–666, Mar. 2015.

[29] B. Li, D. Jing, H. Zhong, G. He, Z. Ma, G. Ruan, M. Chen, and
D. M. Kammen, ‘‘Centralized charging station planning for battery
electric trucks considering the impacts on electricity distribution systems,’’
Energy Rep., vol. 9, pp. 346–357, Sep. 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352484723004547

[30] Y. Wu, A. Ravey, D. Chrenko, and A. Miraoui, ‘‘Demand side energy man-
agement of EV charging stations by approximate dynamic programming,’’
Energy Convers. Manage., vol. 196, pp. 878–890, Sep. 2019.

[31] I. Sengör, S. Güner, and O. Erdinç, ‘‘Real-time algorithm based intelligent
EV parking lot charging management strategy providing PLL type
demand response program,’’ IEEE Trans. Sustain. Energy, vol. 12, no. 2,
pp. 1256–1264, Apr. 2021.

[32] Z. Moghaddam, I. Ahmad, D. Habibi, and M. A. S. Masoum, ‘‘A
coordinated dynamic pricing model for electric vehicle charging stations,’’
IEEE Trans. Transport. Electrific., vol. 5, no. 1, pp. 226–238, Mar. 2019.

[33] S. Wang, S. Bi, and Y. A. Zhang, ‘‘Reinforcement learning for real-time
pricing and scheduling control in EV charging stations,’’ IEEE Trans. Ind.
Informat., vol. 17, no. 2, pp. 849–859, Feb. 2021.

[34] X. Huang, Y. Zhang, D. Li, and L. Han, ‘‘An optimal scheduling algorithm
for hybrid EV charging scenario using consortium blockchains,’’ Future
Gener. Comput. Syst., vol. 91, pp. 555–562, Feb. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X18313578

[35] S. Schoenberg, D. S. Buse, and F. Dressler, ‘‘Coordinated electric vehicle
re-charging to reduce impact on daily driving schedule,’’ in Proc. IEEE
Intell. Vehicles Symp. (IV), Jul. 2021, pp. 1180–1187.

[36] G. Kim, Y. S. Ong, C. K. Heng, P. S. Tan, and N. A. Zhang, ‘‘City vehicle
routing problem (city VRP): A review,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 4, pp. 1654–1666, Aug. 2015.

[37] U. Ritzinger, J. Puchinger, and R. F. Hartl, ‘‘A survey on dynamic and
stochastic vehicle routing problems,’’ Int. J. Prod. Res., vol. 54, no. 1,
pp. 215–231, Jan. 2016.

[38] X. Zhu, R. Yan, Z. Huang, W. Wei, J. Yang, and S. Kudratova,
‘‘Logistic optimization formulti depots loading capacitated electric vehicle
routing problem from low carbon perspective,’’ IEEE Access, vol. 8,
pp. 31934–31947, 2020.

[39] V. F. Yu, G. Aloina, P. Jodiawan, A. Gunawan, and T.-C. Huang,
‘‘The vehicle routing problem with simultaneous pickup and delivery
and occasional drivers,’’ Expert Syst. Appl., vol. 214, Mar. 2023,
Art. no. 119118. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0957417422021364

[40] W. Zhang, H. Li, W. Yang, G. Zhang, and M. Gen, ‘‘Hybrid
multiobjective evolutionary algorithm considering combination timing
for multi-type vehicle routing problem with time windows,’’ Comput.
Ind. Eng., vol. 171, Sep. 2022, Art. no. 108435. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360835222004703

[41] Y. Zhou, L. Kong, Y. Cai, Z. Wu, S. Liu, J. Hong, and K. Wu,
‘‘A decomposition-based local search for large-scale many-objective
vehicle routing problems with simultaneous delivery and pickup and time
windows,’’ IEEE Syst. J., vol. 14, no. 4, pp. 5253–5264, Dec. 2020.

[42] Q.-Q. Yang, D.-W. Hu, H.-F. Chu, and C.-R. Xu, ‘‘An electric vehicle
routing problem with pickup and delivery,’’ in Proc. CICTP. Reston, VA,
USA: Intelligence, Connectivity, and Mobility. American Society of Civil
Engineers, 2018, pp. 176–184.

[43] H. Li, Z. Li, L. Cao, R. Wang, and M. Ren, ‘‘Research on optimization of
electric vehicle routing problem with time window,’’ IEEE Access, vol. 8,
pp. 146707–146718, 2020.

[44] S. González, F. Feijoo, F. Basso, V. Subramanian, S. Sankaranarayanan,
and T. K. Das, ‘‘Routing and charging facility location for EVs under nodal
pricing of electricity: A bilevel model solved using special ordered set,’’
IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 3059–3068, Jul. 2022.

[45] Y. Wang, J. Jiang, and T. Mu, ‘‘Context-aware and energy-driven route
optimization for fully electric vehicles via crowdsourcing,’’ IEEE Trans.
Intell. Transp. Syst., vol. 14, no. 3, pp. 1331–1345, Sep. 2013.

[46] M. Keskin, B. Çatay, and G. Laporte, ‘‘A simulation-based heuristic
for the electric vehicle routing problem with time windows and
stochastic waiting times at recharging stations,’’ Comput. Oper.
Res., vol. 125, Jan. 2021, Art. no. 105060. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054820301775

VOLUME 12, 2024 46057



B. Al-Hanahi et al.: Charging Strategy for Large Commercial Electric Vehicle Fleets

[47] G. Ferro, M. Paolucci, and M. Robba, ‘‘Optimal charging and routing of
electric vehicles with power constraints and time-of-use energy prices,’’
IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 14436–14447, Dec. 2020.

[48] S. Pelletier, O. Jabali, and G. Laporte, ‘‘The electric vehicle rout-
ing problem with energy consumption uncertainty,’’ Transp. Res. B,
Methodol., vol. 126, pp. 225–255, Aug. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0191261519300153

[49] H. Mao, J. Shi, Y. Zhou, and G. Zhang, ‘‘The electric vehicle routing
problem with time windows and multiple recharging options,’’ IEEE
Access, vol. 8, pp. 114864–114875, 2020.

[50] A. Verma, ‘‘Electric vehicle routing problem with time windows, recharg-
ing stations and battery swapping stations,’’ EURO J. Transp. Logis-
tics, vol. 7, no. 4, pp. 415–451, Dec. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2192437620300637

[51] A. Abdulaal, M. H. Cintuglu, S. Asfour, and O. A. Mohammed, ‘‘Solving
the multivariant EV routing problem incorporating V2G and G2V
options,’’ IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 238–248,
Mar. 2017.

[52] H. Yudai and K. Osamu, ‘‘A safety stock problem in battery switch stations
for electric vehicles,’’ in Proc. 8th Int. Symp. Oper. Res. Appl. (ISORA),
2009, pp. 332–339.

[53] D. Said, S. Cherkaoui, and L. Khoukhi, ‘‘Multi-priority queuing for electric
vehicles charging at public supply stations with price variation,’’ Wireless
Commun. Mobile Comput., vol. 15, no. 6, pp. 1049–1065, Apr. 2015.

[54] W. Jiang and Y. Zhen, ‘‘A real-time EV charging scheduling for parking
lots with PV system and energy store system,’’ IEEE Access, vol. 7,
pp. 86184–86193, 2019.

[55] IBM. (2020).Decision Optimization Cplex Modeling for Python. [Online].
Available: http://ibmdecisionoptimization.github.io/docplex-do/

[56] M. Schneider, A. Stenger, and D. Goeke, ‘‘The electric vehicle-routing
problem with time windows and recharging stations,’’ Transp. Sci., vol. 48,
no. 4, pp. 500–520, Nov. 2014.

[57] V. Trucks. (2022). Volvo Heavy-Duty Electric Truck Excels in Range and
Energy Efficiency in Independent Test. Accessed: Feb. 25, 2024. [Online].
Available: https://www.volvotrucks.com/en-en/news-stories/press-
releases/2022/jan/volvos-heavy-duty-electric-truck-is-put-to-the-test-
excels-in-both-range-and-energy-efficiency.html

[58] Z. Gao, Z. Lin, and O. Franzese, ‘‘Energy consumption and cost savings
of truck electrification for heavy-duty vehicle applications,’’ Transp. Res.
Rec., J. Transp. Res. Board, vol. 2628, no. 1, pp. 99–109, Jan. 2017.

[59] B. H. P. Smart. (2020). General Service Bus. Rates. [Online]. Available:
https://app.bchydro.com/accounts-billing/rates-energy-use/electricity-
rates/business-rates.html

[60] Z. Xu, Z. Hu, Y. Song, W. Zhao, and Y. Zhang, ‘‘Coordination of
PEVs charging across multiple aggregators,’’ Appl. Energy, vol. 136,
pp. 582–589, Dec. 2014.

[61] SCE. (2022). Static Load Profiles. [Online]. Available:
https://www.sce.com/regulatory/load-profiles/2022-static-load-profiles

[62] NREL. (2015). Smith Newton Vehicle Performance Evaluation–
Cumulative. [Online]. Available: https://www.nrel.gov/docs/fy14osti/
62066.pdf

BASSAM AL-HANAHI (Graduate Student Mem-
ber, IEEE) received the bachelor’s degree in
electrical engineering from Sana’a University,
Sana’a, Yemen, in 2011, the M.Sc. degree in
electrical engineering from Yildiz Technical Uni-
versity, Istanbul, Turkey, in 2018, and the Ph.D.
degree in electrical engineering from Edith Cowan
University, WA, Australia, in 2023. Between
2012 and 2019, he held various roles with Sana’a
University and the Ministry of Electricity, Sana’a.

From 2012 to 2018, he was a Lecturer and a Projects Coordinator with the
Electrical Engineering Department. Additionally, he was a Trainer and the
Head of the Power System and Renewable Energy Sources Department,
Ministry of Electricity, Yemen, from 2013 to 2016. Currently, he is a
Research Assistant with the School of Engineering, Edith Cowan University.
His research interests include smart grids, power electronics, PV solar
systems, renewable and sustainable energy, battery storage systems, and
heavy-duty electric vehicles.

IFTEKHAR AHMAD (Member, IEEE) received
the Ph.D. degree in communication networks from
Monash University, Australia, in 2007. He is cur-
rently an Associate Professor with the School of
Engineering, Edith Cowan University, Australia.
His research interests include machine learning,
localization, sensor fusion, sports science, QoS in
communication networks, software-defined radio,
wireless sensor networks, and computational
intelligence.

DARYOUSH HABIBI (Senior Member, IEEE)
received the Bachelor of Engineering degree
(Hons.) in electrical and the Ph.D. degree from
the University of Tasmania, in 1989 and 1994,
respectively. His employment history includes the
Telstra Research Laboratories, Flinders Univer-
sity, Intelligent Pixels Inc., and Edith Cowan
University, where he is currently a Professor,
a Pro Vice-Chancellor, and the Executive Dean
of Engineering. His research interests include

engineering design for sustainable development, renewable and smart energy
systems, environmental monitoring technologies, and reliability and quality
of service in engineering systems and networks. He is a fellow of Engineers
Australia and the Institute of Marine Engineering, Science & Technology.

PRAVAKAR PRADHAN (Graduate Student
Member, IEEE) received the bachelor’s degree
in electrical engineering from the College of
Science and Technology (CST), Phuentsholing,
Bhutan, in 2008, and the Master of Engineering
degree in energy from KU Leuven, Belgium,
in 2014. He is currently pursuing the Ph.D. degree
with the Smart Energy Systems Group, Edith
Cowan University, Joondalup, WA, Australia.
From January 2009 to 2019, he was with the

Electrical Engineering Department (EED), CST. He was the Head of the
Electrical Engineering Department (HoD) (2017–2019) and a Coordinator
and the Head of the Centre for Renewable Energy and Sustainable Energy
Development (CRSED) (2015–2018). His research interests include power
system stability, power system restoration, hydro power plants, renewable
and sustainable energy, and electric vehicles. He was a recipient of the
Endeavour Executive Fellowship (2016) and Indian Science and Research
Fellowship (2018).

MOHAMMAD A. S. MASOUM (Senior Mem-
ber, IEEE) received the B.S. and M.S. degrees
in electrical and computer engineering from the
University of Colorado at Denver, Denver, CO,
USA, in 1983 and 1985, respectively, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Colorado at Boulder,
Boulder, CO, USA, in 1991. He is currently a
Professor and the Chair/Head of the Engineering
Department, Utah Valley University, Orem, UT,

USA. He has coauthored Power Quality in Power Systems and Electrical
Machines (Elsevier, 2008 and 2015) and the Power Conversion of Renewable
Energy Systems (Springer, 2011 and 2012).

46058 VOLUME 12, 2024


