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ABSTRACT Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that represents a
significant and growing public health challenge. This work concisely summarizes AD, encompassing its
pathophysiology, risk factors, clinical manifestations, diagnosis, treatment, and ongoing research. The main
goal of managing AD is to reduce symptoms while improving the lives of those impacted. This letter has
conducted a systematic review to analyze the prediction of AD using the Preferred Reporting Item for
Systematic Review and Meta-Analysis (PRISMA) guidelines. The major scientific databases such as Scopus,
Web of Science (WoS), and IEEE Xplorer are explored, where 2018-2023 publications are considered. The
article selection process is based on keywords like “Alzheimer’s disease,” “‘Brain Images,” “Deep Learning
(DL),” etc. After rigorous analysis, 946 articles were extracted, and 42 were identified for final consideration.
Further, several investigations based on the previous work are discussed along with its Proposed Solutions
(PS). Finally, a case study on AD detection using the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset and AD Detection Network (ADD-NET) implementation is presented.

INDEX TERMS Alzheimer, brain images, convolutional neural network, generative adversarial network,
machine learning, magnetic resonance imaging, positron emission tomography, biomarkers, P-TAU, amyloid
beta, systematic review, meta-analysis.

I. INTRODUCTION This process causes neuronal shrinkage, neurotransmitter

Alzheimer’s disease (AD) is a chronic and progressive neu-
rological ailment that predominantly affects important brain
processes such as thinking, memory, and behavior. This pat-
tern is characterized by the slow loss of brain tissue along
with the formation of aberrant protein deposits, resulting in
a continuous decline of cognitive capacities over time [1].
Figure 1 shows that AD is primarily defined by an accu-
mulation of abnormal tau proteins and amyloid plaques in
the brain, which causes inflammation and oxidative damage.
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abnormalities, and, eventually, widespread brain death, all of
which contribute to AD development. It is estimated that 1 in
85 persons globally will have AD by the year 2050. Due to the
growing aging population, AD is also substantially increasing
not only in terms of influencing people but also impacting
society with social and economic threats for the coming 30 to
40 years [2].

The alarming $800 billion in medical care expenses linked
to AD each year highlight the need to investigate novel early
detection techniques, especially for the identification of mild
cognitive impairment (MCI) [3]. While, strong and com-
plementary information is also obtained from multimodal
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FIGURE 1. AD Nexus: Understanding the role of environmental and
genetic factors.

imaging for an earlier and more accurate diagnosis of brain
disorders, including AD and Mild Cognitive Impairment
(MCI) [4]. MCI is the prodromal stage of AD and is catego-
rized into stable MCI (sMCI) and progressive MCI (pMCI).
The person affected by MCI is not severe as compared to
AD, but there is a chance of 10 to 15 % of having MCI
to AD within a specified time frame of three years [5], [6],
[7]. At present, proper medications (or treatments) are not
available to stop AD progress. New research criteria were
established by the National Institute on Aging-Alzheimer’s
Association (NIA-AA) workgroups [8] for diagnosing AD.
The hypothesis behind this was that AD dementia develops
gradually, starting with presymptomatic AD and progressing
to symptomatic pre-dementia and then AD dementia. It is
crucial to discover sensitive and specific biomarkers to mon-
itor the early progression of AD and keep track of novel
therapeutic developments. Due to the high psychological and
financial costs associated with AD, it is critical to develop an
automatic diagnosis method for possible early treatment [9].
Several ML techniques and pattern analyses are gradually
used by the researcher to predict diseases associated with AD.
Various neuroimaging modalities, such as MRI and PET, have
been extensively used in AD as these can provide additional
brain structure information to train the model for automat-
ically predicting the disease [10], [11]. Implementing ML
techniques in AD diagnosis has shown promising results and
is currently a significant area of research. This is made possi-
ble by the availability of publicly available data from different
repositories such as the AD Neuroimaging Initiative (ADNI),
Australian Imaging, Bio-marker & Lifestyle Flagship Study
of Ageing (AIBL), and Open Access Series of Imaging Stud-
ies (OASIS). On the other hand, DL techniques are quite
effective since they automatically extract essential features
from the input images. The anatomy and functional features
of the human brain are documented by utilizing a range of
imaging methods, including Computed Tomography (CT),
Positron Emission Tomography (PET), and Magnetic Reso-
nance Imaging (MRI) [12], [13], as illustrated in Figure 2.
This research shows that integrating information from mul-
tiple models produces better results than applying only one
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FIGURE 2. Samples of (a) CT, (b) PET, and (c) MRI scan of AD.

model. Further, this study explored proposed solutions for the
extracted investigations based on previous work done by the
researchers in this field.

Moreover, the following sections include the organization
of this paper. Section II consists of the extracted articles
based on Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) standards for predicting AD.
Section III discusses investigations based on earlier work
done by the researchers. Further, the critical review analysis
is presented in Section IV. Section V includes proposed
solutions for investigations addressed in section III. Finally,
this work is concluded in section 6 with its future perspective.

II. LITERATURE REVIEW

This section performs a critical analysis of previous work
done by different researchers to predict AD using DL tech-
niques, along with the various proposed investigations based
on the literature analysis as depicted in Table 1.

A. ANALYSIS OF AD

Alsadhan [14] proposed a CNN-based VGG16 and ResNet
50 model for AD detection. The proposed method extracted
visual information from the image data using DL techniques,
which accurately predicted the AD class value. They used a
public dataset available at Kaggle that consisted of 5121 train-
ing and 1279 test images for the experimental work. Each
image has a size of 244 * 244 pixels. They used accuracy,
precision, sensitivity, and F1-score to evaluate the proposed
model. As a result, they achieved 60% and 69% accuracy
for the ResNet and VGG16, respectively. Balaji et al. [15]
discussed the Hybridised DL method for early AD detec-
tion. The Convolutional Neural Network (CNN) and LSTM
(Long-Short-Term Memory) model were used to train the
model. In this work, two datasets were used (i.e., MRI
and Munich), where MRI consisted of 512 images, and
Munich consisted of 112 images for training. The accuracy
was increased using Adam’s optimization and the learning
weights with the proposed methods. In the experimental anal-
ysis, they achieved a 98.5% accuracy level. Islam et al. [16]
introduced ResNet 50 and a Support Vector Machine (SVM)
classifier for diagnosing AD from MRI Scans. The authors
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TABLE 1. Diverse findings from several studies and datasets combined cohesively.

Multi-instance DL) [32]

Method/ Model Dataset Results/Outcomes

Densely connected CNN | ADNI Accuracy: 97.35% (AD vs. CN), 87.82% (MCI

[31] converters vs. non-converters), 78.79% (MCI converters
vs. non-converters)

Ensemble ML [18] NCA-F Accuracy: 93.92%

SVM, ResNet 50 [16] ADNI (2024 brain MR | Accuracy: 99.78% (training), 98.71% (testing), 99.52%

images) (validation)

CNN [17] MIRIAD Accuracy: 89.0%, Precision: 89.0%, F1-Score: 77.0%,
Sensitivity: 92.0%

Various DL Architectures | ADNI Accuracy: 99.79%

[19]

LSTM, CNN [15] MRI, Munich Accuracy: 98.5%

ML-based [21] PET, CT Precision: 83% (healthy), 81% (mild), 85% (severe AD)

DeepCurvMRI  (CNN  + | Alzheimer's MRI Accuracy: 98.62%, Sensitivity: 99.05%, Specificity:

CT) [22] 98.50%, F1-Score: 99.21%

RF, XGBoost, CNN [23] ADNI Accuracy: 97.57%, Sensitivity: 97.60%

ML techniques, logistic | Antenna S-parameter data Accuracy: 98.97%

regression [2]

CNN [25] sMRI (ADNI) Accuracy: 96.12%, Precision: 95.50%, F1-Score: 95.23%

GBM-centered instance- | ADNI, Mount Sinai Improved classification accuracy

based TL [26]

Hybrid classical-quantum | 64000 labeled MRI scans Training Accuracy: 99.1%, Classification Accuracy:

network [27] 97.2%

Bidirectional LSTM, | DementiaBank clinical | Accuracy: 93.31%

Stacked Deep  Dense | transcript dataset

Neural Network [28]

Ensemble Learning [30] ADNI (789 3D MRI images) | AUC: 91.28% (AD vs. MCI), 88.42% (MCI vs. CN)

Fusion-based Stacked | Spoken and Written | Accuracy: 99.47% (written), 98.1% (spoken), F1-Score:

Generalisation [31] Languages 97% (written), 95% (spoken)

DA-MIDL (Dual Attention | AIBL, ADNI Accuracy: 92.4%, Sensitivity: 91.0%

SVM model [33]

Blood plasma proteins

Sensitivity: >80%, Specificity: >70%

Deep transfer learning [34]

Synthetic images

Accuracy: 81.03%

Hierarchical FCNN [36]

Structural MRI

AUC: 95.01%, Sensitivity: 82.4%, Accuracy: 90.03%

TS-SVM (Temporally
Structured SVM) [37]

MR image sequence

Accuracy: 81.75%

classifier [40]

Data-Augmentation OASIS Accuracy: 95.11% (3D views), 98.41% (single view)
Framework [38]

DL models, Resting State | R-fMRI data Prediction Accuracy: 31.21% (increased), Standard
Brain Networks [39] Deviation: 51.23% (lowered)

Efficient patch-based | GARD cohort dataset Accuracy: 90.05%

used the ADNI dataset comprising 2024 brain MRI images.
Further, the dataset consisted of CN (Cognitive Normal) and
MCI classes of images. They concluded that the proposed
model achieved 99.78%, 99.52%, and 98.71% accuracy dur-
ing training, validation, and testing, respectively. de Silva and
Kunz [17] suggested the CNN model for AD prediction from
MRI. Medical images of the brain were used to train the CNN
model. The proposed model differentiated between AD and
non-AD patients with the help of a classification algorithm.
The Minimal Interval Resonance Imaging in AD (MIRIAD)
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dataset was used to train the model and attained 89.0% accu-
racy, 89.0% F1-score, 92.0% Area Under the ROC Curve
(AUC), and 77.0% MCC. Irfan et al. [18] proposed an inno-
vative ensemble ML approach for early AD detection. The
authors discussed a novel technique for identifying impor-
tant cognitive traits from the dataset (called Neighbourhood
Component Analysis and Correlation-based Filtration (NCA-
F)). Next, the dataset was used to train various ML classifiers
and select the best-performer classifier using the voting pro-
cess. The results showed that the adaptive voting strategy
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outperformed the traditional artificial neural network method
for AD detection, with an accuracy of 93.92%. Kumar and
Sasikala [19] proposed four methodologies to improve AD
detection with different DL architectures. Methodology-I
consisted of AlexNet, Googl.eNet, ResNet-18, ResNet-50,
and ResNet-10, and Methodology-II includes four distinct
ML classifiers and deep features taken from pre-trained net-
works. Methodology III concentrated on merging features
from various pre-trained networks to improve system per-
formance. Methodology IV also used principal component
analysis (PCA) to reduce features to balance complexity
and accuracy. The authors employed the ADNI dataset
for the experimental study and achieved 99.79% accuracy.
Yu et al. [20] introduced a new method for identifying
AD. They applied CNN with surface-enhanced Raman Spec-
troscopy (SERS) fingerprints of human Cerebrospinal Fluid
(CSF). The suggested method used CNN and SERS to find
biomarkers in the CSF that indicate metabolic alterations
associated with the condition. Based on clinical diagnosis,
the results showed an overall diagnostic accuracy of 92%,
with 100% accuracy for recognizing normal individuals and
88.9% for detecting AD individuals.

Ullah et al. [21] proposed an ML-based approach to cate-
gorize AD phases. Simulations were conducted to generate
scattered signals using realistic numerical brain models.
A novel data augmentation technique was also introduced
to provide fake data for ML algorithms. The authors used
CT and PET images to train the model. In the result anal-
ysis, the model achieved 83%, 81%, and 85% precision for
healthy, mild, and severe AD. Chabib et al. [22] suggested a
DeepCurvMRI model that combined a CNN and the Curvelet
Transform (CT) to improve the accuracy of early-stage AD
identification using MRI scans. After pre-processing the MRI
images with CT, these modified images were used to train
the CNN model. The authors trained DeepCurvMRI for mul-
ticlass and binary classification tasks using the AD MRI
dataset. Using the Leave-One-Group-Out (LOGO) cross-
validation approach, the model in the experiment attained
an accuracy of 98.62% =+ 0.10%, sensitivity of 99.05% =+
0.10%, specificity of 98.50% =+ 0.03%, and an F1 score
of 99.21 + 0.08 respectively. Shukla et al. [23] discussed
RF (Random Forest), XGBoost, and CNN for diagnosing
and detecting AD. The authors introduced a set of inno-
vative pre-processing techniques that significantly enhanced
the classification performance of MRI images and reduced
the training time for existing learning algorithms. For the
model’s training, the dataset was collected from the ADNI
and converted from a 4D format to a 2D format. In the
result analysis, the proposed model achieved 97.57% accu-
racy and a sensitivity of 97.60%. Fabietti et al. [24] introduced
the Ensembled ML model with explainability (EXML). The
author aimed to locate minute patterns in cortical and hip-
pocampus Local Field Potential (LFP) signals that may
predict AD in its early stages. The EXML model’s total accu-
racy was 99.4% using a late fusion technique. Saied et al. [2]
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used ML techniques to track alterations in the brain linked
with AD pathology non-invasively. S-parameter data gath-
ered from six carefully positioned antennas around the head
was employed for this. To acquire data, measurements were
taken on nine different human models with different head
sizes. The collected data was processed using many ML
methods. Predictions and accuracy ratings were generated for
each algorithm, and the outcomes were compared to deter-
mine which algorithm better classified the different stages
of AD. The results demonstrated that the logistic regres-
sion model distinguished between the four stages of AD
and attained the highest accuracy, at 98.97%. Faisal and
Kwon [25] proposed a CNN model for the automatic detec-
tion of AD from brain MRI images. This research aimed to
develop a DL technique to classify brain images into three
categories: AD, MCI, and cognitively normal (CN). Relevant
indicators associated with AD were identified using structural
MRI (sMRI). The authors used modified CNN and trained the
model with sMRI images collected from the ADNI datasets.
Finally, the model achieved 96.12% accuracy, 95.50% pre-
cision, and 95.23% F1 score. Shojaie et al. [26] proposed a
Gradient Boosting Machine (GBM)-centered instance-based
TL system. The authors used the ADNI dataset for model
training. According to experimental data, the suggested TrGB
algorithm improved classification accuracy over conven-
tional approaches by 1.5% for CN and 4.5% for multiclass
classification.

Shahwar et al. [27] discussed a hybrid model that combined
classical and quantum ML techniques to detect AD. Using
the hybrid classical-quantum method, high-dimensional fea-
tures from the images were extracted using classical neural
networks, which integrated informative feature vectors into
a quantum processor. A 512-feature vector was produced
during the feature extraction process using Resnet34. The
512-feature vector is then processed by a quantum varia-
tional circuit (QVC) to produce a four-feature vector for
precise decision-making bounds. Additionally, the authors
employed 64000 labeled MRI scans with two different classes
to train the model. With an optimum quantum depth of six
layers spanning 20 epochs and a learning rate of 10"-4,
the hybrid classical-quantum network achieved a training
accuracy of 99.1% and a classification accuracy of 97.2%.
Khan et al. [28] presented a Stacked Deep Dense Neu-
ral Network (SDDNN) based on text categorization and an
AD prediction model. For the training of the model, the
DementiaBank clinical transcript dataset was used which
comprised clinical specialists’ recorded interviews of AD
patients. The proposed model showed an accuracy of 93.31%.
Shanmugam et al. [29] presented three pre-trained networks
for AD classification, AlexNet, ResNet-18, and GoogLeNet,
which are trained and evaluated using the ADNI dataset. The
overall detection accuracy for AD is 94.08%, 96.39%, and
97.51%, respectively. Gamal et al. [30] discussed the Ensem-
ble Learning (EL) approach for diagnosing AD. The authors
used the ADNI dataset consisting of 789 3D MRI images. The
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suggested method produced AUC values of 91.28% and
88.42% between people with AD and MCI and between MCI
and subjects with CN.

Zhang et al. [31] presented a densely connected CNN with
a connection-wise attention mechanism to extract multi-level
characteristics from brain MRI images for AD classification.
The recommended method was 97.35% accurate in classify-
ing AD. Zhu et al. [32] introduced a novel Dual Attention
Multi-instance DL network called DA-MIDL to detect MCI,
a prodromal AD stage. The authors used the baseline sMRI
scans from 1689 images to evaluate the model. The images
were collected from the two datasets, i.e., ADNI and AIBL.
The proposed model achieved 92.4% accuracy and 91.0%
sensitivity in the experimental analysis. Eke et al. [33] pro-
posed an SVM model to identify the early stage of AD
using blood plasma proteins. Using cutting-edge feature
selection and evaluation techniques, the authors discovered
five novel non-amyloid protein sets that may serve as early
AD indicators. Additionally, the results showed that a vital
biomarker profile for early-stage disease might include A2M,
ApoE, BNP, Eot3, RAGE, and SGOT. These panels served
as the basis for developing illness detection models that
showed greater than 80% sensitivity, 70% specificity, and an
area under the patient’s operating curve (AUC) of at least
80%, particularly during the prodromal stage of the disease.
Cilia et al. [34] suggested a Deep TL approach for detecting
AD from synthetic images. This study aimed to investigate
whether combining shape and dynamic data could enhance
AD diagnosis by a decision support system. The authors used
an offline synthetic color picture generator to create an offline
version of a collection of online handwriting samples. Using
the three RGB channels, the color of each elementary hand-
writing trait in these images encoded dynamic information
related to that trait. In the experimental analysis, the pro-
posed model achieved 81.03% accuracy. Alkenani et al. [35]
introduced the Fusion-based Stacked Generalisation model
to predict AD using Spoken and Written Languages. The
author’s objective was to create a range of heterogeneous
stacked fusion models that improved AD diagnostic ML
models’ overall robustness and generalization by utilizing the
advantages of different base learning techniques. The authors
trained the stacking fusion models using two datasets, one
based on spoken language and the other on written language.
For the model evaluation, 99.47% AUC was achieved for
the written dataset and 98.1% for the spoken dataset. After
training, the proposed model obtained 95% accuracy and
97% F1 score. Lian et al. [36] discussed Hierarchical FCNN
for localization and detection of AD using Structural MRI.
Using whole-brain sMRI data, the suggested model automat-
ically recognized discriminative local patches and regions.
Multi-scale feature representations were concurrently learned
and integrated based on these regions to build hierarchi-
cal classification models for AD diagnosis. The ADNI-1
and ADNI-2 datasets were used to train the model. The
model obtained 95.01% AUC, 82.4% sensitivity, and 90.03%
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accuracy in the outcome analysis. Zhu et al. [37] presented a
Temporally Structured SVM (TS-SVM) model that limits the
detection score of the partial MR image sequence, allowing
it to increase steadily as AD advances. The authors have
suggested a combined feature selection and classification
framework to determine the most pertinent morphological
traits for enabling classifiers. Using only two follow-up MR
scans, the experimental results achieved 81.75% accuracy.
Afzal et al. [38] introduced the Data-Augmentation Frame-
work to address the issue of class imbalance in AD stage
detection. The authors used the Open Access Series of Imag-
ing Studies (OASIS) dataset consisting of 218 samples for
the model’s training. Each image has a size of 256 *x 256. The
accuracy of the suggested model was 95.11% using 3D views
of the brain MRI and 98.41% with a single view. Ju et al. [39]
proposed DL models and Resting State Brain Networks for
the early diagnosis of AD. Resting-state functional magnetic
resonance imaging (R-fMRI) data was used to compute func-
tional connectivity across different brain regions to construct
the brain network. The clinical text data also includes the
ApoE gene status, age, and gender of research participants.
The proposed approach provided a classifier for AD detection
and efficiently found discriminative characteristics in the
brain network. The DL strategy lowers the standard devia-
tion by 51.23% and increases prediction accuracy by about
31.21%. Ahmed et al. [40] discussed an efficient patch-based
classifier for diagnosing AD. The authors suggested three
goals with an emphasis on SMRI: a) increase accuracy to
either meet or exceed ML techniques; b) tackle the prob-
lem of overfitting; and c¢) examine known brain landmarks
that offer unique characteristics for the diagnosis of AD,
with particular attention to the left and right hippocam-
pal regions. Jha et al. [41] proposed a Dual-Tree Complex
Wavelet Transform PCA and Feed-Forward Neural Network
for Diagnosis of AD. PCA was used to reduce the feature
vector’s dimensionality. The reduced attributes were then sent
into a FNN to categorize AD. This method produced accuracy
rates of 90.06% =+ 0.01%, sensitivity of 92.00% =+ 0.04%,
specificity of 87.78% =+ 0.04%, and precision of 89.6% =+
0.03% in classification accuracy using a 10-fold cross-
validation process. Zhang et al. [42] suggested a multivariate
method for detecting AD using stationary wavelet entropy
and predator-prey particle swarm optimization. A novel
method termed predator-prey particle swarm optimization
was introduced to modify the classifier’s weights and biases.
The classification method’s overall accuracy, sensitivity, and
specificity were 92.73% + 1.03%, 92.69% =+ 1.29%, and
92.78% =+ 1.51%, respectively. The model’s performance was
strong, with an area under the curve (AUC) of 0.95 £ 0.02.
Ruiz et al. [43] discussed computer-aided diagnosis of AD
and histogram-based analysis of regional MRI volumes for
feature selection and classification. This study introduced
a completely automated computer-aided diagnostic (CAD)
system that employed supervised ML techniques to identify
AD in its early stages. Rocca et al. [44] discussed a novel
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TABLE 2. Search criteria.

Sources IEEE Xplore, Scopus, WoS

Keywords  Alzheimer’s  Disease, Brain  Images,
Classification, GAN, DL, ML, Tau, PET

Query “Alzheimer’s Disease” AND “Brain Images”

AND “Machine Learning” OR “Deep
Learning” OR “GAN” OR “Biomarkers” OR
“PET” OR “MRI” OR “P-TAU” OR
“amyloid Beta” AND “Systematic Review”
OR “Meta-Analysis”

Number of 946

Articles

approach to studying brain connections that can identify early
structural alterations in AD. The authors evaluated the white
matter fibers that connect various anatomical brain regions
by reconstructing probabilistic tractography using Diffusion
Weighted Imaging (DWI) brain scans. The ADNI dataset,
which comprised 222 publically accessible DWI scans, and
brain connection graphs from 47 AD patients, 52 NC indi-
viduals, and 123 subjects with MCI, was examined by the
authors.

IIl. RESEARCH METHODOLOGY USED

A. REVIEW PROCESS: PRISMA GUIDELINES

The critical review analysis for the detection of AD is dis-
cussed in this section. All the phases of this critical review
analysis are shown in Figure 3. A total of 946 articles were
collected from three popular databases such as IEEE, Scopus,
and WoS using the keywords mentioned in Table 2. This
process considered the articles published from 2018 to 2023,
as shown in Figure 3. In the screening phase, all the col-
lected manuscript (i.e., 946) records are checked manually,
and 315 are excluded due to duplicate records. Further, the
left records (946 — 315 = 631) are reviewed with their title
and abstract, and 355 are excluded due to unrelated to the
present study (631 — 355 = 276). Next, 234 articles are
removed in the eligibility phase as they are out of scope. After
completing the process, the left articles (276 - 234 = 42) are
included in this study, as shown in Figure 4. This system-
atic review of AD used a broad search technique, including
disease classification, technological applications, and global
impact criteria. Emphasis was placed on the crucial void in
the existing literature related to PET imaging, highlighting a
critical gap in the existing literature. Table 3 lists several facts
and findings associated with the papers.

IV. RESULT AND DISCUSSION
A. PROPOSED INVESTIGATION
This section includes the investigations with the pro-
posed solution for AD detection leveraging ML and other
techniques.

Investigation 1: Which ML models are most suitable for
AD detection when employing neuroimaging data?
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TABLE 3. Facts and figures.

S. Facts Figures (Information)
No
1. Year All the finalized manuscripts are
collected on and after 2018.
2. Findings Considered the research work that
is focused on AD
3. Relevant Only those research papers
detected AD.
4. Techniques DL-based manuscripts are finalized
and for the proposed work.
Technology
S. Research Experimental result-based analysis

Report
6. Availability

reports are included.
Consider only those articles that
are related to the subject and are
available on the web.

Identification of Studies via Database

am—

IDENTIFICATION
Records Identified through

dala::;;; ie:‘;:hmg Records Excluded after Database
= —> Searching
Scopus =506 n=315
Web of Science = 334
Total (n = 946)
SCREENING
Records § g Records Excluded from S g
Tofal (n = 631) n=2355
ELIGIBILITY
Records Accessed for Eligibility Records Excluded
Total (n = 276) n=234

INCLUDED

Records Included in Systematic
Analysis
Total (n = 42)

-

FIGURE 3. Systematic analysis of articles on AD using PRISMA.

PS: Based on published research, the ML models for AD
identification exhibit various strengths and limitations, each
accompanied by indicative numeric values. Support Vector
Machines (SVM) are effective for small datasets, with an
accuracy range of 70-80%, and provide interpretable results
with noise robustness. Meanwhile, Random Forests excel at
managing non-linear interactions and minimizing overfitting,
although they are computationally costly for bigger datasets.
With DL architectures, neural networks capture complicated
associations with excellent accuracy of 85-90% but offer
interpretability issues and are prone to overfitting with large
datasets (5000 images). Figure 5 illustrates a brief overview
of various AD detection techniques and models.
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Number of Published
Papers (2018-2023)

300
250
200

274
194 185
140
150 106
100 47
’ i
(@)

Number of selected
papers (2018-2023)

o

2023 2022 2021 2020 m 2019 2018

(b)

FIGURE 4. For the year (2018-2023) (a) Number of published papers,
(b) Number of selected papers.

The suitability comparison highlights that SVM is best
suited for smaller datasets, Random Forests for larger datasets
along with scenarios requiring robustness to noise as well
as non-linear relationships, and Neural Networks for high
accuracy when computational resources and large datasets are
available. Other considerations, such as combining different
data modalities and employing good feature engineering,
have a considerable impact on model performance across all
three models. Beyond accuracy, evaluation parameters such
as AUC, sensitivity, and specificity are critical for a thorough
assessment of methods for AD detection. Furthermore, there
is no universally superior model for AD detection, and the
decision is influenced by a variety of contextual circum-
stances. It is proposed that distinct models be combined using
ensemble learning to utilize their particular strengths and
improve overall performance.

Investigation 2: What impact does integrating structural
MRI, functional MRI, and genetic data have on the accuracy
and robustness of AD detection models?

PS: The combination of structural MRI, genetic data and
functional MRI improves the accuracy and robustness of
AD detection. This technique takes advantage of the unique
capabilities of each modality. Models provide increased accu-
racy, greater generalizability, and efficient feature selection
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by integrating various modalities, lowering the risk of over-
fitting fresh data. Fan et al. [45] used imaging along with
genetic data to construct a prediction model for AD develop-
ment, demonstrating the promise of multimodal techniques
in improving diagnosis accuracy. In studies that combined
structural and functional MRI, accuracy scores of up to 90%.
Another example is the work of Zhang et al. [46], which
used a multi-modal DL model for robust AD diagnosis. This
model revealed the efficiency of combining multiple data
sources for accurate and reliable AD detection, emphasizing
the significance of a complete, multi-dimensional approach.
Furthermore, the incorporation of genetic data is benefi-
cial in identifying persons at risk for AD before symptoms
occur, allowing for early intervention. Despite constraints
like as data heterogeneity and computational complexity,
this multidimensional technique has significant potential for
AD diagnosis and care by offering a more comprehensive
understanding of the disease.

Investigation 3: What prominent neuroimaging
datasets are used to train and test GAN models specifi-
cally in the field of AD detection?

PS: Neuroimaging datasets are essential for training and
testing GAN models for AD diagnosis since they create the
groundwork for comprehending the complexities of brain
pictures. Table 4 displays different datasets used for AD
detection. Meanwhile, ADNI [1], [44], [46], and the Open
Access Series of Imaging Studies (OASIS) [35], [36] stand
out as significant contributors to advancing research in this
domain.

Investigation 4: How does the strategic optimization of
hyperparameters influence the convergence and generaliza-
tion capabilities of DL models intended for AD-identifying
biomarkers?

PS: The optimization of hyperparameters is vital in the
construction of DL models for the discovery of AD biomark-
ers. Key Hyperparameters for Strategic Optimisation of DL
Models for AD Detection are shown in Table 5.

Experimenting with different settings, including learn-
ing rates, regularisation terms, and batch sizes, is part of
the strategic tuning of hyperparameters. The learning rate,
in particular, determines the size of optimization steps and
has a significant impact on how fast or slowly the model
converges during training. An ideal learning rate is critical
for preventing the model from converging too soon or too
slowly, achieving a balance between rapid convergence and
the capacity to capture complicated patterns in neuroimaging
data. The proper hyperparameter setup is critical for effective
learning from training data and reliable generalization to
new, unknown data. Adequately fitting these hyperparameters
improves the model’s ability to adapt to the data distribu-
tion, resulting in a more accurate and reliable AD detection
model. Figure 6 depicts the process of hyperparameter
selection and model evaluation. Furthermore, regularisation
terms, such as dropout rates, are critical in preventing over-
fitting, in which the model memorizes the training data
rather than learning generalized patterns. Balancing these
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TABLE 4. Datasets used in the detection of AD.
Dataset | Description Modality Datasets Used to | Link
Train the Model

OASIS MRI images of | Structural MRI [2], [28], [26], [31], | OASIS
AD, diverse [32], [35], [38]
brain conditions

MRI MRIimages with | Structural MRI [5], [8], [14], [15], | MRI
a focus on brain [17], [19], [21], [22],
tumor detection [24], [2], [35], [36],

[37], [41], [42]

ADNI Alzheimer's Functional and Structural MRI, PET | [1], [4], [7], [16], | ADNI
Disease [23], [27], [28], [29],
Neuroimaging [39], [40], [43], [44]
Initiative (ADNI)
dataset

GARD Gwangju Structural MRI [6], [20], [25], [33], | GARD
Alzheimer's and [34], [39]

Related
Dementia
(GARD) dataset
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TABLE 5. Key Hyperparameters for strategic optimisation of DL models

MODEL TESTING
AND TRAINING

for AD detection.
Hyperpara s .
meter Description Impact
Number of samples | Larger batch size:
. propagated through faster but
Batch Size the network per potentially worse
update generalization
. Too small: slow
. Controls size of
Learning undate steps durin convergence. Too
Rate P P & large: unstable,
training . .
miss optimum
Fraction of random ngher': more
Dropout . regularization,
units dropped
Rate . L prevents
during training .
overfitting
Acceleration of Hetgisnaillclce;ir;te
Momentum gradients in the &
. L escape local
right directions i
minima
.. Prevents
Early St(?p training when overfitting,
. validation loss stops
Stopping . . controls
improving o
generalization
. The magnitude of Higher: 1pcr§ased
Weight " regularization,
L2 regularization
Decay on weights prevents
& overfitting

regularisation terms ensures that the model stays strong and
resilient, identifying significant biomarkers while being unaf-
fected by noise or particular characteristics in the training
data.

Investigation 5: What limitations are currently encoun-
tered by ML models in AD detection, and how can
enhanced interpretability and standardized data elevate these
challenges?
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PS: Current ML models for AD identification have signif-
icant drawbacks that restrict their practical use. A significant
problem stems from the black-box character of many mod-
els, particularly deep neural networks, which operate as
opaque entities, making it difficult to understand the logic
underlying their predictions. This lack of interpretability is
a key barrier that jeopardizes confidence and complicates the
smooth incorporation of these models into clinical decision-
making procedures. Another major constraint is the potential
of overfitting, which is especially dangerous in compli-
cated models with high capacity. While these models have
outstanding accuracy levels during training (ranging from
85-90%), their performance sometimes falters when applied
to new patient groups, emphasizing real-world applicability
issues. Furthermore, the availability of data heterogeneity
in current datasets, resulting from differences in acquisi-
tion processes, picture quality, and preprocessing approaches,
impedes model generalizability across varied populations and
imaging centers. Additionally, the limited explainability of
predictions, as well as the occurrence of errors in datasets,
worsen the existing problems. Table 6. displays the conclu-
sion for each investigation mentioned in this paper.

B. AD DETECTION USING ADD-NET: A CASE STUDY

Early identification of AD is crucial for advancing healthcare
techniques. This section includes a case study on AD detec-
tion using the ADD-NET model.

This case study uses the ADNI-labeled dataset and
40 training epochs to demonstrate the ADD-Net model’s
efficiency in detecting AD from MRI images. Using strati-
fied splitting, the dataset was divided into 65% for training,
15% for testing, and 20% for validation. The stratified divi-
sion of the 2202 sample dataset divided the samples into
1431 training, 331 validation, and 440 testing samples. Class
distribution across splits demonstrated consistent representa-
tion, which is essential for a reliable assessment of the model.
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TABLE 6. List of mentioned investigations and the main conclusions to TABLE 7. AD sample result analysis (65:15:20 approach) using the
each of them. ADD-NET model.
Investigation Resealjch Key Findings METRIC RESULT
Question
. SVM, Random Forests, Testing Accuracy 93.7%
Which ML Neural Nc'stwor.ks', and Training Accuracy 94.8%
mgdels are most assembling dlSt.lnCt Validation Accuracy 92.9%
suitable for AD | models are effective for Precision 90.4%
1 detection when small datasets, but Recall 9 0' 30/0
employing computationally costly cca e °
neuroimaging for larger ones, and F1 score 91.2%
data? overfitting can pose
interpretability issues.
What impact . .
does integrating The 1ntegrat10p Of INPUTLAYER | &~ — oo
structural, functional,
structural MRI, and genetic MRI l
functional MRI, technicglues enhances = e
: CONVOLUTION
2 and genetic data diagnosis accuracy and BLOCKS1234)
have on the . LT RELU
accuracy and early 1.nterven.t10n n
robustness of Alzhelmer s (hsease, AVERAGE POOLING
. with the potential for up |
AD detection S P INITIALIZER =
models? to 90% accuracy. | GLOROTUNIFORMV2 e DE;';‘E";TSCK CONBVLCI’)L::JKTION
What prominent R < A
i i . RELU
gzgs"e‘gji“g The ADNI, OASIS, and o —a—
DENSE BLOCK
used to train and .G.ARD dataset's are
significant contributors
3 test GAN to the training and
models . & e
) . testing of GAN models
specifically in . .
the field of AD for AD diagnosis. FIGURE 7. ADD-NET architecture for AD detection.
detection?
How does the Mild-Demented
strategic Key hyperparameters
optimization of include batch size,
hyperparameters | learning rate, dropout
influence the rate, momentum, early
convergence stopping, and weight
4 and decay, which require
generalization strategic optimization
capabilities of for effective learning
DL models and reliable
intended for generalization to new
AD-identifying data.
biomarkers?
What
limitations are Models, particularly
currently
deep neural networks,
encountered by . .
. face issues like
ML models in interpretabili
AD detection, rpre e
overfitting, data
and how can ;
5 h heterogeneity, and
en anced - limited explainability FIGURE 8. Predicted mild demented AD image using ADD-NET model.
interpretability . i
and affectl.ng r.efll-world
standardized applicability and analysis, images with dimensions of 1,000 x 800 pixels along
data elevate exacerbated by existing with a learning rate of 0.01 were employed, with a batch size
these problems. of 8 for each iteration. Its architecture includes a softmax
challenges? output layer, dropout layers, average pooling, and convolu-

tional layers using Rectified Linear Unit (ReLU) activations.
Figure 7 depicts the design of the ADD-NET model, which Despite prioritizing efficiency, the model proved dependable,
uses a dataset separated into training, testing, and validation with a testing accuracy of 90.4%, 93.7% training accuracy,
subsets created using SMOTETomek balancing. For model 92.9% validation accuracy, 90.4% Precision, 90.3% Recall,
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TABLE 8. AD sample result analysis (cross-validation approach) using the
ADD-NET model.

METRIC RESULT

K-fold Cross-validation 94.60%
Accuracy Score
(1-fold)

K-fold Cross-validation
Accuracy Score
(2-fold)

K-fold Cross-validation
Accuracy Scores
(3-fold)

K-fold Cross-validation
Accuracy Score
(4-fold)

K-fold Cross-validation
Accuracy Score
(5-fold)
Average cross-validation
Accuracy score

93.58%

93.58%

92.59%

94.33%

94.14%

Final test set accuracy 94.21%

TABLE 9. AD sample result analysis (cross-validation) using the ADD-NET
model.

METRIC RESULT
Accuracy 93.33%
Precision 91.32%
Recall 90.20%
F1 score 91.32%
Val Accuracy 93.85%
Val Precision 94.07%

Val Recall 90.6%

Val F1 score 91.69%

and 91.2% F1 score. Figure 8 depicts a sample anticipated
outcome, while Table 7 presents full performance metrics.
The model’s performance is further assessed using
cross-validation, namely K-fold cross-validation concerning
5 folds, in addition to the traditional train-test split. This
ensures robust assessment across various data partitions. The
dataset is divided into five subsets using this procedure; each
subset serves as a validation set, while the remaining folds are
used for training. The validation set is rotated through each
fold to fully assess the model’s generalization ability. This
method reduces biases and offers a thorough evaluation of the
model’s performance. Strong performance is demonstrated
by the results, which show an average accuracy score of
94.14%. A final analysis of the test set results in a 94.21%
test accuracy. Thorough performance metrics for distinct AD
types provide useful insights into the model’s capacity to
discriminate between various disease stages, hence proving
its dependability and efficacy in AD detection. Tables 8§,
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TABLE 10. Various AD types along with performance metrics
(cross-validation) using the ADD-NET model.

AD Types Precision | Recall | F1 Score
Mild-Demented 94.1% | 92.2% 93.1%
Moderate Demented 90.3% 89.1% 91.4%
Non-Demented 92.1% | 93.2% 94.3%
VeryMild-Demented | 93.4% | 90.1% 86.7%
Micro avg 92.2% | 93.2% 91.3%
Macro avg 93.2% 92.2% 91.1%
Weighted avg 93.3% | 93.3% 92.2%
Samples avg 93.2% 93.1% 93.2%

9, and 10 provide additional information into the model’s
performance metrics as well as its ability to diagnose AD
from MRI images.

V. CONCLUSION AND FUTURE ASPECTS

Millions of individuals worldwide are impacted by AD which
is the most common cause of dementia. It has a significant
negative influence on people and their families, resulting in
memory loss, cognitive decline, and a reduction in day-to-day
functioning. The development of aberrant protein aggregates,
such as tau tangles and beta-amyloid plaques, in the brain is
a characteristic of AD. These pathogenic alterations result in
memory loss and brain damage. The main goal of current AD
treatments is to manage symptoms, and drugs like memantine
and cholinesterase inhibitors are part of this arsenal. Impor-
tant elements of treatment also include non-pharmacological
measures including caregiver support and cognitive stimula-
tion. This work first introduces the general overview of AD.
Further, a systematic review has been conducted on AD, and
PRISMA guidelines are followed for rigorous analysis. More
than 946 articles were collected from this review process, and
42 were selected for the critical analysis. The synthesis of cur-
rent knowledge highlights various methods and techniques of
AD detection, and various investigations along with proposed
solutions are discussed. One case study based on ADD-NET
for AD detection is also included and achieved 93.7% training
accuracy, 92.9% validation accuracy 93.7% testing accuracy,
90.4% Precision, 90.3% Recall, and 91.2% F1 score using
65:15:20 dataset split method. While 94.14% was the average
accuracy score attained by employing the k-cross validation
technique. The test set’s final analysis yields a test accuracy
of 94.21%. To improve early detection and patient care,
AD diagnosis in the future is probably going to require a com-
bination of personalized approaches, innovative technologies,
and multidisciplinary efforts. To tackle the increasing global
burden of AD, these advancements are necessary.
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