
Received 14 March 2024, accepted 23 March 2024, date of publication 27 March 2024, date of current version 3 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3382264

Curriculum Learning for Robot Manipulation
Tasks With Sparse Reward Through
Environment Shifts
ERDI SAYAR 1, (Graduate Student Member, IEEE),
GIOVANNI IACCA 2, (Senior Member, IEEE), AND ALOIS KNOLL 1, (Fellow, IEEE)
1Department of Informatics, Technical University of Munich, 85748 Munich, Germany
2Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy

Corresponding author: Erdi Sayar (erdi.sayar@tum.de)

ABSTRACT Multi-goal reinforcement learning (RL) with sparse rewards poses a significant challenge for
RL methods. Hindsight experience replay (HER) addresses this challenge by learning from failures and
replacing the desired goals with achieved states. However, HER often becomes inefficient when the desired
goals are far away from the initial states. This paper introduces co-adapting hindsight experience replay with
environment shifts (in short, COHER). COHER generates progressively more complex tasks as soon as the
agent’s success surpasses a predefined threshold. The generated tasks and agent are coupled to optimize the
behavior of the agent within each task-agent pair.We evaluate COHER on various sparse reward robotic tasks
that require obstacle avoidance capabilities and compare COHER with hindsight goal generation (HGG),
curriculum-guided hindsight experience replay (CHER), and vanilla HER. The results show that COHER
consistently outperforms the other methods and that the obtained policies can avoid obstacles without having
explicit information about their position. Lastly, we deploy such policies to a real Franka robot for Sim2Real
analysis. We observe that the robot can achieve the task by avoiding obstacles, whereas policies obtained
with other methods cannot. The videos and code are publicly available at: https://erdiphd.github.io/COHER/.

INDEX TERMS Curriculum learning-based reinforcement learning, hindsight experience replay, multi-goal
reinforcement learning, robotic control.

I. INTRODUCTION
Reinforcement Learning (RL) has shown outstanding
achievements in solving complex tasks, such as games [1],
[2] and robotics [3], [4]. Multi-goal RL aims to learn a
goal-conditioned policy that generalizes across different
goals. Learning a goal-conditioned policy for multiple goals
requires a significantly larger amount of data than single-task
learning, as the agent needs to collect data from different
goals. Off-policy RL algorithms are used to reduce the
amount of data needed for learning [5]. However, most of the
off-policy RL algorithms owe their success to well-designed
reward functions [6]. However, designing a proper reward
function for situations in which the admissible behavior

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar .

is unknown is not easy. Moreover, designing a reward
function usually requires expert knowledge in RL and
a priori information about the task. Thus, binary rewards [7],
indicating whether or not the task is accomplished, can be
leveraged to overcome the reward design issue. However,
most of the existing RL algorithms suffer under binary
reward settings, because of the sparse reward signal due to
insufficiency of successful experiences. Hindsight experience
replay (HER) [8] addresses the sparse reward issue by
replacing the desired goals with the achieved states sampled
from failed episodes. The main drawback of this method
is that, if the desired goals are far away from the achieved
states, HER cannot solve these tasks effectively, as no
reward signal is provided. To overcome this issue, curriculum
learning-based RL algorithms [9], [10], [11], [12] have been
proposed, that start from a simple task and gradually increase

46626

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-5944-7291
https://orcid.org/0000-0001-9723-1830
https://orcid.org/0000-0003-4840-076X
https://orcid.org/0000-0002-5253-3779

E. Sayar et al.: Curriculum Learning for Robot Manipulation Tasks With Sparse Reward

its difficulty. However, many of these methods rely on some
sort of heuristic in order to decompose the complex task
into a simpler one. These heuristics might not be optimal
with respect to the environment. For instance, in a robot
manipulation task, if the desired goal is far from the initial
position of the end-effector of the robot, we might divide
the distance between the initial position and the desired goal
into smaller pieces and then guide the robot gradually to
the desired goal by replacing it with an intermediate goal
that gradually approaches the desired goal. In the end, the
agent learns how to achieve the task. However, what if there
are obstacles in the environment? In this case, we need to
know the position of the obstacles in advance, in order to
design optimal heuristics. This knowledge may not always be
available though. Therefore, in this work, we try to address
the following question: Is it possible to build an RL algorithm
that adapts to changing environments without specific prior
knowledge about the task?

Previous works have address this question, e.g., by intro-
ducing the so-called minimal criterion co-evolution (MCC)
[13] and, based on it, the Paired Open-Ended Trailblazer
(POET) algorithm [14]. The concept of MCC was developed
to demonstrate that a very simple minimum criterion (MC)
can lead to an open-ended evolution of two co-evolving
populations: a population of agents, and a population of
environments with different levels of complexity. MCC was
demonstrated for the very first time in a maze navigation
problem [13]. Mazes are, in fact, a paradigmatic example
of tasks with sparse, delayed reward [15], for which various
approaches based on quality search [16], [17] or novelty [18]
have been proposed. According to the setting proposed
in [13], tasks (mazes) are co-evolved with agents (maze
navigators) controlled by neural networks. As a result,
mazes get more complicated while neural networks become
more efficient at navigating those mazes, to satisfy the
MC. In the original MCC method, agents are optimized
via the NeuroEvolution of Augmenting Topologies (NEAT)
algorithm [19], which is an evolutionary algorithm that
evolves both the structure and the weights of the neural
network. Moreover, environments in MCC should be solved
by the current population of agents, otherwise they are
discarded. Unlike MCC, the POET algorithm optimizes the
current agents for a dedicated amount of time, to then create
slightly harder environments once the current environments
are solved by the agents in the current generation. The opti-
mization algorithm used for the agents in POET is based on
Evolution Strategies (ES) [20], [21], a black-box optimization
method that has been shown to achieve promising results in
several RL benchmark problems [22], [23].
An alternative to these approaches is represented by

curriculum learning-based RL algorithms [9], [10], [11], [12],
[24], [25], [26], which generate intermediate goals to help
break down long-term desired goals into more manageable
subgoals, serving as stepping stones towards achieving the
desired goal in a constant environment. However, these
methods either lack a mechanism to consider obstacles,

require prior knowledge about environments and obstacles or
are limited in their ability to perform different manipulation
tasks. For example, MHER [25] adds a dynamic model to
the original HER algorithm, i.e., it learns environmental
dynamics using one-step ahead models and generates virtual
achieved goals frommodel-based interactions rather than past
collected states as in the HER. However, this approach cannot
learn efficiently in complex robot manipulation tasks, such
as those involving interactions with objects and collisions.
MEGA [26] enhances exploration by maximizing the entropy
of the achieved goal distribution, focusing on underexplored
regions. This strategy effectively steers exploration towards
the frontier of the achievable goal set, effectively forming a
curriculum that narrows the gap between the initial state and
the desired goals. However, a limitation of this approach is
the absence of obstacle handling, necessitating the removal
of goals with low Q-values to ensure the proper functioning
of the heuristic function. HGG [9] generates curriculum goals
by selecting them from the visited state set, based on an
objective that jointly minimizes the Wasserstein distance and
maximizes the value function. Similarly, CHER [10] selects
curriculum goals based on the curiosity and proximity criteria.
Specifically, curiosity encourages the choice of curriculum
goals at diverse ranges, while proximity prefers curriculum
goals that are closer to the desired goal. However, HGG and
CHER use the Euclidean distance to approximate themeasure
of the Wasserstein distance and design the proximity metric,
respectively. Hence, they are not applicable in environments
with obstacles. The studies [11], [24] introduce a graph-based
distance metric extension to HGG and CHER, to circumvent
the obstacle during the curriculum goal generation. However,
these methods require the position and dimension of the
obstacles in order to create a graph-based distance metric.
Furthermore, they require that obstacles have a convex
shape. Bbox-HGG [12], instead, addresses manipulation
tasks involving dynamic obstacles by utilizing image obser-
vations. Objects from the environment are identified using
BboxEncoder, which is trained to recognize the bounding
boxes of objects prior to initiating RL training. However, this
approach is limited to robot manipulation tasks that do not
necessitate gripper control such as slide and push tasks.

Following up on these works, in this paper we pro-
pose a novel framework for curriculum generation through
environment shifts in the context of sparse rewards and
multi-goal RL in environments characterized by the presence
of obstacles. We call our proposed method ‘‘co-adapting
hindsight experience replay with environment shift’’ (in
short, COHER). Differently from POET, which uses ES
to optimize the agents, in COHER we use the deep
deterministic policy gradient (DDPG) algorithm [4], because
RL algorithms have been shown to perform better than ES in
dynamic environments [23]. Another differencewith POET is
that, while in POET environments are automatically evolved,
in COHER we pre-define a population of environments and
allow the algorithm to shift from one environment to the next
one whenever the test success rate on the current environment

VOLUME 12, 2024 46627

E. Sayar et al.: Curriculum Learning for Robot Manipulation Tasks With Sparse Reward

reaches a predefined threshold. While this approach is not
open-ended as in POET, it allows us to achieve effective
curriculum learning with a limited number of environment
shifts, hence resulting in a computationally feasible com-
putation. This is especially important in computationally
expensive tasks, such as the 3D physics-based simulations
of a robot interacting with an environment with obstacles
that we address in this work, where it is not feasible
to test hundreds or thousands of environments as in the
simpler 2D simulations of a bipedal walker [27] considered
in [14]. Finally, in contrast to HGG and CHER, in COHER
we generate the curriculum by breaking down the most
challenging environment into gradually increasing levels of
difficulty, starting from the easiest and progressing to the
hardest one, while remaining entirely agnostic to the obstacle
properties such as shape, size, and position.

We test our proposed approach in amulti-goal RL task with
sparse rewards, considering a 7-DOF fetch robotic both in
the MuJoCo simulation environment [28] and in a real-world
setting. To summarize, the main contributions of this paper
are the following:
• We generate a curriculum through a novel DDPG-based
co-adapting approach that adapts agent-environment
pairs to progressively more challenging environments,
specifically on robot manipulation tasks, without explic-
itly providing the algorithm neither the obstacles’
positions nor their sizes.

• We perform Sim2Real transfer by deploying the trained
policy on a Franka robot in a real-world setting
and demonstrate the ability of the policy to success-
fully avoid obstacles in increasingly more challenging
environments.

The rest of the paper is structured as follows. In the next
Section, briefly review the related works. In Section III,
we introduce the background concepts on multi-goal RL
and DDPG. Then, we describe the proposed method
in Section IV. The experimental results are presented
in Section V, followed by the conclusions provided in
Section VI.

II. RELATED WORK
A. CURRICULUM LEARNING IN MULTI-GOAL RL
Universal Value FunctionApproximator (UVFA) parametrizes
the goal using a function approximator [29], which is
then used to allow the agent to learn multiple goals and
generalize to unseen goals in a single policy. As discussed
earlier, HER [8] instead replaces the desired goals with
the achieved states sampled from failed episodes. However,
as wementioned, although HER can handle the sparse reward
problem in multi-goal RL settings, it fails at solving tasks
in which the desired goals are distant from the initial states.
The reason is that the achieved goals are sampled from failed
episodes which are mostly distributed around the initial state.
Curriculum learning-based RL algorithms resolve this issue
by starting from simple tasks and gradually increasing their
difficulty. HER can also be considered a form of implicit

curriculum learning because the achieved goals are easier
to achieve than the desired goals. The major drawback of
HER is that the achieved goals are sampled uniformly from
the replay buffer. However, these samples are substantially
different from each other. Therefore, Fang et al. [10] proposed
curriculum-guided HER (CHER) to select the achieved goals
based on proximity and diversity. Hindsight goal generation
(HGG) [9] generates intermediate goals that maximize a
given value function and minimize the Wasserstein distance
between the target goal and the achieved goal distribution.
It should be noted that, because both CHER’s proximity
metric and HGG’s Wasserstein distance are based on
Euclidean distance, these algorithms may yield an infeasible
path for the robot, which may be blocked by obstacles.
As known, in fact, metrics based on Euclidean distance
measure only the distance over a straight line between any
two points, regardless of the presence of obstacles in the
environment.

To overcome this issue, Bing et al. [11] came up with
the idea of using a graph-based distance metric instead of
an Euclidean distance metric as an extension of HGG. This
algorithm, however, assumes that the position and size of the
obstacle are known in advance in order to create a graph.

B. EVOLUTIONARY STRATEGIES
Evolution strategies (ES) [30] is a family of black-box opti-
mization techniques inspired by natural evolution. In [14],
authors used Natural Evolution Strategies (NES) [21], a class
of ES that iteratively update a search distribution by calcu-
lating an estimated gradient with respect to the distribution
of the search parameters. Salimans et al. [22] found that
NES has appealing features, such as being invariant to
the action frequencies and being capable of dealing with
delayed rewards. Moreover, the NES algorithm is highly
parallelizable and as such it can be used as an effective
alternative to traditional RL methods. Zhang et al. [23]
compared ES with deep RL in continuous control tasks and
showed that ES can compete with deep RL algorithms, apart
from the cases where environments are dynamic.

III. BACKGROUND
Multi-goal RL can be represented as a goal-oriented Markov
Decision Process (MDP) ⟨S,A,G, T ,R, p, γ ⟩, where: S is
a continuous state space; A is a continuous action space; G
is a set of goals; T : S × A × S → [0, 1] is the unknown
transition probability function from state s to state s′ when
taking action a, R : S × A × G → R is a reward function;
p(s0, g) is a joint probability distribution over the initial state
s0 and the desired goal g; and γ ∈ [0, 1] is a discount factor.
A commonly used sparse reward function in multi-goal RL

can be defined as:

r(s, a, g) =

{
0 if ∥φ (s)−g∥22 ≤ ϵR,

−1 otherwise
(1)

where ϵR is a fixed threshold value and φ : S → G is a
mapping function from states to achieved goals. The objective

46628 VOLUME 12, 2024

E. Sayar et al.: Curriculum Learning for Robot Manipulation Tasks With Sparse Reward

of multi-goal RL is to learn a policy π∗ : S × G → A
that maximizes the expected return. This problem can be
formalized as follows:

π∗ = argmax
π

J (π) where:

J (π) = Es0=s,at∼π (·|st ,g),st+1∼P(·|st ,at)

∞∑
t=0

γ tr(st , at , g). (2)

In our proposed method, we train the agents by using
DDPG [4]. DDPG is an off-policy actor-critic algorithm that
consists of a deterministic policy πθ (s, g) : S × G →
A, parameterized by θ , and a state-action value function
Qη(s, a, g) : S ×A× G → R, parameterized by η. Gaussian
noise with zero mean (µ = 0) and constant std. dev. (σ = 0.2)
is added to the deterministic policyπθ to improve exploration.
The behavior policy, πb, is then used for collecting the results
on the episodes:

πb(s, g) = πθ (s, g)+N (µ, σ 2). (3)

The Q-value function approximator is trained by minimizing
the Temporal Difference (TD) error defined as a loss function
below:

Lcritic = E(s,a,r,s′,g)∼B
[(
y− Qη(s, a, g)

)2] (4)

where B is the replay buffer and

y = r + γQη(s′, πθ (s′, g), g). (5)

Subsequently, the policy π is updated using policy gradient
on the following loss function.

Lactor = −E(s,g)∼B [(Q(s, πθ (s, g), g))] (6)

IV. PROPOSED METHOD
In the following, we assume that we are working on a
robot manipulation task in an environment with obstacles.
Therefore, in the description of the proposed method we will
refer to this specific task. Nevertheless, the method could be
in principle extended to other kinds of tasks, provided that
the environments can be characterized by different levels of
difficulty.

Our proposed method works as follows. We execute
a curriculum learning process in which we pre-define a
population of environments X (each one characterized by a
different number of obstacles, in different positions and with
different sizes) and an agent Y (i.e., a neural network). The
environments can be generated either by the algorithm itself,
or manually (as we do in the present study), and added to
the environment population in order of increasing difficulty.
In the population, the first environment X0 is always the
most simple one, i.e., the one without obstacles. In order to
decide when to generate the next environment, we pair the
first environment X0 from the population X with the agent
Y and optimize the agent’s behavior in that environment
until it reaches a predefined success rate. After satisfying the
success rate, the new environmentX1, slightly harder than the
previous oneX0 is generated (e.g., by adding obstacles and/or

changing their positions or size). In principle, this process
could be continued in an open-ended manner, i.e., without
specific bounds. As a result, we could continuously create
ever more challenging environments, each one originating
from the previous one, and the training could continue
indefinitely. However, for practical experimental reasons,
we set an upper bound (E) to limit the maximum number of
environments.

With this approach, the agent seeks to solve the newly
generated environments by utilizing its existing skills, which
are acquired from the previous environments. In this way,
the agent transfers and adapts its existing behavior to the
new environment. Moreover, we ensure that the agents attain
the predefined success rate in the current environment before
solving the next one [31].

Algorithm 1 describes our method in the form of pseudo-
code. As shown in the pseudo-code, we start with a very
simple environment and train it using the HER framework.
When the performance becomes greater than or equal to
the predefined success rate δ, the next (more challenging)
environment is created and the agent tries to solve the new
environment with its current skills. Success is defined as
reaching a target position within a distance set by a threshold
ϵR, as shown in equation (1). After each episode, we run
a predefined number of test rollouts (ntest−rollouts) with the
current policy and calculate the success rate δ based on
how many rollouts out of ntest−rollouts succeeded in the task.
Table 2 provides the values for the parameters defined in the
algorithm.

V. EXPERIMENTS
We conduct experiments on the MuJoCo simulation envi-
ronments provided by OpenAI Gym, which is a standard
benchmark for multi-goal RL. Two standard manipulation
tasks, both based on a 7-DOF fetch robotic manipulator [28],
are chosen, namely PickAndPlace and FetchPush. Because
the environments may be generated in an open-ended way but
training is computationally expensive, we limit the maximum
number of environments (E) to 4 for both tasks. That allows
us to train on both tasks multiple times to prove our concept
and provide statistics.
PickAndPlace: The PickAndPlace task with 4 different

environments is shown in Fig. 1. The objective is to grasp the
cube and bring it to the target position. The cube is shown as a
black box, and its initial position is sampled uniformly within
the yellow area. The target is the red dot, which is sampled
uniformly within the blue region. The obstacles are colored
in magenta. The task’s difficulty is gradually increased by
adding fixed blocks to the different locations on the table,
and four different environments are generated in total. In the
first environment, shown in Fig. 1a, the robot learns how to
pick up the cube and place it on the target position. In the
second environment, shown in Fig. 1b, an obstacle with 0.2m
width, 0.02m depth, and 0.5m height is placed on the other
side of the robot on the table. In the third environment, shown
in Fig. 1c, another obstacle with 0.3m width, 0.02m depth,

VOLUME 12, 2024 46629

E. Sayar et al.: Curriculum Learning for Robot Manipulation Tasks With Sparse Reward

Algorithm 1 Co-Adapting Hindsight Experience Replay (COHER)
Input: Environment population X , maximum number of environment E , number of episodesM , number of timesteps T
Select an off-policy algorithm A ▷ In our case A is DDPG
Initialize replay buffer B← ∅
Initialize X with the first environment X0
Initialize environment counter n← 0
ϵR← 0.05, ntest−rollouts← 99
while n < E do

Select environment Xn
for episode = 1 . . .M do

Sample a desired goal g and an initial state s0
for t = 0 . . . T do ▷ Rollout episode

at = π (st , g)
Execute the action at , obtain a next state st+1 and reward rt
Store transition (st , at , rt , st+1, g) in replay buffer B
Sample a set of additional goals from achieved states for replay G := S(episode)
for g′ ∈ G do ▷ Hindsight goal [8]

Recompute reward r ′t
Store transition

(
st , at , r ′t , st+1, g

′
)
in replay buffer B

end for
end for
Sample a mini batch b from replay buffer B
Update value function Q with b to minimize Lcritic in equation (4)
Update policy π with b to minimize Lactor in equation (6)
successrate← 0
for t = 0 . . . ntest−rollouts do ▷ Test rollouts

at = π(st , g)
Execute the action at , obtain a next state st+1 and reward rt
if ∥φ (st+1)−g∥22 ≤ ϵR then

successrate← successrate+ 1/ntest−rollouts
end if

end for
if successrate ≥ δ then

Create the next environment Xn+1
n← n+ 1

end if
end for

end while

and 0.3m height is placed. In the last environment, shown in
Fig. 1d, an obstacle with 0.2m width, 0.02m depth, and 0.9m
height is placed in front of the target sampled area.
FetchPush: The FetchPush task with 4 different environ-

ments is shown in Fig. 2. A cube (the black box) and a target
(the red dot) are sampled uniformly within the yellow and
blue areas, respectively. The objective is to push the cube
into the target position with a clamped gripper. The task’s
difficulty is gradually increased by adding fixed obstacles
(colored in magenta) at different locations on the table, and
also in this case four different environments are generated in
total. In the first environment, shown in Fig. 2a, the robot
learns how to push the cube to the target point. In the second
environment, shown in Fig. 2b, the robot needs to adapt its
learned policy from the previous environment to avoid the

obstacle. In the third environment, shown in Fig. 2c, there is
only a 10cm gap between the two obstacles, and the robot
should push the cube through this gap. Another obstacle is
placed in the middle of the table in the fourth environment
shown in Fig. 2d, and the robot must avoid it in order to reach
the target position.

We adopt the identical control actions and state configu-
rations as those presented in the paper proposing HER [8].
In both tasks, the state is a vector consisting of the position,
orientation, linear velocity, and angular velocity of the robot’s
end-effector, as well as the position of the cube and target.
The action space is a 4-dimensional vector, with the first
three elements specifying the desired relative gripper position
at the next timestep, and the last element specifying the
desired distance between the two fingers of the gripper.

46630 VOLUME 12, 2024

E. Sayar et al.: Curriculum Learning for Robot Manipulation Tasks With Sparse Reward

The control is executed with a frequency of 1kHz, through
the real-time Ubuntu kernel and a Python wrapper to the
Franka library.1 Note that the robotic agent learns to avoid
obstacles through trial and error as an inherent part of RL,
by experiencing collisions. In particular, when the agent
collides with obstacles (or even with its own body) and
becomes trapped, it fails to complete the task and receives
no reward. Of note, no information about the obstacles is
included in the state vector, but the agent figures out the
best actions to avoid collisions with the help of the generated
curriculum environments that gradually increase in difficulty.
It is assumed that the task is accomplished if the cube reaches
the goal within a given distance threshold, see equation (1),
in which case it receives a non-negative reward 0.

A. COMPARATIVE ANALYSIS
We compare the performance of our framework (COHER)
against vanilla HER, HGG, and CHER. During training with
COHER, environments co-adapt with the agent. When the
current environment Xn performance reaches the predefined
success rate δ, the next environment Xn+1 is selected and
the agent tries to solve the new environment with its learned
model. On the other hand, HER, HGG, and CHER are trained
directly on the last (i.e., the most difficult) environment in the
population considered in COHER. Our goal is to demonstrate
how the co-adapting training method accelerates learning.

PickAndPlace and FetchPush are run with 20 and 40 dif-
ferent seeds,2 respectively. The success rate δ is chosen as
0.7 and 0.9, respectively for PickAndPlace and FetchPush
tasks, based the average success rates reported in the paper
proposing HGG [9], and remains constant during the training
of each different environment within a task. As the outcomes
of each episode can be influenced by multiple random factors
in the simulation, the agent completes the task by using
a different number of episodes at each run. Therefore, for
illustration purposes, in Fig. 3a and 4a (respectively for
PickAndPlace and FetchPush), we consider the worst-case
training for COHER and HER (i.e., the run that took the
largest number of episodes to successfully accomplish the
task, if any) and the best-case training for HGG and CHER
(i.e., the run that took the smallest number of episodes to
solve the task, if any). In this way, we can show that, in the
worst-case for both algorithms, COHER solves the task faster
than HER (but, it turns out that also the best-case for COHER
needs less episodes than the best-case for HER). Furthermore,
we can show that in the worst-case COHER needs less
episodes than HGG and CHER in their best-case training.

In the same figures, the environment transition points
are depicted as orange, brown, and purple dots. It can be
seen that, with COHER, the performance drops as soon as
the next challenging environment is generated, but the RL
algorithm adapts itself to the new environment until it reaches

1https://frankaemika.github.io/docs/libfranka.html
2The number of runs is different for the two tasks due to limitations on the

computational resources.

TABLE 1. Descriptive statistics for the number of episodes required to
complete the PickAndPlace (left) and the FetchPush (right) tasks.

the success rate. As indicated by the colored dots, COHER
requires 54400 and 34550 episodes to complete the task,
respectively for PickAndPlace and FetchPush. Concerning
PickAndPlace, the first environment takes 24850 episodes,
while the second and third environments are generated at
33800 and 46700 episodes, respectively. In other words,
8950 and 12900 episodes are required to reach the given
success rate for them. As for FetchPush, solving the first
environment takes 8950 episodes, while the second and third
environments are generated at 12150 and 16550 episodes,
respectively. In other words, 3200 and 4400 episodes are
required to reach the given success rate for them. Compared to
COHER, HER requires 223550 and 68200 episodes to reach
the same success rate, respectively for PickAndPlace and
FetchPush. On the other hand, HGG and CHER get stuck in
most cases in the presence of obstacles, because as discussed
earlier their heuristic method for generating the curriculum is
based on Euclidean distance. For PickAndPlace in particular,
the success rate of HGG is always 0.

The total number of episodes required to complete the two
tasks across the different runs is shown in Fig. 3b and Fig. 4b,
respectively for PickAndPlace and FetchPush. The mean and
median values are shown as a black dashed line and a black
solid line, respectively. The corresponding numerical values
are reported in Table 1. The difference on the number of
episodes is statistically significant for both tasks, i.e. COHER
uses less episodes than HER (Wilcoxon Rank-Sum test, α =
0.05; PickAndPlace p = 0.000954; FetchPush p = 0.01441).
Fig. 3c and Fig. 4c show the number of episodes required

for each environment in order to reach the predefined
success rate. On average, the environments require 6411.29,
2575.81, 7948.39, and 5216.13 episodes for PickAndPlace
and 5810.25, 2332.05, 3453.85, and 9741.03 episodes for
FetchPush. Moreover, the figures shed light on the difficulty
level of each environment. Since the robot starts in the
first environment without knowing anything about the task,
it takes on average a little bit longer than the second
environment. In the second environment, the obstacle is
located on the other side of the robot arm, and the location
of the obstacle does not intersect with the sampled area
of the initial position (i.e., the yellow area) of the cube.
As a result, the robot can easily apply the skills it learned
in the first environment. After the robot succeeds in the
second environment, it learns to avoid the obstacle either by
pushing the cube around it or by moving the cube above
it, depending on the task. When the third environment is
introduced, the robot arm is blocked more often than in the
second environment. The reason is that the third environment
has a much smaller gap than the second one, and also that the

VOLUME 12, 2024 46631

E. Sayar et al.: Curriculum Learning for Robot Manipulation Tasks With Sparse Reward

FIGURE 1. Environment shifts in the PickAndPlace task.

FIGURE 2. Environment shifts in the FetchPush task.

FIGURE 3. Results for the PickAndPlace task. (a) Success rate of the worst-case training of COHER and HER, and the best-case training of HGG and
CHER. Environment transitions during training with COHER are indicated by orange, brown, and purple dots. (b) Number of episodes required to
reach the success rate using the COHER and HER methods in 20 different runs. (c) Number of episodes required to reach the success rate for each
environment individually with COHER in 20 different runs.

robot has just learned to go through the safe way, reaching
the goal on the other side of the obstacle in the second
environment, but now another obstacle is located on its safely
learned path.

As for the last environment, the obstacle is located in
the middle of the table for FetchPush and on the left side
of the table for PickAndPlace. The last environment for
FetchPush takes the longest to be solved because a newly
located obstacle intersects with the sampled area of the target.
Furthermore, the robot needs to push the cube around it and
bring it to the target point.

B. Sim2Real
Each individual training with a different seed in COHER
converges ultimately to the predefined success rate at certain

episodes. Once this criterion is met, the policy is chosen
as the final policy. We tested the final policy found on
the PickAndPlace task on a real 7-DOF Franka robot.
Specifically, we designed the fourth environment as a
real-world replica of the simulation environment shown in
Fig. 1d. The resulting environment is shown in Fig. 5, which
also shows the measurement of the obstacles’ height. The
output of the policy is the linear motion of the end-effector
in Cartesian space relative to its current position, as well as
the state of the gripper gap. The output values from the linear
motion are directly given to the Franka robot. On the other
hand, the gripper state of the robot receives in simulation
one actuation value at every timestep. If we fed these values
directly to the real Franka robot, this would slow down the
robot’s movement because at each timestep the robot would

46632 VOLUME 12, 2024

E. Sayar et al.: Curriculum Learning for Robot Manipulation Tasks With Sparse Reward

FIGURE 4. Results for the FetchPush task. (a) Success rate of the worst-case training of COHER and HER, and the best-case training of HGG and CHER.
Environment transitions during training with COHER are indicated by orange, brown, and purple dots. (b) Number of episodes required to reach the
success rate using the COHER and HER methods in 40 different runs. (c) Number of episodes required to reach the success rate for each environment
individually with COHER in 40 different runs.

TABLE 2. Hyperparameter settings for COHER.

have to wait for the gripper to finish its movement before
executing the next one. Moreover, the gripper would get
clamped and in the long run this would make the gripper
unusable, due to hardware issues. Therefore, we used a
threshold to close and open the gripper.

As the cube’s initial position is stationary, its position
in relation to the robot’s reference frame could be found
either by using a camera with a red filter or by measuring
it w.r.t. the robot’s origin. However, when the cube is
grasped, it might be occluded by the gripper, making it
infeasible to obtain its position either by using a camera
or by measuring it at each timestep. Therefore, in our
experiments, the gripper position was assigned to the cube
position as soon as the gripper was clamped. The gripper
position, along with the relevant information on the state of
the robot, could be obtained using the Frankx library.3 The
final policy achieved by COHER could avoid obstacles and
complete the task successfully. On the other hand, the policies
found in the first environment could not complete the task

3https://github.com/pantor/frankx

FIGURE 5. PickAndPlace Sim2Real scenario. (a) The real-world
environment, replicating the one of Fig. 1d. (b) The measurement of the
obstacles’ height.

without colliding with obstacles. We implemented Sim2Real
for four different target locations and captured the video of
the robot from different perspectives. Sim2real videos and
code are available on our project website at the following link:
https://erdiphd.github.io/COHER/.

VI. CONCLUSION
We presented a novel framework for co-adapting curriculum
learning with sparse rewards and multi-goal RL, dubbed
COHER, and tested in simulation on two different robot
manipulation tasks: PickAndPlace and FetchPush. Further-
more, the PickAndPlace task was chosen for Sim2Real
implementation using a Franka robot. We proved that the
proposed co-adapting method is more sample-efficient than
the vanilla HER method. Furthermore, we were able to
solve both tasks with COHER without explicitly giving
the algorithm obstacle positions, whereas the vanilla HER
requires more samples while HGG, as well as CHER, get
stuck in obstacles.

Limitations and future works The present study involves
a manual design of the environments, with the underlying
principle of making the task increasingly more difficult
as it is accomplished. Since such manual design could be

VOLUME 12, 2024 46633

E. Sayar et al.: Curriculum Learning for Robot Manipulation Tasks With Sparse Reward

time-consuming, using an intelligent algorithm to design
a (potentially large) number of environments would be
an interesting direction for future research. However, one
potential issue associated with this approach would be that
the computational time required would significantly increase.
On the other hand, the difference in difficulty between
any two subsequent environments would decrease as the
number of environments increases, making it easier for
the agent to accomplish the overall task. Beyond a certain
number of environments, the difficulty of two consecutive
environments may not differ significantly anymore. This
could potentially decrease our sample efficiency, as the agent
might require many training steps to master an environment
that is almost the same as the previous one. Our general
intuition is that there exists a trade-off between number of
environments and sample efficiency. However, finding this
trade-off automatically is hard, and more investigation is
needed in this direction. Furthermore, while in this work we
assumed that the agent should reach the same pre-defined
success rate for each environment before changing to the next
slightly harder environment, in some scenarios it might be
possible that different success rates should be set for different
environments, such that the optimal success rate, resulting
in the smallest number of total training episodes, should be
determined for each environment.

Lastly, it should be noted that the proposed method can
be generalized to tasks beyond robot manipulation, such as
maze navigation, robot locomotion, puzzle solving, urban
planning, and assembly tasks. In those cases, the level of
difficulty will obviously have to be defined differently from
what we did in this study (i.e., based on the presence and
configuration of obstacles), e.g. one may need to take into
account the steepness of roughness of terrain for locomotion,
the number and inter-dependency of assembly tasks, etc.
Future research should be aimed at applying our method to
those tasks, also addressing any possible scalability issues.

REFERENCES
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,

D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ 2013, arXiv:1312.5602.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
2015. [Online]. Available: http://www.nature.com/articles/nature14236

[3] J. Kober, J. A. Bagnell, and J. Peters, ‘‘Reinforcement learning in robotics:
A survey,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274, 2013, doi:
10.1177/0278364913495721.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
2015, arXiv:1509.02971.

[5] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ 2018, arXiv:1801.01290.

[6] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
and E. Liang, ‘‘Autonomous inverted helicopter flight via reinforcement
learning,’’ in Experimental Robotics IX (Springer Tracts in Advanced
Robotics), vol. 21, M. H. Ang and O. Khatib, Eds. Berlin, Germany:
Springer, 2006, pp. 363–372, doi: 10.1007/11552246_35.

[7] M. Seo, L. F. Vecchietti, S. Lee, and D. Har, ‘‘Rewards prediction-based
credit assignment for reinforcement learning with sparse binary rewards,’’
IEEE Access, vol. 7, pp. 118776–118791, 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8809762/

[8] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, ‘‘Hindsight experience
replay,’’ 2017, arXiv:1707.01495.

[9] Z. Ren, K. Dong, Y. Zhou, Q. Liu, and J. Peng, ‘‘Exploration via hindsight
goal generation,’’ 2019, arXiv:1906.04279.

[10] M. Fang, T. Zhou, Y. Du, L. Han, and Z. Zhang, ‘‘Curriculum-guided
hindsight experience replay,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, Ed. Red Hook, NY, USA: Curran Asso-
ciates, 2019, pp. 1–12. [Online]. Available: https://proceedings.neurips.cc/
paper/2019/file/83715fd4755b33f9c3958e1a9ee221e1-Paper.pdf

[11] Z. Bing, M. Brucker, F. O. Morin, R. Li, X. Su, K. Huang, and
A. Knoll, ‘‘Complex robotic manipulation via graph-based hindsight
goal generation,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 33,
no. 12, pp. 7863–7876, Dec. 2022. [Online]. Available: https://ieeexplore.
ieee.org/document/9466373/

[12] Z. Bing, E. Álvarez, L. Cheng, F. O. Morin, R. Li, X. Su, K. Huang, and
A. Knoll, ‘‘Robotic manipulation in dynamic scenarios via bounding-box-
based hindsight goal generation,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 8, pp. 5037–5050, 2023.

[13] J. C. Brant and K. O. Stanley, ‘‘Minimal criterion coevolution: A new
approach to open-ended search,’’ in Proc. Genetic Evol. Comput. Conf.,
2017, pp. 67–74, doi: 10.1145/3071178.3071186.

[14] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, ‘‘Paired open-
ended trailblazer (POET): Endlessly generating increasingly com-
plex and diverse learning environments and their solutions,’’ 2019,
arXiv:1901.01753.

[15] A. Yaman, G. Iacca, D. C. Mocanu, G. Fletcher, and M. Pechenizkiy,
‘‘Learning with delayed synaptic plasticity,’’ in Proc. Genetic Evol.
Comput. Conf., 2019, pp. 152–160.

[16] J. E. Auerbach, G. Iacca, and D. Floreano, ‘‘Gaining insight into quality
diversity,’’ in Proc. Genetic Evol. Comput. Conf. Companion, 2016,
pp. 1061–1064.

[17] E. Bizzotto, A. Yaman, and G. Iacca, ‘‘Promoting behavioral diversity via
multi-objective/quality-diversity novelty producing synaptic plasticity,’’ in
Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), Dec. 2021, pp. 01–08.

[18] A. Yaman, G. Iacca, D. C. Mocanu, G. Fletcher, and M. Pechenizkiy,
‘‘Novelty producing synaptic plasticity,’’ in Proc. Genetic Evol. Comput.
Conf. Companion, 2020, pp. 93–94.

[19] K. O. Stanley and R. Miikkulainen, ‘‘Evolving neural networks through
augmenting topologies,’’ Evol. Comput., vol. 10, no. 2, pp. 99–127,
Jun. 2002. [Online]. Available: https://direct.mit.edu/evco/article/10/2/99-
127/1123

[20] N. Hansen, D. V. Arnold, andA. Auger, ‘‘Evolution strategies,’’ in Springer
Handbook of Computational Intelligence, J. Kacprzyk andW. Pedrycz, Ed.
Berlin, Germany: Springer, 2015, pp. 871–898, doi: 10.1007/978-3-662-
43505-2_44.

[21] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, and J. Schmidhuber,
‘‘Natural evolution strategies,’’ 2011, arXiv:1106.4487.

[22] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, ‘‘Evolution
strategies as a scalable alternative to reinforcement learning,’’ 2017,
arXiv:1703.03864.

[23] S. Zhang and O. R. Zaiane, ‘‘Comparing deep reinforcement learning and
evolutionary methods in continuous control,’’ 2017, arXiv:1712.00006.

[24] Z. Bing, H. Zhou, R. Li, X. Su, F. O. Morin, K. Huang, and A. Knoll,
‘‘Solving robotic manipulation with sparse reward reinforcement learning
via graph-based diversity and proximity,’’ IEEE Trans. Ind. Electron.,
vol. 70, no. 3, pp. 2759–2769, Mar. 2023.

[25] R. Yang, M. Fang, L. Han, Y. Du, F. Luo, and X. Li, ‘‘MHER:Model-based
hindsight experience replay,’’ 2021, arXiv:2107.00306.

[26] S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba, ‘‘Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning,’’ in Proc.
Int. Conf. Mach. Learn., 2020, pp. 7750–7761.

[27] D. Ha, ‘‘Reinforcement learning for improving agent design,’’ Artif. Life,
vol. 25, no. 4, pp. 352–365, Nov. 2019.

[28] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell,
J. Schneider, J. Tobin, M. Chociej, P.Welinder, V. Kumar, andW. Zaremba,
‘‘Multi-goal reinforcement learning: Challenging robotics environments
and request for research,’’ 2018, arXiv:1802.09464.

46634 VOLUME 12, 2024

http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1007/11552246_35
http://dx.doi.org/10.1145/3071178.3071186
http://dx.doi.org/10.1007/978-3-662-43505-2_44
http://dx.doi.org/10.1007/978-3-662-43505-2_44

E. Sayar et al.: Curriculum Learning for Robot Manipulation Tasks With Sparse Reward

[29] T. Schaul, D. Horgan, K. Gregor, and D. Silver, ‘‘Universal value
function approximators,’’ in Proc. 32nd Int. Conf. Mach. Learn., 2015,
pp. 1312–1320.

[30] I. Rechenberg, ‘‘Evolutionsstrategien,’’ in Simulationsmethoden in der
Medizin und Biologie (Medizinische Informatik und Statistik), vol. 8,
B. Schneider and U. Ranft, Eds. Berlin, Germany: Springer, 1978,
pp. 83–114, doi: 10.1007/978-3-642-81283-5_8.

[31] S. Fujimoto, H. Hoof, and D. Meger, ‘‘Addressing function
approximation error in actor-critic methods,’’ in Proc. 35th Int.
Conf. Mach. Learn., 2018, pp. 1587–1596. [Online]. Available:
https://proceedings.mlr.press/v80/fujimoto18a.html

[32] R. Zhao and V. Tresp, ‘‘Energy-based hindsight experience prioritization,’’
in Proc. Conf. Robot Learn., 2018, pp. 113–122.

ERDI SAYAR (Graduate Student Member, IEEE)
received the B.Sc. degree from Kocaeli University,
Turkey, the B.Eng. degree from Bochum Applied
Science, Germany, and the M.Sc. degree from
RWTHAachen, Germany, in 2020. He is currently
pursuing the Ph.D. degree with the Informat-
ics 6 Department, Technical University ofMunich.
His research interests primarily focus on robotics
controlled by artificial neural networks and their
related applications.

GIOVANNI IACCA (Senior Member, IEEE) is an
Associate Professor of information engineering
with the Department of Information Engineering
and Computer Science, University of Trento,
Italy, where he has founded the Distributed
Intelligence and Optimization Laboratory (DIOL).
Previously, he was a Postdoctoral Researcher with
RWTH Aachen, Germany, from 2017 to 2018;
EPFL, University of Lausanne, Switzerland,
from 2013 to 2016; INCAS3, The Netherlands,

from 2012 to 2016; and in industry in the areas of software engineering and
industrial automation. He is a Co-PI of the PATHFINDER-CHALLENGE
Project ‘‘SUSTAIN’’ (2022–2026). Previously, he was a Co-PI of the
FET-Open Project ‘‘PHOENIX’’ (2015–2019). His research focuses on
computational intelligence, distributed systems, and explainable AI applied
to medicine. In these fields, he has coauthored more than 140 peer-reviewed
publications. He is actively involved in organizing tracks and workshops at
some of the top conferences in computational intelligence. He has received
two Best Paper Awards (EvoApps 2017 and UKCI 2012). He regularly
serves as a reviewer for several journals and conference committees. He is an
Editorial Board Member of Applied Soft Computing and an Associate Editor
of Frontiers in Robotics and AI.

ALOIS KNOLL (Fellow, IEEE) received the
M.Sc. degree in electrical/communications engi-
neering from the University of Stuttgart, Stuttgart,
Germany, in 1985, and the Ph.D. degree (summa
cum laude) in computer science from the Technical
University of Berlin (TUBerlin), Berlin, Germany,
in 1988. He was on the Faculty of the Com-
puter Science Department, TU Berlin, until 1993.
He joined the University of Bielefeld, Bielefeld,
Germany, as a Full Professor, where he was the

Director of the Technical Informatics Research Group, until 2001. Since
2001, he has been a Professor with the Department of Informatics, Technical
University of Munich (TUM), Munich, Germany. His research interests
include cognitive, medical, and sensor-based robotics; multi-agent systems;
data fusion; adaptive systems; multimedia information retrieval; model-
driven development of embedded systems, with applications to automotive
software and electric transportation; and simulation systems for robotics
and traffic. He was a member of the EU’s highest advisory board on
information technology; and the Information Society Technology Advisory
Group (ISTAG), from 2007 to 2009, and its subgroup on Future and
Emerging Technologies (FETs). In this capacity, he was actively involved in
developing the concept of the European Union (EU) FET flagship projects.

VOLUME 12, 2024 46635

http://dx.doi.org/10.1007/978-3-642-81283-5_8

