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ABSTRACT Connecting smart industrial components to computer networks revolutionizes business
operations. However, in the Industrial Internet of Things (IIoT), the sharing of data has bandwidth,
computational, and privacy issues. Researchers presented cloud computing and fine-grained access control
to overcome these challenges. However, traditional centralized computing systems involve single points of
failure. Tomitigate these challenges, we have proposed a secure and incentive-based data-sharing framework
for IIoT systems using blockchain technology. We leverage blockchain due to its ability to provide secure
and tamper-resistant data storage and sharing as participants store their data on a distributed ledger (DL),
preventing unauthorized access. A security protocol is designed that utilizes the properties of elliptic curve
cryptography (ECC). Moreover, Shapley value is employed to calculate revenue and distribute it fairly.
To perform the formal security evaluation, we have conducted extensive simulations using the Automated
Validation of Internet Security Protocols and Applications (AVISPA) and Scyther protocol simulation tools,
which demonstrated that our protocol is robust against various adversarial attacks. The experimental results
show that the proposed incentive distribution framework demonstrated fairness in the distribution of revenue
among participants.

INDEX TERMS Data sharing, game theory, profit distribution, elliptic curve, industrial IoT.

I. INTRODUCTION
The IIoT is a complicated system made up of interconnected
smart industrial components and computer platforms [1].
The goal of IIoT is to monitor industrial processes to
improve overall system performance. In an industrial setting,
a significant number of devices, such as sensors and actuators,
generate a large volume of data [2] that is used for better
decision-making and to maintain productivity and improve
efficiency within the industry. Thus, the heterogeneous nature
of data from various sources is frequently offloaded to
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the cloud for analysis purposes. To share data with users,
the traditional framework faces some challenges, such as
bandwidth or computational overheads leading to inaccurate
analysis, resulting in poor decision-making and economic
losses as well as the efficiency of the system [3]. Moreover,
there may be a threat to data in terms of privacy preservation
due to unauthorized access. Differentmethods have been used
to mitigate privacy and security threats [4], in which either
the sender has to use security protocols to secure the data
transmission or leaves no choice for the receiver to trust the
data [5], [6]. Though some existing schemes resolve some
issues, there is still a threat posed by participants in the shar-
ing system regarding trusted and accurate data sharing [7].
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To address privacy concerns, many researchers presented
various solutions comprised of different techniques, but many
emphasized the use of a cloud computing environment to
create platforms to share data in a secure way on customer
demand [8], [9]. Various security models, such as deploying
fine-grained access control mechanisms, have been proposed
to ensure secure data storage in a cloud environment [10].

Cloud computing is a centralized environment, and all the
data resides at a single point for storage and processing.
Traditional centralized data-sharing systems have a single
point of failure and raise grave privacy concerns. Hence, these
challenges require a secure and trustworthy platform that
provides data security and privacy protection and prevents
attackers from acquiring and disclosing information about the
data or system participants. Recent research trends [11], [12],
[13] show that blockchains provide reliable security to data
storage and sharing that significantly reduces privacy threats
during data sharing by controlling unauthorized access to
data via access control measures [14]. Overall, blockchain
integration in IIoT enhances data security and provides
identity verification for the participants [15]. A fair incentive
distribution mechanism is important for a collaborative
environment that prevents manipulation of data sharing
for individual gain. Similarly, Maintaining data privacy in
collaborative settings requires controlling access rights to
secure individual data.

Our objective is to evaluate how blockchain technology
might enhance IIoT systems, focusing on data sharing.
The decentralized and tamper-proof nature of blockchain
technology helps to achieve trust and consensus for resource
sharing among the participants. The security features of
blockchain such as precisely recording the transactions on
the distributed ledger (DL) create a trusted environment that
meets the need for a data-sharing framework. A consortium
blockchain helps to control data access using an access
control mechanism. It manages user’s identities to limit
unauthorized access to data so that shared data is only visible
to authorized participants of the system. So, to increase data
availability by preserving privacy blockchain provides an
efficient solution.

In addition, to guarantee the delivery of accurate and trust-
worthy data an incentive distribution mechanism is needed
that fairly distributes incentives among data providers. For
this purpose, in our research, we show that Shapley value
estimates the contribution of each participant of the con-
sortium and achieves fairness during incentive distribution
based on provided data. Thus, we proposed a consortium
blockchain-based incentive distribution framework for secure
data sharing that uses the game theoretic approach Shapley
value to solve the consortium incentive distribution problems.

Our secure framework integrates blockchain and Shapley
value to design a collaborative environment to exchange
data between different participants of the system. Our study
addresses two main issues in industrial data-sharing systems.
First, an attacker may obtain and misuse data. A trustworthy

platform that guarantees privacy and prevents attackers from
accessing and modifying data is essential. Equal profit
distribution among data suppliers is a second concern when
sharing data with consumers [16]. This research provides
a safe, incentive-based IIoT distribution mechanism that
uses blockchain to store data providers’ data on a secure
DL that limits unauthorized access. We also employed
HMAC and ECDH hashing methods to prevent unauthorized
transmission of data between parties.

We have summarized our contributions as follows:
• We propose an efficient and anonymous authentication
framework for data-sharing system participants that
utilizes HMAC and ECC for anonymity and integrity.
It resists impersonation, replay, and secret disclosure
attacks. In addition, it secures participant data transmis-
sion and protects from unauthorized access.

• We used permission blockchain to develop an efficient
ecosystem that provides a resources-sharing platform
to ensure consensus and trust among the participants.
It guarantees the visibility of data to the authorized
participants and protects the privacy of sensitive data.

• We have developed an incentive distribution framework
based on the Shapley value [17] for data sharing among
multiple participants. We consider the collaboration of
participants and develop the revenue distribution model.

• We have conducted extensive simulations to verify
the performance of the proposed incentive distribution
framework against the factors that affect the distribution
of revenue among the participants.

The remaining paper is as follows: II presents a summary
of existing work, III describes the preliminaries, IV describes
problem formulation, in V and VI proposed methodology is
presented, VII and VIII described the performance evaluation
and conclusion of the paper, respectively.

II. REVIEW OF RELATED LITERATURE
In this section, we have briefly described the existing work in
two sections and summarized in Table 1.

A. SECURITY PROTOCOLS FOR SECURE DATA SHARING
There are various solutions proposed to address the security
challenges by using blockchain technology, papers [18]
propose an authentication protocol for cross-domain IoT
device interaction using Merkle tree structure to store
sensitive information. Similarly in [19] author proposes
an authentication protocol for secure cross-domain data
exchange in IIoT. However, this paper does not provide
a potential solution to incorporate the large number of
IIoT devices. To solve the scalability and security prob-
lems in cross-domain networks various blockchain-based
frameworks are proposed in [20], [21], [22], and [23].
In [20] Wang et al. proposed a scheme that addresses
efficiency and security challenges in cross-domain IIoT by
using edge servers to assist smart devices in achieving
cross-domain authentication, while the lightweight message
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authentication algorithm guarantees message security with
low computational overhead. In [24] the author presented
a lightweight authentication protocol based on ECC for
fault-tolerant wireless sensor networks. It provides secure
communication between resource-constrained devices for
data sharing. Though it provides the minimum trade-off
between communication and computation complexities,
it does not consider the load balancing and adversarial attack
scenario. In [25] author proposes a security framework for
IIoT that leverages ECC, hashing, bitwise XOR operation,
and PUF to protect the system against physical attacks
and address the challenges of resource-constrained IIoT
environment. Saleem et al. [26] used hashing, the PUF
condition, and bitwise operations to construct a vehicular
network data security protocol. Although computationally
inadequate, it protects the confidentiality of personal data.
Wang et al. proposed an IIoT privacy solution in [27]. This
framework uses blockchain technology to record transactions
securely and safeguard sensitive data during transmission.
In [28], the author proposed a key aggregate searchable
encryption (KASE) data-sharing technique for fog-enabled
IoT environments. It preserves data confidentiality, integrity,
and availability while allowing authorized users to communi-
cate data in a secure setting [29], [30]. Yi et al. [31] developed
an authentication mechanism for wireless sensor networks
(WSNs) in IIoT to secure data. However, IIoT systems
need scalability, usability, and computational overhead. The
authors created a blockchain-based data-sharing approach
in [32] and [33] to solve security and privacy issues
with decentralized data. Zero-knowledge proofs isolate data
providers from their shared data to avoid data tamper-
ing. Tanveer et al. introduced a lightweight and efficient
authentication protocol for IIoT in [34] to solve security
problems such as limited resources and rapid authentication
processes [35].
The motivation behind this research is to enhance the

security of data-sharing systems in IIoT which can be
implemented in twoways such as actual and simulation-based
implementation. To secure the underlying system three differ-
ent types of cryptographic methods can be used: symmetric
encryption, asymmetric encryption, and hybrid encryption
which uses both symmetric and asymmetric encryption tech-
niques. Among these techniques, ECC provides promising
security solutions for resource-constrained devices due to its
characteristics of efficient use of bandwidth and computation.
These properties make ECC suitable for IIoT devices with
minimal processing power and communication.

B. INCENTIVE DISTRIBUTION MECHANISMS
Zhang et al. [36] presented a smart contract-based quality-
driven incentive system for secure data exchange across
IoT devices. Blockchain verifies data integrity, while smart
contracts apply the incentive system. Mai et al. [37]
introduced a federated learning auction technique. Data
owners offer their data and processing resources to users via

a double-auction method. The proposed approach balances
data owners and consumers while maintaining dependability
and effectiveness. Chen et al. [38] developed COMSA to
tackle profit distribution concerns in micro-edge comput-
ing and ensure users get high-quality end-to-end service.
In [39] and [40], the author’s strategy considers spectrum
allocation and data routing for best service quality, but
it does not address possible security and privacy issues
during the double auction [37], [41], [42]. Kang et al. [43]
address the challenges of privacy and data correctness in
the domain of the healthcare metaverse. The author aims
to provide an efficient solution to counter the privacy issue
using a decentralized model. In addition, it promotes active
user participation and collaboration by incentivizing the
process that encourages the data owners to provide truthful
data.

Our main contribution to this research domain is to develop
a fair incentive distribution mechanism using Shapley value
that fairly distributes the profit among the data owner.
There are some solutions already been proposed using
Shapley value for different industries. Li and Qu [44] and
Yang et al. [45] provide a solution to distribute profit fairly
to improve supply chain management. Similarly, in other
domains, research incorporated Shapley value to improve the
performance of the system. Dang et al. improve the accuracy
and collaboration using Shapley value by incentivizing
cooperation among the clients [46]. Chai and Zeng [47]
proposed a Shapley value-based computation offloading
framework in edge computing.

III. PRELIMINARIES
A. ELLIPTIC CURVE
Suppose a large prime number p > 3 that defines the finite
field Fq and 4a3 + 27b2 ̸= 0 only if a group of points
a, b ∈ Fp, ECp is the elliptic curve that satisfies these points
on curve ECp(a, b) : y2 = x3 + ax + b mod P. Our
technique is based on the one-way Elliptic Curve Discrete
Logarithm Problem (ECDLP), which is hard to compute.
Understanding the cyclic group and its features helps create
Discrete Logarithm Problems (DLPs). G is cyclic if G ⇔
∃ α ∈ G and ord(α) = |G|. α has the same cardinality as the
basic element group G. The DLP requires cyclic groups with
closure, associativity, identity, and inverse. DLP in a cyclic
group G to find x such as αx ≡ β mod p.

B. ECDLP
In a cryptosystem, the finite groups or cyclic groups play
an essential role in building the structure that is considered
during the construction of any system. To define DLPs
more precisely, we first need to understand the cyclic group
and its properties. A G group is cyclic, G ⇔ ∃ α ∈

G, such that ord(α) = |G|. It means that α has the
same cardinality as the group G. A group must satisfy
the following properties in order to use it for constructing the
DLPs.
• Closure:Agroup is closed,∀a, b ∈ G such that a◦b = c.
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TABLE 1. Summary of existing work.

• Associativity: A group is associative if and only if it
holds (a ◦ b) ◦ c = a ◦ (b ◦ c),∀ a, b, c ∈ G.

• Identity: There exists an element 1 called identity
element such that a ◦ 1 = 1 ◦ a,∀ a ∈ G.

• Inverse: ∀a ∈ G has an inverse element that exists in that
group, such that a ◦ a−1 = a−1 ◦ a.

After describing the cyclic group properties, it is clear that
one-way functions, the Discrete Logarithm Problem (DLP),
can quickly be evaluated in a cyclic group..
Definition 1 Discrete Logarithm Problem: For a finite

cyclic group Z∗p with the order p − 1 having a prim-
itive element α ∈ Z∗p , and another element β ∈

Z∗p . The DLP is to determine the element x, such that
1 ⩽ x ⩽ p− 1.

αx ≡ β mod p (1)

Roughly speaking, x must exist because α is a primitive
element that must have the power x that generates the element
of the group. so x is said to be the discrete logarithm of β with

the base of α. It can be denoted as:

x = logαβ mod p (2)

It is tough to compute discrete logarithm problems when sig-
nificant parameters are used. It needs extensive computation
to solve the problem with the different attacks. In practice,
DLP always considers in the cyclic group Z∗p which is
vulnerable to Pohling-Hellman attack. The cardinality of Z∗p
with the large prime number p is p − 1 which is not a
prime.
Definition 2 Generalized Discrete Logarithm Problem: For

a finite cyclic group (G, ◦) of the order n and a primitive
element α having same order as a G. There is another element
β ∈ G, DLP is to find a integer x, as 1 ⩽ x ⩽ n, such that:

β = α ◦ α ◦ α ◦ . . . ◦ α = αx (3)

C. SHAPLEY VALUE
Game theory offers numerous profit distribution decision-
making frameworks, including the Shapley value, which
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evaluates each coalition data provider’s marginal contribu-
tions and equation to calculate participants’ contributions.

ϕi(N ,w) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)
N !

[w(s ∪ {i} − w(s)]

(4)

The Shapley value helps distribute revenue fairly in
collaborative atmospheres. Thus, our model uses the Shapley
value to calculate revenue based on estimating resource
use, fairness, and avoiding equalitarianism. To evaluate the
performance certain requirements must be met as follows:

• Efficiency: The total worth of all participants equals the
total money earned by the grand alliance. In other words,
the sum of each participant’s Shapley value equals the
group’s overall revenue, as shown by

∑
i∈N ϕi(w) =

w(N ).
• Symmetry: If two coalition participants i and jmake the
same contribution, then their Shapley values should be
the same s.t., w(S ∪ i) = w(S ∪ j).

• Linearity: If two coalitions have revenue functions v
andw, the gain distribution derived from both coalitions’
worth functions should be equal to the sum of the
gain distributions derived from each worth function
individually, as in ϕi(v+ w) = ϕi(v)+ ϕi(w) ∀i ∈ N .

• Null Player: The profit for a player i in a game is zero if
the player’s contribution is zero,w(S∪i) = w(S) ∀i /∈ S.

IV. PROBLEM DEFINITION AND SCOPE
A. SYSTEM MODEL
As shown in Figure.1, the proposed system model has
participants, including data providers, data consumers, and
blockchain authenticator.

• Blockchain Authenticator (BA): The blockchain
authenticator is a critical component of our designed
blockchain-based data-sharing system. It controls
system communication and initializes when it receives
a request from a user. It registers and authenticates the
participants to restrict data access to authorized entities.

• Data Provider (P): Data providers hold dynamic
industrial data. This data may be utilized for market
research and industry monitoring. Data providers give
data to consumers’ requests for incentives.

• Data Consumer(C): Data consumers utilize data to get
insights or make optimal decisions. Data consumers
request and get data from data providers via the
blockchain in return for incentives.

• Smart Contracts: These self-executing, programmable
contracts have coded terms and conditions. They reduce
transaction costs, boost trust, and eliminate inter-
mediaries. Business communication and transaction
platforms use smart contracts. In traditional business
models, payments are made indirectly through multi-
tier models. However, in blockchain-based systems,
payments are made directly through smart contracts.

FIGURE 1. Proposed system model of data sharing system.

Registering with the blockchain authority secures partic-
ipant communication. When users register, the blockchain
broadcasts public parameters to the network. Both data
providers and consumers need to register with the blockchain
network to participate in data sharing. Consumers who have
registered can send data requests to providers using the secure
communication channel established by the blockchain.

B. THREAT MODEL
As per the Dolev and Yao [48] and CKadversary [49] threat
models, our security model assumes an adversary capable
of active and passive attacks. This adversary can intercept,
modify, delete, and insert messages between entities. The
attacker can also determine the communicating entities’
long-term private key for more complex attacks.

C. SECURITY REQUIREMENTS
For secure data transmission, security and privacy procedures
are required. The following are the security requirements that
we consider for our model:

• Authenticity: In a sharing system, participants can
verify the identity of each other as data is shared with the
consumer that may be malicious or legitimate and needs
verification because the unauthorized access is a threat
to the privacy of data. So, we considered this security
requirement while designing the security protocol for the
data-sharing system.

• Impersonation Attack: To impersonate a legitimate
participant, the attacker needs to generate secret keys
used for authentication and verification. However,
an attacker cannot manipulate the communication
between the parties as the intended receiver first verifies
the sender’s authenticity using agreed parameters.

• Replay Attack: In this attack, the attacker pretends to
be a legitimate participant and replaces the message sent
by an actual legitimate party. The attacker reuses the
parameters of the previous session to hijack the current
session. Hence, our proposed protocol provides security
against replay attacks.

• Unlinkability Attack: It is a privacy attack that dis-
closes communication links between system participants
are called unlinkability attacks. An attacker attempts

51180 VOLUME 12, 2024



M. N. Sohail et al.: Optimizing Industrial IoT Data Security

to disclose the anonymity of communication between
them.

• Traceability Attack: An attempt by an attacker to trace
back the communication flow between the participants
to discover the identities of the communicating partici-
pants.

• DDoS Attack:As we have used blockchain technology,
our protocol is resistant to DDoS attacks due to the
decentralized nature of the network. The attacker may
attack a single gateway that does not pose a threat
to system performance in the presence of multiple
gateways.

• Length Extension Attack: The attacker tries to calcu-
late the hash of the message without knowing the actual
message. The attacker generates the internal state by
using the hash value. HMAC is resistant to this attack by
truncating the hash value with SHA256/512. Hence, Our
protocol prevents the system from this type of attack.

TABLE 2. Notations used in the proposed framework.

V. DESCRIPTION OF THE PROPOSED SECURITY
FRAMEWORK
In this section, we have briefly described our security
mechanism for data-sharing systems.

Let P = {P1,P2,P3, . . .Pi} represent the set of data
providers, and C = {C1, C2, C3, . . . Ci} represent the set
of data consumers. Both Pi and Ci can participate in data
sharing after registering. Our protocol comprises two phases
as follows:

A. REGISTRATION PHASE
Pi registers with BA during this phase by sending a regis-
tration request. When BA receives Pi’s request, it generates
registration parameters. BA selects the secret key ka ∈ Z∗p
and calculates public key PKa = ka. α, assigns new ID ( P̂i)
to Pi, such that Pi ̸= P̂i, and hashes it along with PKa and T .

ma = H (PKa ∥ P̂i ∥ T ) (5)

BA sends (ma, PKa, ECP, α) to Pi to complete the
registration process. When P receives the parameters, it first
verifies the message ma by computing a hash and comparing
it with a received message (ma = m′a) under the assumption
that H (.) is publicly known.

m′a = H (PKa ∥ P̂i ∥ T ) (6)

Now, Pi chooses the secret key kp ∈ Z∗P and computes
its public key PKp = kp. α transmits PKp to BA in order to
compute the shared secret between BA and P . In addition,
when BA receives PKp from P , it computes the shared secret.

SKap = kp. PKa (7)

SKap = ka. PKp (8)

BothPi and BA now have the same secret (SKap) computed
in Equations 7 and 8. When BA shares the secret key (SKap)
with P , it becomes eligible to join the blockchain network.

Algorithm 1 Registration Phase
Input : Data provider Pi, Authority BA
Output: Registered Pi, Shared secret SKap

Pi initiates registration by sending a request to BA;
BA generates registration parameters:;

- Selects secret key ka ∈ Z∗p ;
- Computes public key PKa = ka · α;
- Assigns a new unique ID P̂i to Pi;
- Hashes P̂i along with PKa and T to compute ma

as: ma = H (PKa ∥ P̂i ∥ T );
BA sends (ma, PKa, ECP, α) to Pi to complete the
registration;
Pi verifies the received message by computing m′a:;

m′a = H (PKa ∥ P̂i ∥ T );
if ma = m′a then

Pi selects secret key kp ∈ Z∗P and computes its
public key PKp = kp · α;
Pi transmits PKp to BA for shared secret
computation;
BA computes the shared secret SKap as follows:;

SKap = kp · PKa;
SKap = ka · PKp;

Pi and BA now possess the same secret SKap;
Upon sharing SKap with Pi, it becomes eligible to
join the blockchain network;

end if
else

Registration failed; abort the process;
end if

B. AUTHENTICATION PHASE
Ci must register with BA to obtain a data access token (AT )
to access the data from Pi. Now Ci → (RE , θPi ) → BA.
After receiving RE , BA checks to see if Ci already exists in
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the DL, if this is the case, BA will end the process. Otherwise,
BA generates a random number or nonce Na and SKac.

SKac = H (Ĉi ∥Na ∥ ka) (9)

FIGURE 2. Authentication and token generation phase.

Secret key ka ∋ BA and is utilized to compute the
shared secret key SKac with Ci. BA encrypts the requested
C’s ID (Ĉi), RE , and T with SKac and stores this encrypted
message as transaction ID (ζi) on the blockchain ledger for
verification.

ζi = ESKac (Ĉi ∥RE ∥ T ) (10)

Now, ζi and SKac are shared with Ci via a secure connection
to begin the process of obtaining the token. C encrypts
mc = ESKac (ζi ∥ Rc) and sends this message mc to Pi. After
receiving the message mc from Ci, it generates Rp and then
uses SKap to calculate the HMAC of the message.

mp = HMAC(Rp∥Rc∥mc, SKap) (11)

Pi : mp,Rp,Rc,mc → BA, if BA : mp ≡ m′p. Then BA
verifies ζi by decryptingmc : Kac and comparing it to ζi stored
in DL. If ζ storedi = ζ receivedi , the loop continues.

m′p = HMAC(Rp∥Rc∥mc, SKap) (12)

After verifying the Transaction ID (ζi), BA computes
ma1 = HMAC(Ra∥Rc∥ζi, SKap) sends ma1 → Ci. ζi
represents the transaction ID associated with Ci’s request.
When ma1 is received, Ci verifies ma1 ≡ m′a1 =

HMAC(Ra∥ Rc∥ ζi, SKac) If yes, then Ci uses SKac to
determine mc1 = HMAC(Ra, SKac) of received Ra and sends
mc1→ BA. BA verifiesmc1

?
=: m′c1 = HMAC(Ra, SKac) after

receiving it from Ci. If mc1 ≡ m′c1, BA produces token Ti, T ,
encrypts with SKac → Ci. Also, compute it for Pi encrypts
with SKap.

ATCi = ESKac (Ti∥ T ∥ Rc) (13)

ATPi = ESKap (Ti∥ T ∥ Rp) (14)

VI. PROFIT AND REVENUE ASSESSMENT STRATEGIES
A. PROFITABILITY FRAMEWORK
Let C = {Ci | i = 1, . . . , C} be the set data consumers submits
the request RE = {rj | j = 1, . . . ,R} to data providers P =
{Pi | i = 1, . . . ,P} such that Ci = rj and rj = (d ,

ijt,ATCi )→
Pi. Then, P form a coalition S as, Pi ⊕ S ⊆ P ∧ |S| ≤ |P|.
dij is the requested data type and t is the life span. Each Pi ⊆
S ⇐⇒ dAi

ij , here Ai data held by Pi ∈ P . Let A be a set
of data characteristics such that Pi = Ai. Then Pi is with
A = {a1, a2, . . . , an}, where an is data held by Pi number
of attributes. We can determine the value of data by defining
data uniqueness, quantity, and quality. By aggregating these
factors we can define data value.

1) UNIQUENESS (U)
Lets UPi is data uniqueness held by Pi and we can define a
function that quantifies UPi = f (cp, d

an
p , cr ) where cp, d

an
p ,

and cr are frequency of occurrence, distinct attribute of data,
and alignment of data with existing data, respectively. If the
value of f is high such as, f (cp, d

an
p , cr ) ⇐⇒ dp, d

an
p >

cp ∧ cr = 1, then UPi :

UPi = β · cp − γ · danp + δ ·

n∑
i=1

·cir (15)

Here, β, γ and δ are weighting factors that define the
relative importance of cp, dp, and cr respectively. β · cp
denotes the frequency of occurrence which mean if cp > danp
then UPi decreases because data is more prevalent. However,
−γ · danp indicates that if its increase offsets the value of cp.
This trade-off recognizes that uniqueness is not exclusively
defined by cp or danp but by their relative significance and
balance.

2) DATA QUALITY (QI)
The quality of data held by Pi depends on its dimensions
such as accuracy (Â), life span (t), validity (v), and uniqueness
(UPi ). Â ∈ [0, 1] is accuracy score for dij such that 0 ≤ Â ≤
1. Similarly, we can determine the life span or timeliness of
data bymapping the time difference1t . Suppose, t is the total
score, then the linear mapping is:

t = g(1t) = 1− (
1t
T

) (16)

Here, T represents the maximum acceptable threshold of
1t . If the value of g(1t) ≃ T means smaller the 1t ,
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Algorithm 2 Authentication and Token Generation
Phase
Input : Data consumer Ci, Authority BA
Output: Data access token ATCi , Data access token

ATPi
Ci initiates registration with BA for obtaining a data
access token (AT ) to access data from Pi;
BA checks the existence of Ci in the DL;
if Ci does not exist in the DL then

BA generates a nonce Na and a secret key SKac;
SKac = H (Ĉi ∥Na ∥ ka);
ζi = ESKac (Ĉi ∥RE ∥ T );
Ci receives ζi and SKac via a secure connection;
Ci encrypts mc = ESKac (ζi ∥ Rc) and sends it to Pi;
Pi receives mc from Ci and computes
mp = HMAC(Rp∥Rc∥mc, SKap);
Pi : mp,Rp,Rc,mc→ BA;
if BA verifies mp ≡ m′p then

BA decrypts mc using SKac to obtain ζi;
if ζ storedi = ζ receivedi then

BA computes
ma1 = HMAC(Ra∥Rc∥ζi, SKap) and
sends ma1 to Ci;
Ci verifies
ma1 ≡ m′a1 = HMAC(Ra∥Rc∥ζi, SKac);
if ma1 ≡ m′a1 then

Ci computes mc1 = HMAC(Ra, SKac)
and sends mc1 to BA;
BA verifies
mc1 ≡ m′c1 = HMAC(Ra, SKac);

if mc1 ≡ m′c1 then
BA generates token Ti and encrypts
it with SKac→ Ci;
Pi encrypts Ti, T , and Rp with
SKap;
ATCi = ESKac (Ti ∥ T ∥ Rc);
ATPi = ESKap (Ti ∥ T ∥ Rp);

end if
end if

end if
end if

end if

therefore, greater the t . If g(1t) > T then dij has low t . For
example, we have doij having the 1t = 12h and we have set
T = 24h. Now the value of t = 1 − 12

24 = 1 − 0.5 = 0.5,
which means that the dij has 50% by considering T 24 hours.
By aggregating the values F = UPi+Â+t+υ, we can define
the Qi as:

Qi =

n∑
i=1

m∑
j=1

wi · Fj ∀i, j = 1, 2, 3 . . . .n (17)

Here,wi denotes the relative importance of each dimension
for an overall assessment of data quality. Now we can

calculate data value VPi held by Pi by aggregating these
factors.

VPi = ρ ·

P∑
i=1

(UPi +Qi + υ) (18)

The value ρ is defined based on importance of dij by Pi
based Ci preferences. So, SVPi ⊆ P generates w(S):

w(S) =
n∑
i∈S

VPi (S) (19)

B. REVENUE ESTIMATION METHODOLOGY
After determining the worth function w(S) for coalition
S, we can calculate the incentive of each Pi ∈ S upon
joining the coalition S. For each Pi its marginal contribution
mc is determined for all possible permutations θ . In other
words, MPi is a difference of worth generated by S when
Pi joined or when absent from the S. It can be calculated
as:

Mθ (Pi) = w(S ∪ Pi)− w(S) (20)

wherew(S∪Pi) denotes the worth function of S whenPi ∈ S,
and w(S) when Pi /∈ S. The shapely value φ(Pi, S),∀Pi ∈ S
across θ by averagingMθ (Pi).

φ(Pi, S) =
1
N !

∑
θ∈2

Mθ (Pi) (21)

where N is the total number of players in S, 2 is the set
of all permutations of Pi ∈ S, and Mθ (Pi) represents the
marginal contribution of Pi in a specific permutation θ .
By normalization of φ(Pi, S) it ensures that profit is fairly
distributed among Pi ∈ S such as:

φ̄(Pi, S) =
φ(Pi, S)∑
Pi∈S φ(Pi, S)

(22)

Based on φ̄(Pi, S) for each Pi we can determine the
total incentive or revenue ℜPi allocated to each player
as:

ℜPi = φ̄(Pi, S)× w(S) (23)

C. REVENUE DISTRIBUTION AMONG DATA PROVIDES
To determine the contribution of each Pi, then we have to
measure the change in the marginal contribution of data
providers of the coalition. Therefore, to calculate this factor
we measure the performance of the sharing system as that
evaluates the worth function in Equation 4. To measure the
performance, we will use the F1-score as it can evaluate
the performance of the model more efficiently in various
scenarios.

It should be noted that a model with a high F1-score
is considered better in performance. The contribution of
data providers is based on the impact of their shared data
consequently affecting revenue.
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Here we assume that each Pi ∈ P have the same type
of data in a coalition such that, RE = Di that generates
the revenue w(P). The contribution of data providers is
considered as an impact factor assuming that all the data
providers share data with a positive impact on the system for
the legality of Shapley value for Pi. We evaluate the F1-score
for data shared by coalition data providers.

The relation between F1-score and Shapley value for a
game (P,w) is described as:

ϕi(P,w) =
∑
S∈P

w(|S|)
F1(S ∪ {i} − F1(S))

F1(P)
(24)

Equation 24 w(|S|) is the weighted factor as described in
Equation 19, F1(S) shows the F1-score produced by coalition
(S ⊆ P) S of P . So, from above equations we can determine
the fi(P) =

∑
S∈P w(|S|)

F1(S∪{i}−F1(S))
F1(P) is participants i

impact factor to the coalition S. Also the aggregated Shapley
value for participants i can be defined as:

φi(P) =
∑
Pi∈P

ϕi(w) (25)

Above mention equation satisfies the property of efficiency
meaning that the sum of all revenue generated by participants
is equal to the grand coalition as:

ϕP1 (w)+ ϕP2 (w)+ ϕP3 (w)+ . . .+ ϕPi (w) = φP (w) (26)

As from Equation 20 we can determine the marginal
contribution of participant i. According to this intuition,
we can also calculate themarginal contribution of participants
i in F1-score such as:

1i(F1, S) = F1(S ∪ {i})− F1(S) (27)

To satisfy Equation 4 we have to normalize the marginal
contribution of participant i to the F1-score. We need to
divide 1i(F1, S) = F1(S ∪ {i}) − F1(S) with F1(P)
to hold the Equation 19, i.e., φ(P) = ϕi(P). Here it is
important to mention that F1(P) is the maximum F1-score
by the coalition. fi(P) is the impact factor of participant i
that eventually used to determine the participants percentage
contribution to F1-score. In a considered data-sharing system
Pi generates the revenue ϕ(P) by sharing data. The Shapley
value to distribute the revenue among thePi, then the Shapley
value for data providers φP =

∑
Pi∈P

ϕPi is define in this way.

Here we assume that, P is sharing same type of data and
S iP = {P

′
| P ′ ⊆ P/{Pi}} is a set of data providers P

excluding the player Pi. According to the F1-score, we can
define the revenue distribution for a set of players using the
Shapley value:

ϕPi (P,w) = ϕiP (P)w(P) (28)

Equation 28 shows that revenue of each participant in a
coalitional game, i.e., ϕiP = {ϕ

1
P , ϕ2

P , . . . ϕ
|P |
P }. So, we can

define ϕiP for each Pi ∈ P in term of F1-score as follow:

ϕiP (P) =
∑
P ′∈S iP

w(
∣∣P ′∣∣)1Pi (F1,P ′)

F1(P)
(29)

Normalizing the equation 29 by dividing it with F1(P) to
receive percentage of Pi contribution to F1-score. Moreover,
ϕiP is not the same for the data providers because of their
contribution. Hence, the aggregated Shapley value shows that
the sum of all contributions is equal to the grand coalition
contribution, i.e., φP = wiP (S).

Algorithm 3 Data Sharing System Algorithm
Input : Request RE from data consumers
Output: Data block and revenue distribution among

data providers
Initialize blockchain authenticator and data providers;
for each data provider P do

P registers with blockchain authenticator;
end for
for each data consumer C do

C registers with blockchain authenticator and
obtains data access token;
C sends request RE for desired data;
for each data provider P do

if P has data with attributes matching RE then
P publishes attributes of held data and
monetary value;
Coalition S forms with all data providers
having matching data attributes;
if all P in S verify commitment from C
then

Data block is generated;
C pays incentive to access data block;
Revenue is generated and distributed
among P according to their
contribution;

end if
end if

end for
end for

VII. EVALUATION OF SECURITY AND PERFORMANCE
In this section, we performed a security evaluation of
our proposed security protocol using formal and informal
methods.

A. FORMAL SECURITY VERIFICATION USING ROR MODEL
This section describes an approach to formally validating the
security of the data access token using the RORmathematical
model proposed by Abdalla et al. [50]. This proposed
protocol involves three participants: P , C, and BA. Let us
denote Pr and Cs as examples that correspond to r and
s, respectively. The adversary, denoted as A, commences
targeted inquiries as a component of the adversarial activity.
Theorem 1: Assume that the adversaryA intends to obtain

the token AT within a feasible period of time. The adversary’s
advantage AdA is constrained by the following expression

AdA ≤
q2H
|F | + 2AdECDDHA . Here, qH , |F |, and AdECDDH
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represent the hash query, the range for the hash function
H (·), and the adversary A′s advantage in solving the ECDLP
problem, respectively.

Proof: We perform the proof of our proposed protocol to
verify the security of the access token (AT ). To demonstrate
we consider three games such as Gi, where i ∈ [0, 2]
and event EAGi which can be described as it can predict
the random bit c and Pr[EAGi ] describe as competitive
advantage.

Game (G0): This game is designed to launch a real-time
attack, with the initial selection of bits c being chosen at
random. Therefore, semantic analysis can be used to derive
insights.

AdA = [2Pr[EAGi ]− 1] (30)

This game is designed to launch a real-time attack, with the
initial selection of bits c being chosen at random. Therefore,
semantic analysis can be used to derive insights.

Game (G1): In this game A intercepts the message that
is being exchanged between participants by running Execute
query. Then it executes the REVEAL and TEST queries to
verify the correctness of AT generated and shared between
P and C. However, the AT is comprised of long secret
and random numbers that are not known to the attacker.
Therefore, intercepting the communication will not disclose
the AT , and eventually, it provides equivalence between
G0 and G1 winning probability.

Pr[EAG1 ] = Pr[EAG0 ] (31)

Game (G2): In this scenario, the attacker formulates an active
attack query by executing a HASH query. As the messages
sent between all participants, P , C, and BA, are either hashed
or encrypted, the attacker is unable to compromise the
confidentiality of AT . In addition, the protocol utilizes three
randomized integers, namely Rc, Rp, and Ra, which makes
it impossible for the attacker to determine them because of
the ECDLP. To obtain AT , an attacker must computationally
determine Rc, Rp, and Ra, and then carry out the hash query
to identify a collision. Therefore, G2 is identical to G1 in
terms of winning probability, except for the hash collision.
Therefore, by merging the ECDLPwith the birthday paradox,
the subsequent conditions arise:

Pr[EAG1 ]− Pr[EAG2 ] ≤ AdAECDLP +
(q2H )
2F

(32)

Upon completing all the games, Amust possess the ability
to empirically determine the accuracy of c bits to derive the
inference of AT from it. Based on these facts, we have:

Pr[EAG2 ] =
1
2

(33)

from equations (1) (2) and (4), we can obtain

AdA = |2Pr[EAG2 ]− 1| = Pr[EAG1 ]− Pr[EAG2 ] (34)

Thus, this demonstration shows that an attacker will be able
to ascertain the session key in polynomial time.

B. FORMAL VERIFICATION OF SECURITY
Python-integrated Scyther Tool protocol assertions verified
a security protocol. Scyther claims specify protocol security
as shown in Table 3 including Secret, Nisynch, and Niagree
claims. Our protocol specified consumer, provider, and
authenticator roles utilizing Scyther’s Security Protocol
Description Language (SPDL).

TABLE 3. Considered claim events for proposed protocol.

The claim events for which the proposed protocol is
analyzed and its verification result is shown in Figure. 3.

FIGURE 3. Security analysis results of proposed protocol.

The widely used simulation tool ‘‘AVISPA’’ will be used
to verify the formal security of our proposed protocol. The
protocol is written in High-Level Protocol Specification
Language (HLPSL) for AVISPA. Four models can verify
protocol security: ‘‘Constraint Logic-based Attack Searcher
(CLAtSe),’’ ‘‘SAT-based Model Checker (SATMC),’’ ‘‘Tree
Automata based on Automatic Approximations for Analysis
of Security Protocol (TA4SP),’’ and ‘‘On-the-Fly Model
Checker (OFMC).’’ Figure. 4 shows that our proposed
protocol is safe and resistant to adversarial attacks.

C. INTUITIVE SECURITY ANALYSIS
In this section, our security protocol is evaluated theoretically
against various malicious threats.

Replay Attack: When the ka, kp, and ATPi , ATCi are gen-
erated, bothPi, Ci use predefined parameters. The association
of SKap, SKac and Rc,Rp,Ra in the exchange of messages
between parties differs for each session. Hence, the session
between parties is prevented from being hijacked.

Secret Disclosure Attack: As token (ATCi ,ATPi ) is
encrypted using (SKap, SKac). An attacker cannot guess the
keys generated by BA. If the attacker managed to trace the
participants but cannot disclose ATCi ,ATPi as it does not
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FIGURE 4. AVISPA security analysis results of proposed protocol.

know the (SKap, SKac). Also,Pi, Ci,BA use these keys to hash
the messages ( mc,mp,ma1, mc1) by generating HMAC.
UnlinkabilityAttack: In our protocol, each Ci has separate

shared secret with BA to generate Ti for each Ci. If one of
Ci’s Ti is compromised, the other will not be threatened by
this vulnerability. So, our protocol provides security against
this attack by verifying Ti as BA sends (ATPi ,ATCi ) encrypted
with ( SKap,SKac). P first verify the Ti and calculate the T if
verified then grant access to data, otherwise discard the Ti.
Traceability Attack: Given that random numbers Rc,Rp,

and Ra are used during message sharing and that these
numbers are generated new for each session, an adversary
cannot identify a fixed value to link parties. In addition, the
adversary is unable to access any information during the
current session because the parameters for each session are
unique.

Authenticity of Message: Using HMAC provides an
extra security layer during communication. Both P and
C share the symmetric i.e, SKap, SKac with BA and
send mp = HMAC(Rp∥Rc∥mc, SKap) and mc1 =

HMAC(Ra, SKac) to BA, respectively. Also, BA sends ma1 =
HMAC(Ra∥Rc∥ζi, SKac) to Pi. If an attacker can capture
messages (mp,mc1,ma1) but can not disclose the information
as HMAC is verified using symmetric keys. Moreover,
participants can verify ⇔ HMAC

SKap
BA ≃ HMACSKac

BA ,

∃ ∀Pi ∥ Ci.
DDoSAttack:Wehave used a blockchain platform instead

of a centralized platform reduces the probability of attack. Pi
and Ci are distributed to BA’s that minimize the attack surface.
An attacker may target a single BA that does not affect the
others. That eliminates the changing secret (SKac, SKap) for
each session and prevents system desynchronization.

Impersonating Attack: The identity of legitimate partic-
ipants is forged to use for unauthorized data access. If the
attacker manages to acquire the secret key of Ci during the
registration process. Random numbers (Rc,Ra) are involved
for each message preventing attackers from using the same
key for a future session. Participant can verify message

integrity through nonce, such as SKac = H (Ĉi ∥Na ∥ ka).
Also messages (mc,mp,ma1, mc1) are hashed before it is
delivered.

Length Extension Attack: In this attack, an attacker uses
the hash of message M1 e.g., H (message ∥ secret) to reveal
the length of themessage andmodify it toM ′1. MD5 or SHA-1
is vulnerable to this attack until the SHA512-256 variant is
proposed that calculates 512-size output and truncates it with
a 256-bit extension. Such as,HMAC(SKap,mp) = H ((SKap⊕
opad) ∥ H ((SKap ⊕ ipad) ∥ mp)). If the attacker can
know the inner hashed message digest without using secret
key SKap it can not calculate the outer fixed length digest
(SKap ∥ inner − hash).

D. COMPARATIVE PERFORMANCE ANALYSIS
We have assessed the performance of our proposed security
protocol for secure data sharing among system participants
in terms of communication and computational cost. Our
analysis was conducted on a laptop with an 11th Gen Intel(R)
Core(TM) i7-1165G7 @ 2.80GHz 2.70 GHz processor,
12.0 GB RAM, and Windows 11 Home operating system.

To implement our proposed protocol, we have used
PyCharm 2022.1.2 (Community Edition) and Python cryp-
tographic library called ‘‘cryptography’’ by importing its
functions such as ‘‘Fernet’’ (such as: from cryptogra-
phy.fernet import Fernet) to use encrypt/decrypt functions.
For hashing, we have used the ‘‘hashlib’’ library and
cryptographic function HMAC of cryptography such as from
cryptography.fernet import HMAC. To record the time for
cryptographic operations we have used the python time
library.

1) COMPUTATIONAL COMPLEXITY ANALYSIS
Computational cost refers to the time taken by the protocol
to execute its predefined operations. To evaluate the com-
putation cost for the registration, authentication, and token
generation process we have calculated the total execution
time required to perform some significant cryptographic
primitives involved during protocol implementation. The
computation time to perform the point multiplication on an
elliptic curve is Tm, one-time hashing and HMAC operations
are Th, the computational time for symmetric and asymmetric
encryption/decryption is Te, and the HMAC verification time
is Tv.
In our protocol, there are three point-multiplication

function operations, hashing three times, four times encryp-
tion/decryption, and four-time HMAC generation and verifi-
cation. The data providerPi performs the point multiplication
function (PKa = ka. α) during the initialization of the
registration process. After receiving parameters from BA
it calculates the shared secret (SKap = ka. PKp) and
the calculation on BA is (SKap = kp. PKa). Again these
operations are performed during the registration process
of data consumer Ci. During the authentication and token
generation process Pi perform hashing operation ma =
H (PKa ∥ P̂i ∥ T ) to agree on shared secret with BA, and
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TABLE 4. Comparison of security features.

TABLE 5. Computation cost comparison.

one operation during authentication phase such as SKac =
H (Ĉi ∥Na ∥ ka). The computational costs for corresponding
operations are Tm = (3 ∗ 0.43) ≈ 0.13 ms, Th = (3 ∗
0.01) ≈ 0.03 ms, Te = (4 ∗ 0.07) ≈ 0.28 ms, and
Tv = (4 ∗ 0.01) ≈ 0.04 ms. Hence, the total computational
cost of the proposed protocol is Tc = Tm + Th + Te + Tv,
which is Tc = (0.09 + 0.39 + 1.12 + 0.04) ≈ 1.64 ms.
The block creation time depends on the frequency of data
requests from the consumers so block verification time is
considerably low. Table 5 clearly describes the operations
involved during the registration and authentication phases of
our proposed protocol. It is important to mention here that the
concatenation operations are omitted due to negligible effect
on computation as compared to other operations. From Fig. 5
it is illustrated that our proposed protocol is computationally
efficient by comparing it with [26], [31], and [34] having the
time cost ≈ 1.64 ms. In comparison with other protocols,
percentage improvement can be described by calculating the
difference in times of protocols. For [26] our protocol has
46.24%, with [31] it has 83.23%, and with [34] it has 65.23%
less computational costs.

FIGURE 5. Computational cost comparison.

FIGURE 6. Communication cost comparison.

2) COMMUNICATION OVERHEAD ANALYSIS
We assumed the parameters to carry out secure commu-
nication among the system’s participants to evaluate the
communication cost for our proposed protocol. The cost of
communication refers to the bits utilized to send messages
among participants throughout the registration and authen-
tication phases. As a result, communication overhead is
obtained from the exchange of messages among participants.
Certain assumptions are taken into account to help with the
evaluation process. We assume that the consumer identity
is 32 bits long, the timestamp is 8 bits long, the random
number is 128 bits long, the elliptic curve point or hash
function (SHA-256) is 256 bits long, and the ciphertext
generated by the encryption/decryption function is 128 bits
long. In our proposed protocol, Ci sends the two messages
Mc ←− {ID, RE } and Mc1 ←− {mc1}to BA, which
needs (32+128) + 160= 320 bits for message transmission.
Similarly, Ci also sends two messages Mc2 ←− {Rc,mc}
and Mc3 ←− {ATCi} to Pi which requires (128+256)
+ 256 = 640 bits. In same way, BA send messages to
Ci such as Mb ←− {ζi, SKac}, Mb1 ←− {ma1}, and
Mb2 ←− {ATCi}, which requires (160 + 160) + 160 +
160 = 640 bits for message transmission. Pi sends message
to BA such as Mp ←− {mp} which needs 160 bits
to transmit message. So, the accumulative communication
overhead for the proposed protocol is 320 + 640 + 640 +
160 = 1760 bits. Communication overhead for other
protocols is calculated using the same method. Fig. 6 shows
that the communication overhead of [18], [19], [20], [21],
[22], [23], [24], [25], [34], and [35]. The efficiency of the
protocol proposed in [21] is best compared to our proposed
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protocol. However, the protocol proposed in [19] can not
protect the privacy of data communication. Our protocol
provides better security and privacy features as a trade-off
and has greater efficiency compared to other schemes.
With the comparison of these protocols, our protocol has
less communication overhead from [26] and [31], which
is 42.66% and 34.52%, respectively. Similarly, with the
comparison of blockchain-enabled protocols our protocol has
less communication overhead from [19] by 56.32%, [23] by
23.11%, and [25] by 37.43%.
The time spent for various cryptographic processes and

blockchain tasks during protocol implementation is depicted
in Figure. 7. We ran 50 transactions to record the execution
times of activities like encryption, decryption, HMAC verifi-
cation, block construction, and block verification. The image
depicts how the execution times differ between the processes
and how much variance occurs as shown in Figure. 7. The
execution timings for encryption and decryption are rather
consistent, whereas the times for HMAC generation, HMAC
verification, and blockchain verification vary substantially.
The blockchain creation process has the longest average
execution time and the most substantial variability of any
operation.

FIGURE 7. Time comparison of overall system operations.

E. EFFICIENCY OF PROFIT DISTRIBUTION MECHANISMS
We show the outcomes of the simulation profit distri-
bution framework. The simulations were carried out in
Python, with the libraries NumPy v1.23.5, Matplotlib
v3.3.2, and Pandas v1.1.3. We calculated the Shap-
ley value for data sources using the SHAP library.
The dataset used is (https://archive.ics.uci.edu/ml/machine-
learning-databases/adult/) from the UCI machine-learning
library.

Figure. 8 shows how each provider influences data value
for each of the five attributes. For attribute Age, Providers
A through E’s contributions are high as compared to other
attributes. Provider A contributes the most to Attribute Age,
followed by B, C, D, and E. The other attributes follow the
same trend, however, each data provider contributes differ-
ently. For example, Provider A still contributes the most to
attribute Relationship, but Providers B and C’s contributions

FIGURE 8. Value of Data according to attributes provided by data
providers.

are considerably closer to Provider A’s contribution than they
were for attribute Age. The contribution of each data provider
depends on the data value they hold with different attributes.

FIGURE 9. Effect of the coalition and sample size on revenue percentage.

Revenue percentages vary on coalition size as shown
in Figure. 9, which indicates that increasing sample size
improves revenue % for all coalition sizes. A larger sample
size yields more accurate data, which is used to predict
coalition revenue. It signifies that larger coalitions generate
higher revenue percentages, while the variations are small
compared to the generic pattern of increasing revenue %
with sample size. The marginal contribution for each data
provider is the difference between the total value generated
by all players (coalition value) and the value generated by
the coalition excluding the current player, multiplied by
the monetary value. Cumulative contribution is all marginal
contributions.

V (S) =
∑
i∈S

wi(xi)−
∑
i/∈S

wi(x̄i) (35)

Theweight (importance) of attribute i in the decisionmodel
is represented by wi in Equation 35. The attribute weights are
considered to add up to a total of one. The value of attribute
i for data provider j is represented as xij. xage,j, e.g., reflects
the age of data provider j, and xrace,j, race of data provider j.
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The difference between the coalition value with and with-
out data provider i is defined as the marginal contribution.

MCi = (φi(v(Si ∪ i))− φi(v(Si))) ·M (36)

FIGURE 10. Marginal contribution of data providers to the coalition.

The sum of all prior marginal contributions is the
cumulative contribution. Figure. 10 depicts the marginal
contributions of each data provider, withDP2 andDP3 having
the highest monetary value contributions.

CCi =
i∑

j=1

MCj (37)

The data provider’s marginal contribution isMCj, whereas
the cumulative contribution is CCi. Figure. 10 shows theMCj
and CCi of seven data providers (DP1 to DP7) to a monetary
value (100). In Figure. 10, DP2 and DP3 have the biggest
MCj which implies their revenues. The line shows the data
sources’CCi relatively increase for other data providers (DP4
to DP7) and measured as an overall contribution.

F. VERIFICATION OF REVENUE SCHEME
We examine the relationship between third-party revenue
ratio and model accuracy to assess data provider incentives.
Our main goal is to emphasize the importance of incentive
mechanisms and the relationship between data provider
quality and revenue.

We used intelligent algorithms to construct a prediction
model to study how shared data affects data provider revenue.
We used the support vector machine (SVM), which is known
for its data classification and real-world applicability.

The adult dataset used in our study came from the UCI
Machine Learning Repository. To evaluate the prediction
model, we chose 6,043 training data samples and 932 test data
samples.

We divided the datasets into segments with 500-4500 data
samples from data providers. We performed 100 simulations
to calculate the data provider’s revenue distribution under
different data sample sizes for each value. With more data
samples, data provider P1 offered more data, therefore we

applied the method to calculate the distribution of revenue
under different proportions, as shown in Figure 11.

FIGURE 11. Data providers to the coalition.

According to the design goal and incentive scheme,
increasing the quantity of data samples shared by data
provider P1 increases revenue for both the data provider and
others under unchanging conditions. When the data provider
increases shared data samples, the learning algorithm’s pre-
diction model improves. This shows that the data provider’s
contribution increases, resulting in more revenue.

G. PERFORMANCE EVALUATION OF SMART CONTRACT
TRANSACTIONS
To test the usefulness of our approach, we built a blockchain
network and executed our data-sharing mechanism in
real-time. We utilized Remix IDE to create the solidity
smart contract for this purpose. We have used different
addresses to simulate the operations. Blockchain authen-
ticators use $0xd9145CCE52D...9943F39138$ this
address to register both data providers and consumers.
The first data provider is registered with the address
$0xAb8483F64d9C...5835cb2$ and the data con-
sumerwith the address$0×5B38Da6a701c...6beddC4$
as shown in Figure. 12. The cost associated with the

FIGURE 12. Registration of data provider and consumer.

registrations of data providers and consumers is 23745 GAS.
Here GAS refers to the execution cost of a transaction in a
blockchain network. Figure. 13 illustrate GAS, transaction,
and execution costs for the operations involved in the
proposed system. It shows that uniform trend for smart
contract transaction submission and execution cost during
the registration of the participants. Moreover, it consumes
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considerably less amount of GAS for withdrawal and data
count as compared to GAS consumed for identity operations.

FIGURE 13. Transactions execution cost (GAS).

H. DISCUSSION
The proposed protocol solves the problems faced in data
sharing in IIoT against various security and privacy threats.
By using ECC along with its properties and HMAC it
enables the participants to share important data anonymously
and securely. Using a consortium blockchain for participant
approval ensures the safe and fair utilization of data in our
system. We devised an incentive system for flexible benefit
distribution across the platforms to encourage consortium
participants to share trustworthy data and collaborate.
However, the proposed framework can be extended to other
systems such as in vehicular networks [51] for resource
allocation as well as for providing efficient security protocol.
Similarly, in IoT networks, the major challenge that can arise
is the authentication of devices so this proposed protocol
can be implemented in this scenario [52]. Apart from
the applicability of the proposed framework in this paper,
we plan to include a machine learning model to predict
the incentive more efficiently through Shapley value [53].
Because IIoT generates an extensive amount of data with
dynamic properties there is a margin of improvement for the
incentive prediction and distribution.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we proposed the framework for secure data
sharing and incentive distribution mechanism for the partici-
pants of the system.We designed the authentication and token
generation protocol using elliptic curve properties and keyed
HMAC that have considerably low computational and com-
munication costs that show the efficiency and effectiveness
of our protocol. Moreover, extensive simulations have been
performed using AVISPA and Scyther simulation tools to
verify the security features of the protocol. The simulation
results show that the protocol is resilient against various
adversarial attacks. We also design a profit generation
and distribution among the participants of the data-sharing
system. We have employed Shapley Value to distribute the
profit among the participants of the system. The distribution

of profit is based on the data contribution of each data
provider to the coalition. We have demonstrated that our
profit distribution mechanism efficiently distributes the profit
among the data providers with fairness.

In future work, we will apply our security framework to
other areas of fields such as vehicular networks, and employ
our incentive distribution mechanisms to the energy trading
framework.

REFERENCES
[1] R. Huo, S. Zeng, Z.Wang, J. Shang,W. Chen, T. Huang, S. Wang, F. R. Yu,

and Y. Liu, ‘‘A comprehensive survey on blockchain in industrial Internet
of Things: Motivations, research progresses, and future challenges,’’ IEEE
Commun. Surveys Tuts., vol. 24, no. 1, pp. 88–122, 1st Quart., 2022.

[2] D. Hamouda, M. A. Ferrag, N. Benhamida, and H. Seridi, ‘‘PPSS:
A privacy-preserving secure framework using blockchain-enabled feder-
ated deep learning for industrial IoTs,’’ Pervas. Mobile Comput., vol. 88,
Jan. 2023, Art. no. 101738.

[3] A. Hazra, P. Rana, M. Adhikari, and T. Amgoth, ‘‘Fog computing for next-
generation Internet of Things: Fundamental, state-of-the-art and research
challenges,’’ Comput. Sci. Rev., vol. 48, May 2023, Art. no. 100549.

[4] G. K. Pandey, D. S. Gurjar, H. H. Nguyen, and S. Yadav, ‘‘Security threats
and mitigation techniques in UAV communications: A comprehensive
survey,’’ IEEE Access, vol. 10, pp. 112858–112897, 2022.

[5] S.Misra, C. Roy, T. Sauter, A.Mukherjee, and J.Maiti, ‘‘Industrial Internet
of Things for safety management applications: A survey,’’ IEEE Access,
vol. 10, pp. 83415–83439, 2022.

[6] B. Alotaibi, ‘‘A survey on industrial Internet of Things security: Require-
ments, attacks, AI-based solutions, and edge computing opportunities,’’
Sensors, vol. 23, no. 17, p. 7470, Aug. 2023.

[7] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, A. K. M. N. Islam, and
M. Shorfuzzaman, ‘‘Permissioned blockchain and deep learning for secure
and efficient data sharing in industrial healthcare systems,’’ IEEE Trans.
Ind. Informat., vol. 18, no. 11, pp. 8065–8073, Nov. 2022.

[8] J. A. Alzubi, O. A. Alzubi, A. Singh, andM. Ramachandran, ‘‘Cloud-IIoT-
based electronic health record privacy-preserving by CNN and blockchain-
enabled federated learning,’’ IEEE Trans. Ind. Informat., vol. 19, no. 1,
pp. 1080–1087, Jan. 2023.

[9] T. Li, J. Zhang, Y. Shen, and J. Ma, ‘‘Hierarchical and multi-group data
sharing for cloud-assisted industrial Internet of Things,’’ IEEE Trans.
Services Comput., 2023.

[10] S. Halder and T. Newe, ‘‘Secure time series data sharing with fine-
grained access control in cloud-enabled IIoT,’’ in Proc. IEEE/IFIP Netw.
Operations Manage. Symp., Apr. 2022, pp. 1–9.

[11] J. Sengupta, S. Ruj, and S. D. Bit, ‘‘FairShare: Blockchain enabled fair,
accountable and secure data sharing for industrial IoT,’’ IEEE Trans. Netw.
Service Manage., 2023.

[12] R. Ma, L. Zhang, Q. Wu, Y. Mu, and F. Rezaeibagha, ‘‘BE-TRDSS:
Blockchain-enabled secure and efficient traceable-revocable data-sharing
scheme in industrial Internet of Things,’’ IEEE Trans. Ind. Informat., 2023.

[13] F. Yang, Y. Qiao, M. Z. Abedin, and C. Huang, ‘‘Privacy-preserved
credit data sharing integrating blockchain and federated learning for
Industrial 4.0,’’ IEEE Trans. Ind. Informat., vol. 18, no. 12, pp. 8755–8764,
Dec. 2022.

[14] M. Rizwan,M. N. Sohail, A. Asheralieva, A. Anjum, and P. Angin, ‘‘SAID:
ECC-based secure authentication and incentive distribution mechanism
for blockchain-enabled data sharing system,’’ in Proc. IEEE Int. Conf.
Blockchain, Dec. 2021, pp. 530–537.

[15] F. Zhang, H. Wang, L. Zhou, D. Xu, and L. Liu, ‘‘A blockchain-based
security and trust mechanism for AI-enabled IIoT systems,’’ Future Gener.
Comput. Syst., vol. 146, pp. 78–85, Sep. 2023.

[16] A. Makkar, T. W. Kim, A. K. Singh, J. Kang, and J. H. Park,
‘‘SecureIIoT environment: Federated learning empowered approach for
securing IIoT from data breach,’’ IEEE Trans. Ind. Informat., vol. 18, no. 9,
pp. 6406–6414, Sep. 2022.

[17] M. Adil, M. A. P. Mahmud, A. Z. Kouzani, and S. Khoo, ‘‘Energy trading
among electric vehicles based on Stackelberg approaches: A review,’’
Sustain. Cities Soc., vol. 75, Dec. 2021, Art. no. 103199.

51190 VOLUME 12, 2024



M. N. Sohail et al.: Optimizing Industrial IoT Data Security

[18] Y. Liu, A. Liu, Y. Xia, B. Hu, J. Liu, Q. Wu, and P. Tiwari, ‘‘A blockchain-
based cross-domain authentication management system for IoT devices,’’
IEEE Trans. Netw. Sci. Eng., vol. 11, no. 1, pp. 115–127, 2024.

[19] K. Wang, K. Sun, J. Dong, L. Sha, and F. Xiao, ‘‘AP-CDE: Cost-efficient
authentication protocol for cross-domain data exchange in IIoT,’’ IEEE
Syst. J., vol. 17, no. 3, pp. 3882–3893, Sep. 2023.

[20] F. Wang, J. Cui, Q. Zhang, D. He, C. Gu, and H. Zhong, ‘‘Blockchain-
based lightweight message authentication for edge-assisted cross-domain
industrial Internet of Things,’’ IEEE Trans. Dependable Secure Comput.,
2023.

[21] A. A. Khan, S. Bourouis,M.M.Kamruzzaman,M.Hadjouni, Z. A. Shaikh,
A. A. Laghari, H. Elmannai, and S. Dhahbi, ‘‘Data security in healthcare
industrial Internet of Things with blockchain,’’ IEEE Sensors J., vol. 23,
no. 20, pp. 25144–25151, 2023.

[22] T. Li, H. Wang, D. He, and J. Yu, ‘‘Designated-verifier aggregate signature
schemewith sensitive data privacy protection for permissioned blockchain-
assisted IIoT,’’ IEEE Trans. Inf. Forensics Security, vol. 18, pp. 4640–4651,
2023.

[23] Y. Zhang, D. He, P. Vijayakumar, M. Luo, and X. Huang, ‘‘SAPFS:
An efficient symmetric-key authentication key agreement scheme with
perfect forward secrecy for industrial Internet of Things,’’ IEEE Internet
Things J., vol. 10, no. 11, pp. 9716–9726, 2023.

[24] K. Siva Sai, R. Bhat, M. Hegde, and J. Andrew, ‘‘A lightweight
authentication framework for fault-tolerant distributed WSN,’’ IEEE
Access, vol. 11, pp. 83364–83376, 2023.

[25] M. Hammad, A. Badshah, G. Abbas, H. Alasmary, M. Waqas,
and W. A. Khan, ‘‘A provable secure and efficient authentication
framework for smart manufacturing industry,’’ IEEE Access, vol. 11,
pp. 67626–67639, 2023.

[26] M. A. Saleem, X. Li, M. F. Ayub, S. Shamshad, F. Wu, and H. Abbas,
‘‘An efficient and physically secure privacy-preserving key-agreement
protocol for vehicular ad-hoc network,’’ IEEE Trans. Intell. Transp. Syst.,
2023.

[27] Y. Wang, T. Che, X. Zhao, T. Zhou, K. Zhang, and X. Hu, ‘‘A blockchain-
based privacy information security sharing scheme in industrial Internet of
Things,’’ Sensors, vol. 22, no. 9, p. 3426, Apr. 2022.

[28] J. Oh, J. Lee, M. Kim, Y. Park, K. Park, and S. Noh, ‘‘A secure data
sharing based on key aggregate searchable encryption in fog-enabled IoT
environment,’’ IEEE Trans. Netw. Sci. Eng., vol. 9, no. 6, pp. 4468–4481,
Nov. 2022.

[29] J. Lee, J. Oh, and Y. Park, ‘‘A secure and anonymous authentication
protocol based on three-factor wireless medical sensor networks,’’
Electronics, vol. 12, no. 6, p. 1368, Mar. 2023.

[30] A. Jagruthi, K. Vikas, G. Nookaraju, K. R. Teja, G. Sanjana, and
M. A. Jabbar, ‘‘Enhancing data spillage in multi-cloud storage services,’’
in Proc. 13th Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT),
Oct. 2022, pp. 1–4.

[31] F. Yi, L. Zhang, L. Xu, S. Yang, Y. Lu, and D. Zhao, ‘‘WSNEAP:
An efficient authentication protocol for IIoT-oriented wireless sensor
networks,’’ Sensors, vol. 22, no. 19, p. 7413, Sep. 2022.

[32] C. Wang, S. Wang, X. Cheng, Y. He, K. Xiao, and S. Fan, ‘‘A privacy and
efficiency-oriented data sharing mechanism for IoTs,’’ IEEE Trans. Big
Data, vol. 9, no. 1, pp. 174–185, Feb. 2023.

[33] X. Luo, H. Wang, J. Dong, C. Zhang, and T. Wu, ‘‘Achieving privacy-
preserving data sharing for dual clouds,’’ in Proc. IEEE Int. Conf. Internet
Things (iThings) IEEEGreen Comput. Commun. (GreenCom) IEEECyber,
Phys. Social Comput. (CPSCom) IEEE Smart Data (SmartData) IEEE
Congr. Cybermatics (Cybermatics), Aug. 2022, pp. 139–146.

[34] M. Tanveer, A. Alkhayyat, A. U. Khan, N. Kumar, and A. G.
Alharbi, ‘‘REAP-IIoT: Resource-efficient authentication protocol for the
industrial Internet of Things,’’ IEEE Internet Things J., vol. 9, no. 23,
pp. 24453–24465, Dec. 2022.

[35] W. Wang, Z. Han, M. Alazab, T. R. Gadekallu, X. Zhou, and C. Su,
‘‘Ultra super fast authentication protocol for electric vehicle charging
using extended chaotic maps,’’ IEEE Trans. Ind. Appl., vol. 58, no. 5,
pp. 5616–5623, Sep. 2022.

[36] C. Zhang, T. Shen, and F. Bai, ‘‘Toward secure data sharing for the
IoT devices with limited resources: A smart contract-based quality-driven
incentive mechanism,’’ IEEE Internet Things J., 2022.

[37] T. Mai, H. Yao, J. Xu, N. Zhang, Q. Liu, and S. Guo, ‘‘Automatic double-
auction mechanism for federated learning service market in Internet of
Things,’’ IEEE Trans. Netw. Sci. Eng., vol. 9, no. 5, pp. 3123–3135,
Sep. 2022.

[38] X. Chen, G. Zhu, H. Ding, L. Zhang, H. Zhang, and Y. Fang, ‘‘End-to-end
service auction: A general double auction mechanism for edge computing
services,’’ IEEE/ACM Trans. Netw., vol. 30, no. 6, pp. 2616–2629,
Dec. 2022.

[39] W. Borjigin, K. Ota, and M. Dong, ‘‘Multiple-Walrasian auction mecha-
nism for tree valuation service in NFV market,’’ IEEE Trans. Computat.
Social Syst., vol. 10, no. 1, pp. 61–71, Feb. 2023.

[40] J. Zhang, J. Hei, and H. Tan, ‘‘Edge pricing mechanisms under cloud tiered
pricing,’’ in Proc. 8th Int. Conf. Big Data Comput. Commun. (BigCom),
Aug. 2022, pp. 54–62.

[41] K. Zhu, L. Huang, J. Nie, Y. Zhang, Z. Xiong, H.-N. Dai, and
J. Jin, ‘‘Privacy-aware double auction with time-dependent valuation for
blockchain-based dynamic spectrum sharing in IoT systems,’’ IEEE
Internet Things J., vol. 10, no. 8, pp. 6756–6768, 2023.

[42] H. Qiu, K. Zhu, N. C. Luong, C. Yi, D. Niyato, and D. I. Kim, ‘‘Appli-
cations of auction and mechanism design in edge computing: A survey,’’
IEEE Trans. Cognit. Commun. Netw., vol. 8, no. 2, pp. 1034–1058,
Jun. 2022.

[43] J. Kang, J. Wen, D. Ye, B. Lai, T. Wu, Z. Xiong, J. Nie, D. Niyato,
Y. Zhang, and S. Xie, ‘‘Blockchain-empowered federated learning for
healthcare metaverses: User-centric incentive mechanism with optimal
data freshness,’’ IEEE Trans. Cognit. Commun. Netw., vol. 10, no. 1,
pp. 348–362, Feb. 2024.

[44] S. Li and S. Qu, ‘‘The three-level supply chain finance collaboration
under blockchain: Income sharing with Shapley value cooperative game,’’
Sustainability, vol. 15, no. 6, p. 5367, Mar. 2023.

[45] X. Yang, S. Xiang, C. Peng, W. Tan, Z. Li, N. Wu, and Y. Zhou,
‘‘Federated learning incentive mechanism design via Shapley value and
Pareto optimality,’’ Axioms, vol. 12, no. 7, p. 636, Jun. 2023.

[46] T. K. Dang, P. T. Tran-Truong, and N. T. H. Trang, ‘‘An enhanced incentive
mechanism for crowdsourced federated learning based on contract theory
and Shapley value,’’ in Future Data and Security Engineering. Big
Data, Security and Privacy, Smart City and Industry 4.0 Applications,
T. K. Dang, J. Küng, and T. M. Chung, Eds. Singapore: Springer, 2023,
pp. 18–33.

[47] Y. Chai and X.-J. Zeng, ‘‘Shapley value-based computation offloading
for edge computing,’’ IEEE Trans. Veh. Technol., vol. 72, no. 7,
pp. 9448–9458, 2023.

[48] D. Dolev and A. Yao, ‘‘On the security of public key protocols,’’ IEEE
Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198–208, Mar. 1983.

[49] R. Canetti and H. Krawczyk, ‘‘Universally composable notions of
key exchange and secure channels,’’ in Advances in Cryptology—
EUROCRYPT 2002, L. R. Knudsen, Ed. Berlin, Germany: Springer, 2002,
pp. 337–351.

[50] M. Abdalla, P.-A. Fouque, and D. Pointcheval, ‘‘Password-based
authenticated key exchange in the three-party setting,’’ in Public Key
Cryptography—PKC 2005, S. Vaudenay, Ed. Berlin, Germany: Springer,
2005, pp. 65–84.

[51] A. Ribeiro, J. B. D. da Costa, G. P. R. Filho, L. A. Villas, D. L. Guidoni,
S. Sampaio, and R. I. Meneguette, ‘‘HARMONIC: Shapley values in
market games for resource allocation in vehicular clouds,’’ Ad Hoc Netw.,
vol. 149, Oct. 2023, Art. no. 103224.

[52] R. Kumar, D. Javeed, A. Aljuhani, A. Jolfaei, P. Kumar, and
A. K. M. N. Islam, ‘‘Blockchain-based authentication and explainable AI
for securing consumer IoT applications,’’ IEEE Trans. Consum. Electron.,
2024.

[53] M. Shafiq, R. Yadav, A. R. Javed, and S. A. H. Mohsin, ‘‘CoopGBFS:
A federated learning and game-theoretic based approach for personalized
security, recommendation in 5G beyond IoT environments for consumer
electronics,’’ IEEE Trans. Consum. Electron., 2024.

MUHAMMAD NOMAN SOHAIL received the
bachelor’s degree in information technology from
the University of Sargodha, in 2018, and the mas-
ter’s degree in information security from COM-
SATS University Islamabad, Pakistan, in 2021.
He is currently a Lecturer with the Department
of Computer Science, The University of Lahore,
Sargodha Campus. Previously, he was a Visiting
Lecturer with the University of Sargodha. His
research interests include information security,

blockchain, the Internet of Vehicles, data privacy, and cryptography.

VOLUME 12, 2024 51191



M. N. Sohail et al.: Optimizing Industrial IoT Data Security

ADEEL ANJUM received the Ph.D. degree in
computer science from Polytech Nantes, Nantes,
France, in 2013. He is currently a Professor
and the Director of the Institute of Information
Technology, Quaid-i-AzamUniversity, Islamabad,
Pakistan. He has several publications and authored
a book on data privacy. His research interest
includes AI-based data privacy. He served on
the technical program committees for various
international conferences.

IFTIKHAR AHMED SAEED received the degree
in information technology from the College of
Information and Electrical Engineering, China
Agricultural University, and the master’s degree
in computer science and engineering technology
in Pakistan. He is currently an Assistant Profes-
sor with the Department of Computer Science,
The University of Lahore. His research interests
include the design and development of soil sen-
sors, multi-sensor techniques, multi-sensor fusion,
and the agricultural Internet of Things (IoT).

MADIHA HAIDER SYED received the Ph.D.
degree in computer science from Florida Atlantic
University, USA, in 2019. She is currently an
Assistant Professor with the Institute of Infor-
mation Technology, Quaid-i-Azam University,
Pakistan. Her research interests include cloud
computing, security, privacy, software architec-
ture, the IoT, machine learning, and deep learning.
She was a recipient of the prestigious Fulbright
Scholarship, in 2014, for the Ph.D. degree.

AXEL JANTSCH (Senior Member, IEEE) received
the Dipl.-Ing. and Ph.D. degrees in computer sci-
ence from TU Wien, Vienna, Austria, in 1987 and
1992, respectively. From 1997 to 2002, he was an
Associate Professor with the KTH Royal Institute
of Technology, Stockholm. From 2002 to 2014,
he was a Full Professor of electronic systems
design with KTH. Since 2014, he has been a
Professor of systems on chips with the Institute
of Computer Technology, TU Wien. He has

published five books as an editor and one as the author and has more
than 300 peer-reviewed contributions in journals, books, and conference
proceedings. He has given more than 100 invited presentations at confer-
ences, universities, and companies. His current research interests include
systems on chips, self-aware cyber-physical systems, and embeddedmachine
learning.

SEMEEN REHMAN (Member, IEEE) received
the Habilitation degree in embedded systems
from the Faculty of Electrical Engineering and
Information Technology, Technische Universität
Wien (TU Wien), in October 2020, and the Ph.D.
degree from KIT, Germany. She is currently with
TU Wien as an Assistant Professor. She has
coauthored one book, multiple book chapters, and
more than 70 publications in premier journals
and conferences. Her main research interests

include dependable and energy-efficient embedded systems, approximate
computing, security, and CPS/IoT. She received the CODES+ISSS 2011 and
the 2015 Best Paper Awards, the 2017 DATE Best Paper Award Nomination,
the HiPEAC Paper Awards, the DAC Richard Newton Young Student Fellow
Award, and the Research Student Award from KIT. She served as the topic
track chair/the co-chair and has served as the TPC for multiple premier
conferences on design automation and embedded systems.

51192 VOLUME 12, 2024


