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ABSTRACT With the advancement of Convolutional Neural Networks, numerous convolutional
neural network-based methods have been proposed for depth estimation and have achieved significant
achievements. However, the repetitive convolutional layers and spatial pooling layers in these networks often
lead to a reduction in spatial resolution and loss of local information, such as edge contours. To address
this issue, this study presents a multi-scale monocular depth estimation model. Specifically, a Global
Understanding Module was introduced on top of a generic encoder to increase the receptive field and
capture contextual information. Additionally, the decoding process incorporates a Difference Module and
a Multi-scale Cascade Module to guide the decoding information and refine edge contour details. Finally,
extensive experiments were conducted using the KITTI and NYUv2 datasets. For the KITTI dataset, the
Absolute Relative Error (Abs. Rel) was 0.057, and the Root Mean Squared Error (RMSE) was 2.415. On the
NYUv2 dataset, Abs.Rel was 0.104, and RMSE was 0.380. These results indicate that the model performs
well in accurately estimating depth information.

INDEX TERMS Convolutional neural networks, depth estimation, global understanding module, difference
module, cascade module.

I. INTRODUCTION
Monocular depth estimation aims to infer the depth map of a
scene using only a single RGB image. However, monocular
depth estimation is considered an ill-posed problem because
a single 2D image can correspond to multiple 3D scenes.
Consequently, compared to depth estimation from stereo
images, the progress in monocular depth estimation has been
relatively slow. In the early stages, traditional methods uti-
lized monocular cues for depth prediction, such as viewpoint
and texture information [1], [2], or selected appropriate depth
values by leveraging similarity with other scene structures.
However, these methods could not still accurately predict
depth solely from a single image.

With the advancement of deep learning, deep-learning-
based monocular depth estimation has gained increasing
attention. To improve the performance of monocular depth
estimation, researchers have adopted models based on deep
neural networks (DNNs) [3], [4], [5] and have demonstrated
the superiority of deep features over handcrafted features.
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DNN models applied fully convolutional architectures as
feature extractors [5], [6]. However, repeated spatial pooling
layers rapidly reduce the spatial resolution of feature maps,
which is not ideal for depth estimation tasks. Although
high-resolution depth maps can be obtained using multi-layer
deconvolution networks [7] or skip connections [8], these
approaches require additional computations and make the
network architecture and training process more complex.
To extract latent features related to depth information,
Convolutional Neural Networks (CNNs) have been widely
employed as the backbone structure of depth models. CNN-
based depth networks typically consist of two parts: an
encoder for feature extraction and a decoder for depth
prediction. Commonly used encoders in the encoder-decoder
network architecture include ResNet [9], DenseNet [10], and
ResNeXt [11], which are used to extract latent features.
These features are then simply upsampled to their original
size and transformed into a depth map through the decoding
process. However, this simple upsampling process fails to
adequately consider the depth boundaries of objects at various
scales, leading to blurriness of in-depth information at object
boundaries.

46930

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-7930-766X
https://orcid.org/0000-0002-1264-8483
https://orcid.org/0009-0003-7765-8329
https://orcid.org/0009-0008-5074-387X
https://orcid.org/0000-0003-0117-8102


J. Xiao et al.: Multi-Scale Monocular Depth Estimation Based on Global Understanding

To address these issues, this study proposes a multi-scale
network architecture with global understanding. First, a back-
bone network is used to extract the encoding features from
the RGB image. Then, a Global Understanding Module
(GUM) is introduced at the high spatial resolution layers
to fully utilize the encoding features. Finally, multiple
cascade modules are employed to combine differencing
information and decode information from different layers
to estimate the depth of information. By aggregating
global and local information effectively, the entire network
structure can better handle depth boundaries and details,
thereby improving the performance of monocular depth
estimation.

The main contributions of this paper are as follows:
1.We propose a multi-scale global understanding network

for monocular depth estimation that effectively leverages
global and local information.

2.Introducing the global-understanding module expands
the receptive field and captures contextual information. The
combination of the Difference Module and Cascade Module
captures the depth boundary contour information, further
enhancing the accuracy of the depth estimation.

3.Extensive experiments were conducted using the KITTI
and NYUv2 datasets to validate the effectiveness of the
proposed model.

II. RELATED WORK
A. MONOCULAR DEPTH ESTIMATION
Depth estimation plays a crucial role in understanding the
3D information from RGB images. In the early stages,
geometric algorithms [12], [13] were primarily used for
depth estimation from stereo images, but these methods
relied heavily on point correspondences between images.
Subsequently, Saxena et al. [1] introduced Markov Random
Fields (MRF) to model the relationships between the
depth values of different pixels, pioneering the use of
monocular cues for depth prediction. Researchers have
proposed various handcrafted algorithms for monocular cue
estimation [14], [15]. For example, Karsch et al. [14] utilized
spectral coefficient similarity to determine candidate depth
values, and Herrera et al. [15] employed a clustering-based
learning approach to determine the optimal depth. However,
in complex scenes, handcrafted features often fail to represent
geometric structures clearly, resulting in blurred depth map
estimates. With the advancement of deep learning, schol-
ars have proposed numerous monocular depth estimation
methods based on Convolutional Neural Networks (CNN)
[16], [17]. Compared with other approaches, CNN-based
monocular depth estimation networks demonstrate superior
performance and ease of operation.

B. MONOCULAR DEPTH ESTIMATION BASED ON
MULTI-SCALE
Initially, Eigen et al. [5], [18] designed a multi-scale
network that improved the accuracy of monocular depth

estimation to a new level by progressively refining the spatial
resolution of the depth map. This laid the foundation for
subsequent research, and an increasing number of scholars
have begun developing various multi-scale network archi-
tectures to predict depth from a single image. For instance,
Xu et al. [19] fused the information output of a multi-scale
convolutional neural network with multiple Conditional
Random Fields (CRF) in a cascaded manner to obtain more
accurate depth information. To reduce the computational
complexity of fully connected CRFs, NeWCRFs [20] utilized
neural-window CRFs to refine depth information at different
scales. Lee et al. [21] proposed a Local Plane Guided Layer
that directly and explicitly guided the relationship between
multi-scale features and the depthmap, thereby improving the
accuracy of depth estimation. Song et al. [22] employed the
Laplacian pyramid decoding technique to estimate a clearer
depth map by leveraging the feature information at different
scales.

C. MONOCULAR DEPTH ESTIMATION BASED ON LOCAL
AND GLOBAL INFORMATION
It is crucial for monocular depth estimation networks to effec-
tively balance global and local information, which has been
addressed by researchers through various methods to enhance
the accuracy and detail recovery ability of depth estimation.
Fu et al. [23] introduced the spacing-increasing discretization
(SID) strategy for depth discretization and utilized the Atrous
Spatial Pyramid Pooling (ASPP) scheme [24] to extract
dense features. DiffusionDepth [25] employed hierarchical
aggregation and heterogeneous interaction to enhance the
feature information across scales. Lee et al. [26] proposed
a Partitioned Attention Module to fuse spatial and channel
information for improved depth-detail representation. Some
researchers have introduced transformers to leverage global
information effectively. For example, DPT [27] and Pix-
elFormer [28] significantly improved performance with the
introduction of transformers. Yang et al. [29] used transform-
ers to extract global features and employed an attention-gate
decoder to capture detailed information. In addition, vari-
ous constraints are introduced to improve the algorithms.
Patil et al. [30] proposed a method for selectively utilizing
coplanar pixel information to enhance depth estimation.
VADepth [31] introduced variational inference for depth pre-
diction. Bhat et al. [32] introduced uncertainty calibration and
cross-distillation between transformers and convolutional
neural networks to make full use of local and global informa-
tion. Patil et al. [33] and Li et al. [34] refined local information
by computing adaptive boxes. Depthformers [35] integrated
the strengths of Transformers and CNNs to predict depth
information by leveraging long-range correlations and local
information.

In the field of monocular depth estimation, two primary
approaches, Convolutional Neural Networks and transform-
ers, are commonly utilized. However, bothmethods have their
limitations. CNNs struggle to capture long-range information
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FIGURE 1. Block diagram of the network.

effectively, while transformers excel at capturing global
information but may lose fine-grained details. Furthermore,
transformers require substantial computational resources
due to their powerful attention mechanisms. To address
these issues, this study adopts a CNN as the backbone
network and introduces a Global Understanding Module
to expand the receptive field and fully consider global
information. Simultaneously, in the cascaded module, details
from the different modules are combined with features at
different scales. This multi-scale network structure allows
for the simultaneous consideration of global and local
features, thereby restoring high-resolution details in the depth
map.

III. PROPOSED METHOD
This section introduces a multi-scale cascaded network
architecture designed to incorporate information at different
scales, from global to local. The architecture comprises
several key components. Firstly, an encoder is employed to
extract dense features from the input. Secondly, a Global
Understanding Module, as described in Section III-C,
is incorporated to capture global contextual information
effectively. This module enhances the network’s ability
to understand the overall scene. Thirdly, a Difference
Module, outlined in Section III-D, is introduced to facilitate
accurate estimation of boundary contours. Lastly, a Cascade
Module, explained in Section III-B, is utilized to combine
information from multiple scales, enabling comprehensive
depth estimation.

A. NETWORK ARCHITECTURE
The network architecture is depicted in Figure 1. The encoder
section utilizes a pre-trained model called ResNext101,
which is a variant of ResNet. ResNext101 employs convolu-
tional operations by dividing the original convolutional layers
into distinct branches and merging them. After passing the
RGB image through the encoder, dense features with four
different spatial resolutions (S/2, S/4, S/8, and S/16) were
obtained. To capture more contextual information, the two
highest decoding layers are connected to the global under-
standing module. Finally, the CascadedModule combines the
four difference features extracted by the Difference Module
with the corresponding decoding information to enhance the
accuracy of depth estimation.

B. CASCADE MODULE
The Cascade Module achieves its functionality through a
combination of convolutional blocks and is primarily used
for aggregating the difference and decoding features. The
specific operations are as follows: The Cascaded Module
performs an upsampling operation on the information from
the previous layer to match its size with the encoded
features of the current scale. The upsampled features are
then element-wise multiplied by the current scale’s encoded
features and depth features obtained through convolutional
operations. Next, the difference information was added
to the previous multiplication result to obtain the depth
features at the current scale. This operation effectively
integrates the detailed feature information from different
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FIGURE 2. Global understanding module (GUM).

scales. Unlike traditional convolutional layers (convolution-
activation-normalization), the convolutional layer in the
Cascaded Module consists of the following steps: Layer
Normalization, GELU activation function, and 7×7 convo-
lution. It is important to note that the number of convolutions
varied for each decoding layer. For example, the fourth
decoding layer consists of five convolutional layers, the
third decoding layer consists of four convolutional layers,
etc. Each convolutional layer fuses the detailed feature
information from different scales, resulting in more accurate
depth features.

C. GLOBAL UNDERSTANDING MODULE
The Global Understanding Module consists of three com-
ponents: Atrous Spatial Pyramid Pooling (ASPP), a Spatial
Channel Learner, and a Global Decoder, as shown in Figure 2.
The first is the ASPP, which consists of atrous convolutions
with dilation rates of 1, 6, 12, and 18, followed by the
BN layers and ReLU activation functions. ASPP captures
features at different receptive fields and provides multi-scale
contextual information by using different dilation rates. Next
is the Spatial Channel Learner, which aims to add attention
mechanisms on both the channel and spatial dimensions to
facilitate the fusion of complex feature information. The Spa-
tial Channel Learner first performsmax-pooling and average-
pooling operations in the channel dimension, resulting in
two 1×1×C feature maps. These two feature maps are then
added element-wise through a two-layer weight-sharing net-
work (convolution-ReLU-convolution) and passed through
a sigmoid activation function to generate channel feature
information. Subsequently, the channel feature information

is assigned spatial weights in the spatial dimension, resulting
in the final channel-spatial feature. Finally, the Global
Decoder reduces the spatial dimension using an average
pooling layer and obtains a C-channel feature vector through
fully connected layers. This feature vector was then used
as a pooling structure by a 1×1 convolutional layer, and
the feature information was replicated along the spatial
dimension to achieve a comprehensive understanding of the
input image.

D. DIFFERENCE MODULE
The main purpose of the Difference Module is to predict
local details and boundary contour information. The specific
steps are as follows. First, the RGB image is inputted and
undergoes a series of downsampling operations to obtain
feature information with spatial resolutions of 1/2, 1/4,
1/8, and 1/16 of the input image resolution. Next, through
a progressive upsampling process, the feature maps were
restored to the original resolution of the input image, ensuring
scale consistency. Finally, a subtraction operation was
performed between the feature maps of the same resolution to
obtain the desired local boundary contour information. This
operation highlights the boundaries and detailed regions in
the image, providing richer depth estimation information. The
structure of the model is shown in Figure 3.

E. LOSS FUNCTION
The experiment utilizes the scale-invariant log scale loss [18]
to optimize the model and is obtained by calculating the
difference between the predicted depth value yi in the log
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FIGURE 3. Difference module.

space and the ground truth y′i:
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The above equation can be written as the sum of the
variance of the error and the weighted mean in logarithmic
space:
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where di = logyi − logy′i , N denotes the number of pixels with
valid ground truth.

To focus more on minimizing the variance of the error,
a higher λ can be set; therefore, λ is set to 0.85. Finally,
the loss function is set to L, and is defined by the following
formula:

L = α

√
D(yi, y′i). (3)

where α is constant and set to 10.

IV. EXPERIMENT
In this section, the performance of the overall network is
validated and evaluated using two datasets: KITTI [36]and
NYU Depth V2 [37]. The KITTI dataset consists of
large-scale outdoor scenes with 61 different categories.
Among these, 697 images covering 29 scenes were used
for evaluation, whereas the remaining 23,488 images from
32 scenes were used for training. The NYUDepth V2 dataset,
on the other hand, comprises indoor scenes. It included a
total of 464 scenes, with 249 scenes used for training and the

remaining 215 scenes used for testing. This dataset contains
654 images from these scenes. The specific training and
testing procedures follow the partitioning approach proposed
in [18].

A. EXPERIMENTAL DETAILS
The model was trained and tested in Python 3.8, PyTorch
version 1.12.0, using CUDA 11.3. Experiments with the
KITTI dataset were conducted on four NVIDIA GeForce
3060-12 GPU devices, with a batch size of 8. The segmen-
tation strategy introduced by Eigen et al. [18], based on the
KITTI dataset, was used to evaluate the model, with K set
to 80. For the experiments with the NYUv2 dataset, 4 Tesla
V100 GPU devices were used, with a batch size of 16. The
Adam optimizer [38] was employed, with a power of 0.9,
momentum of 0.999, and an initial learning rate of 10−4,
which decayed to 10−5 at the end. The model was trained for
25 epochs on the KITTI dataset and 35 epochs on the NYUv2
dataset, including 5 pre-training epochs.

B. QUANTITATIVE ASSESSMENT
To evaluate the model effectively, this study adopted six
performance metrics introduced in a previous study [18].
These metrics have been widely used in the in-depth
estimation evaluations of the NYUv2 dataset. For the KITTI
dataset, two standardmetrics were required: Squared Relative
Difference, and Root Mean Square Logarithmic Error. These
metrics are defined in equations (4)-(9).
Threshold accuracy (δ), where thr = 1.25, 1.252, 1.253;

di is the estimated value, and d̃i is the true value. The
percentage of pixels in all di that are smaller than the
threshold thr in the total pixels was counted. The closer
the value is to 1, the better the effect.

The Root Mean Square Error (RMSE) is a conventional
measure used to quantify regression errors. The RMSE log,
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TABLE 1. Quantitative comparison of different models on the KITTI dataset.

TABLE 2. Quantitative comparison of different models on the NYUv2 dataset.

TABLE 3. Quantitative comparison of the Global Understanding module on the KITTI dataset using different backbone encoders.

on the other hand, introduces a relative aspect to this error,
reducing the influence of large errors concerning distance.

Relative error (Sq.Rel) penalizes larger depth errors
by squaring them. Absolute relative error (Abs.Rel): this
calculates the normalized per-pixel error based on the ground
truth depth, reducing the influence of large errors concerning
distance.

The Log Error represents the average absolute value of the
logarithmic difference between the predicted depth and the
true depth, often denoted as log 10.

Threshold = %of d̃i, s.t.max

(
d̃i
di

,
di
d̃i

)
= δ < thr . (4)

RMSE =
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∥∥∥2

d
. (5)
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2

d
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1
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d
. (8)

log 10 =
1

| T |

∑
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|log10 d̃ − log10 d |. (9)

The algorithm proposed in this study was quantitatively
evaluated against several classical algorithms, and the
results are presented in Table 1. On the KITTI dataset,
compared to Lapdepth [24], the model in this study
achieved an improvement of 0.003 in accuracy δ1 < 1.25
and a decrease of 0.038 in RMSE, indicating better
prediction accuracy for correct pixels. Additionally, the
average relative error decreased by 0.012, suggesting that
the network exhibited more stable predictions for depth
variations.

On the NYUv2 dataset, compared to Lapdepth [24], the
model in this study achieved an improvement of 0.014 in
accuracy δ1 < 1.25 and an improvement of 0.005 at higher
accuracy δ2 < 1.252 thresholds. The RMSE also decreases by
0.013, as shown in Table 2. The effectiveness and robustness
of the model presented in this paper were demonstrated by
evaluating the proposed method on these two benchmark
datasets.
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FIGURE 4. Qualitative comparison of depth estimation on the KITTI dataset. 1st colum: input color images, 2nd colum: results by BTS, 3rd
colum: results by Lapdepth, 4th colum: results by proposed model.

TABLE 4. Quantity Verification of Global Understanding Modules on the NYUv2 Dataset.

TABLE 5. Quantitative comparison of the Global Understanding module using different backbone networks on the NYUv2 dataset.

C. QUALITATIVE ASSESSMENT
The qualitative comparison results for the KITTI dataset
are shown in Figure 4. It is evident that the depth maps
estimated by the proposed method not only predict distant
objects (e.g., the pole in the middle of the first row and
the sign at a far distance in the third row) but also capture
detailed information about nearby objects (e.g., the sign in the
last row). In addition, the overall depth boundaries obtained
are relatively smooth. These results demonstrate that the
proposed method can provide accurate depth information for
depth estimations.

Qualitative comparison results for the NYUv2 dataset
are shown in Figure 5. It can be clearly seen that the
proposed method outperforms the Lapdepth method in terms
of visualized results and is closer to the ground truth. The
proposed method achieves more accurate predictions of
object boundaries and details, such as hanging objects on
the wall in the second row and objects on the table in the

fourth row. These results further confirm the superiority of
the network for depth estimation in indoor scenes.

D. ASSESSMENT GLOBAL UNDERSTANDING MODULE
To validate the generalization and effectiveness of the
Global Understanding Module, different backbone networks
were chosen as feature extractors, including ResNet [9],
DenseNet [10], and MobileNetV2 [39]. Table 3 presents the
quantitative results using different encoders, where the 3rd,
5th, and 7th rows show the performance evaluation results of
networks using ResNet101, DenseNet161, andMobileNetV2
as encoders, and the 4th, 6th, and 8th rows show the
results after introducing the Global Understanding Module
to these encoders. From Table 3, it can be observed that
the performance of the model improved after introducing the
GUM, regardless of the encoder used. This demonstrates the
effectiveness of the GUM in the task of depth estimation and
showcases its generalization ability across different encoders.
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FIGURE 5. Qualitative comparison of depth estimation on the NYUv2 dataset. 1st colum: input color images, 2nd colum: results by
Lapdepth, 3rd colum: results by proposed model, 4th colum: Ground truth.

Furthermore, this study evaluated the Global Under-
standing Modules in terms of their quantity. Using the
Multi-scale Cascade network as the baseline, the performance
was quantitatively assessed by progressively adding GUM
modules at the decoding layers, as presented in Table 4.
The results demonstrate a notable performance improvement
when two GUM modules are introduced, indicating that
GUM is highly effective in capturing high-level feature
information.

Finally, this study applies the Global Understanding
Module to two classical network models: the BTS model
with CNN as the backbone network and the NeW CRFs
model with Transform as the backbone network. The results
are shown in Table 5, indicating that the performance of
both models improved after introducing GUM, regardless of
the backbone structure. In summary, the effectiveness and
reliability of the GUM were further validated through three
different experiments.

E. ABLATION EXPERIMENT OF CONVOLUTION
Because the cascade module is composed of convolu-
tional blocks, this study compared different convolutional
layers for more effective feature decoding, as shown in

FIGURE 6. Convolution layers of different structures.

Figure 6. (a), (b), and (c) in the figure represent the
convolutional layers with different structures. (a) consists
of BN normalization, ReLU activation function, and 3×3
convolution; (b) consists of LN normalization, GELU
activation function, and 3×3 convolution; (c) consists of
LN normalization, GELU activation function, and 7×7
convolution. The data in Table 6 were obtained by comparing
the quantitative results of the different convolutional layers.
The table shows that the 7×7 convolutional layer with the
GELU activation function and LN normalization can guide
the decoding information more effectively.
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TABLE 6. The concatenation module uses different convolution blocks for quantitative comparison on the NYUv2 dataset.

TABLE 7. Quantitative comparison of different downsampling methods on NYUv2 dataset.

In addition, the difference module contains a large number
of downsampling operations. To investigate the impact of
different downsampling methods on depth information, this
study compares bilinear and bicubic downsampling methods.
Table 7 presents the quantitative results, clearly indicating
that the bilinear downsampling method is more suitable
for depth-prediction tasks than the bicubic downsampling
method. Theoretically, the bicubic downsampling method
can better aggregate information around pixels, whereas the
interpolation effect of the bilinear downsampling method
may be relatively poor. However, in the network structure
proposed in this paper, with multi-scale decoding layers,
using the bicubic downsampling method introduces more
erroneous pixel information, ultimately leading to larger
depth estimation errors in the lower layers.

V. CONCLUSION
In this paper, an effective multi-scale monocular depth
estimation network is proposed that utilizes the Global
Understanding Module and cascade module to leverage both
long-range feature information and local information and
recover the depth map without reducing the resolution.
Through various comparative and evaluation experiments, the
effectiveness of the GUM and reliability of the network were
demonstrated. Additionally, visual analysis was performed,
and it was observed that the estimated object boundaries
were smoother and clearer, and that the network performed
well in predicting the depth of distant objects. In future
work, we will focus on using lightweight network structures
to reduce the number of parameters while ensuring the
predictive performance of the network and further improving
the practicality and efficiency of the network.
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