
Received 9 March 2024, accepted 22 March 2024, date of publication 27 March 2024, date of current version 2 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3382541

Learning About Growing Neural
Cellular Automata
SORANA CATRINA1, MIRELA CATRINA1, ALEXANDRA BĂICOIANU 2,
AND IOANA CRISTINA PLAJER 2
1Faculty of Mathematics and Computer Science, Transilvania University of Bras,̧ov, 500036 Braşov, Romania
2Department of Mathematics and Computer Science, Transilvania University of Bras,̧ov, 500036 Braşov, Romania

Corresponding author: Alexandra Băicoianu (a.baicoianu@unitbv.ro)

ABSTRACT Neural cellular automata have been proven effective in simulating morphogenetic processes.
Developing such automata has been applied in 2D and 3D processes related to creating and regenerating
complex structures and enabling their behaviors. However, neural cellular automata are inherently
uncontrollable after the training process. Starting from a neural cellular automaton trained to generate a
given shape from one living cell, this paper aims to gain insight into the behavior of the automaton, and to
analyze the influence of the different image characteristics on the training and stabilization process and its
shortcomings in different scenarios. For each considered shape, the automaton is trained on one RGB image
of size 72× 72 pixels containing the shape on an uniform white background, in which each pixel represents
a cell. The evolution of the automaton starts from one living cell, employing a shallow neural network for
the update rule, followed by backpropagation after a variable number of evolutionary steps. We studied the
behavior of the automaton and the way in which different components like symmetry, orientation and colours
of the shape influence its growth and alteration after a number of epochs and discussed this thoroughly in
the experimental section of the paper. We further discuss a pooling strategy, used to stabilize the model and
illustrate the influence of this pooling on the training process. The benefits of this strategy are compared
to the original model and the behavior of the automaton during its evolution is studied in detail. Finally,
we compare the results of models using different filters in the first stage of feature selection. The main results
of our study are the insights gained into how the neural cellular automaton works, what it is actually learning,
and what influence this learning, as there are observable result differences depending on the characteristics
of the input images and the filters used in the model.

INDEX TERMS Neural cellular automaton, cell state, pooling strategy, stabilizing strategy, image
characteristics.

I. INTRODUCTION AND BACKGROUND
Within the domain of computational models, the intersection
of regenerating models and cellular automata presents a
compelling perspective on adaptive systems and emergent
behaviors. Regenerating models within machine learn-
ing are designed to continuously evolve and enhance
their performance over time, dynamically adjusting to
fluctuations in data distributions. Simultaneously, cellular
automata, a category of discrete dynamical systems, manifest
self-regeneration through iterative update rules governing the

The associate editor coordinating the review of this manuscript and

approving it for publication was Hengyong Yu .

states of individual cells. This convergence of concepts opens
avenues for investigating the adaptability of computational
models inspired by the inherent regenerative characteristics
observed in cellular automata. A deeper exploration into the
parallel principles of evolution in both domains promises
valuable insights into the potential synergy between regener-
ating models and the self-organizing dynamics exhibited by
cellular automata.

Cells are the basic building blocks of all living entities.
Any multi-cellular organism evolves from one singular cell
that knows how to divide, when to divide, and holds all
useful information necessary for the organisms’ growth and,
sometimes, regeneration. Cells group and regroup, decide

45740


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-1264-3404
https://orcid.org/0000-0002-2666-8215
https://orcid.org/0000-0002-5852-0813


S. Catrina et al.: Learning About Growing Neural Cellular Automata

what tissue or organ to form and when to stop the growing
process. All these complex behaviors are being built on
cells that only know their own information and that of their
neighbours.

Cellular automata have been developed to simulate cell
behavior and to emulate some of the properties of real-
world organisms, like local behavior, parallelism, or self-
replication [1]. One of their strengths is the capacity of
modeling complex systems by simple local update rules,
especially when combined with learning automata [2].
A cellular automaton is a dynamic system consisting of
a grid of cells. Each cell holds useful information and a
state that updates each time unit. This update is based on a
predefined rule: given the current state, st and the neighboring
cells states, this rule will output st+1 [3], [4]. There are
multiple types of cellular automata, varying in complexity
and purpose. However, for this paper, we will separate them
into two categories: regular cellular automata and neural
cellular automata (NCA), based on how the update rule is
defined manually or neural network-based [2], [5].
An elementary cellular automaton’s cells have two possible

states referred to as dead/alive, 0/1, white/black, etc. The
first type of cellular automaton that has been studied was the
one-dimensional elementary cellular automaton (ECA) [6].
The evolution in tn discrete time units of such an automaton
can be displayed as a grid, where the top row represents the
cells’ states at the start time (t0) and each i-th row represents
the states of the cells at the given time ti. For these ECA a
cell’s state update is based on three values: its current state,
the state of the cell on the left and the state of the cell on
the right. This leads to a total of 28 possible rules, defined as
f : {0, 1}3→ {0, 1},

state(ci,t+1) = f (state(ci−1,t ), state(ci,t ), state(ci+1,t ))).

Despite their seemingly straightforward rules, multiple stu-
dies have been conducted in order to analyze and categorize
their behaviors and use-cases [7], [8].
As time progressed, an interest in cellular automata and

their applications grew. This led to the development of
bidimensional cellular automata - automata displayed as a
grid where each cell’s update rule is based on the state of
its neighboring cells, the difference consisting of the type
of neighbourhood chosen. The most common neighborhoods
to be considered are Moore Neighbourhood (8 neighbors),
and Von Neumann Neighbourhood (4 neighbors) [1], even
though other types still exist [9], [10]. These rules allowed
for more complexity, yet not enough, given the hand-written
rules. The introduction of neural networks (NNs) in cellular
automata allowed for complex update rules that can be
learned. This type of CA has started to emerge and be
introduced in different areas such as texture generation
and regeneration [11], [12], 2D or 3D models growth and
regeneration [13], [14], [15], [16], areas that were impossible
to tackle with hand-written rules.

This paper analyzes the behavior of a cellular automaton
built for growing and maintaining a 2D model. The NCA is

trained on a given image and expected to form that image
starting from one living cell, representing a seed. Considering
the NCA architecture presented in [14], our study aims to
analyze the evolution and learning process of this NCA on
different images. We also compare the results obtained from
these different targets and extract traits that affected them.
Moreover, we also analyze the results on a stabilized model,
i.e., one that is able to hold its shape after growing, a task that
is not achieved in the initial model.

The experiments in this study were motivated by the
interest in discovering, how and what such an automaton
learns in the training phase and what image characteristics
influence its evolution. These findings are explained and
detailed in the experimental part of the paper. Throughout our
experimental investigations, diverse behaviors have emerged,
motivating our ongoing efforts to pursue specific objectives.
One key objective is understanding the factors underlying
an image’s susceptibility to self-destruction following NCA
processing. Furthermore, our focus extends to delineating the
primary features that shape an image’s evolution during the
NCA expansion.

II. MODEL ARCHITECTURE AND TRAINING DETAILS
Motivated by the methodology from [14], we chose to test
an NCA designed for image generation. The update rule,
which determines how each cell changes depending on its
neighbors, will now be learned by a NN. Before delving into
theNN,wewill thoroughly go over the steps involved inNCA
training, with an emphasis on cellular automata.

A. CELL STATE
As stated before, a cellular automaton is a collection of cells
arranged in a grid with a particular form, each of which has a
predefined set of rules that it follows and changes state based
on its neighbors’ states.

Generally speaking, a cell’s state is seen as binary, with
0 denoting death and 1 denoting life. However, since a NN
performs best with continuous values, the interval [0, 1]
was used in place of the binary-defined state of the cellular
automaton, and a threshold ls = 0.1, stating that if alpha ≥ ls
the cell is alive, and if alpha < ls the cell is dead [14].

The features of a cell have to be well-defined and
compatible with our NN in order to create a final updating
rule. We therefore used the following approach, in which the
state of each cell is represented as a vector of 16 values (α
and 15 extra attributes), determining thus an input image gird
with 16 channels. Each feature vector has:

• on positions [1-3]: the RGB values of the pixel, each
value being between 0 and 1;

• on position 4: the alpha channel; this is the value that
determines if the cell is considered alive, dead, or in the
growing phase (meaning α = 0 = the cell is dead, α =
1 = the cell is fully developed, all other values greater
than 0.1 (ls) are considered growing state);

VOLUME 12, 2024 45741



S. Catrina et al.: Learning About Growing Neural Cellular Automata

FIGURE 1. Encoding strategy.

• on positions [5, 16]: supplementary channels required by
the NN in order to develop complex local rules.

Examples of the values encoded in such a cell of the
snowflake emoticon are represented in Figure 1. The first
3 values correspond to the RGB channels, the 4th element
is the alpha value (indicating if the cell is alive) and the
remaining values offer additional information, learned during
the iterations. The top figure illustrates the feature vector of
the cell highlighted by a yellow border at the beginning of the
iterations. All the values of the array are at that point equal to
0. The middle figure shows the values for the given cell after
10 iterations, and the bottom figure shows the values for the
given cell after 30 iterations. In the beginning, all the pixels
except the seed pixel have all the values of the feature array
equal to 0. The seed pixel has on the first 3 channels the RGB
values normalized in the interval [0,1], and the alpha channel
is equal to 1, as it is the only alive pixel. The other channels
are also set initially to 0. Although dead pixels initially have
RGB values equal to 0, which encodes black, these cells are
displayed as white background pixels.

B. UPDATE RULE
The update rule for each living cell takes as input the current
cells value and the values of its neighbours (states) and
outputs a number representing the update value, i.e. how
much the cell’s values (features and state) modify. This value
is a number to add/subtract from the current value, thus
updating the current cell. It is worth noting that the outputs
of the update rule are applied simultaneously on all the cells,
as the entire image is passed through the NN at once. After
the pass, the resulting living cells and their neighbours are
selected, and processed according to the update rules, and
so forth. Thus, the image evolves by iterating this update
process. One such update iteration implies passing the feature
array of the cell grid through a NN.

The first stage of the network implies convolving classical
filter masks of size 3×3 with each channel of the input. These
filters operate with the Moore Neighborhood of each cell.

The filter masks considered are:
• Sobelx : a high-pass filter that considers 6 of the
neighboring cells situated on the left and right.

• Sobely: a high-pass filter considering 6 top-bottom
neighbours of the current cell.

• Identity: ensures that the current cell value is taken into
consideration and influences the update rule

The role of a NN is to learn important input features.
An image’s most relevant features are edges, especially when

TABLE 1. Explicit details about the neural network.

the image represents one or more objects on a uniform
background. The Sobel filter is a classical filter for edge
finding, which also considers the edge’s orientation. The
Sobelx filter predominantly finds vertical edges, while the
Sobely the horizontal ones. Complementary to these filters,
which are the ones used in [14], in this study, we also explored
filters with other orientations, like the diagonal Sobel and the
isotropic Laplace filter. The results of these experiments are
detailed in the experiment section. A description of all these
filters is provided by [17].

Each filter is applied to each channel of the input image
and generates a 72×72×16 array. The three arrays obtained
thus are concatenated into the network’s input feature array of
size 72×72×48. Although we could have experimented with
extended variations of the neighborhoods, considering the
subsequent filters, this would have gone against the cellular
automaton’s basic tenet that a cell only knows its neighbors.

C. THE NEURAL NETWORK
The neural network, as shown in Figure 2, comprises a
perception layer followed by two convolutional layers. The
perception layer receives an image of shape 72 × 72 ×
16, representing the current state of the NCA, and applies
hardcoded 3 × 3 filters (in this case Identity, Sobelx and
Sobely), outputting a tensor of shape 72 × 72 × 48. The
first convolutional layer filters this tensor with 128 kernels
of size 1 × 1, utilizing ReLu activation. Following this, the
second one employs 16 1× 1 kernels. The network output is
therefore a 72× 72× 16-dimensional array representing the
updated values, which are added to the original values of the
considered cells. To offer a comprehensive understanding of
the NN’s architecture utilized in our study, Table 1 presents
explicit details regarding the layer-wise dimensions and
filter sizes and Figure 3 graphically illustrates the described
network.

A single cell perceives its neighbourhood through the first
depthwise layer. This is the layer that contains the filters we
explained earlier (Sobelx , Sobely, Identity). We can see from
the output shape that each cell ends up with g*16 values
encompassing their representation of the 3×3 neighbourhood
they are in, where g represents the number of filters, in our
case 3. After this, the NCA is employed in understanding
how the cell should process the information and therefore
evolve for that one time step. The outcome from the third
layer precisely provides the adjustments that need to be
implemented across all channels (in our case, 16 channels)
for every cell.

45742 VOLUME 12, 2024



S. Catrina et al.: Learning About Growing Neural Cellular Automata

FIGURE 2. Neural cellular automaton model.

FIGURE 3. Network architecture.

This process is synthesized explicitly by Algorithm 1
and represented graphically in Figure 2. In Algorithm 1,
the function apply_perception_filters applies the two Sobel
filters and the identity filter on the current cell and returns the
concatenated feature array. The function forward passes the
feature array through the two neuron layers and returns
the array, containing the the update values for all the cells.
The function get_living_mask selects the cells that are alive
and their neighbors, in order to determine the cells which will
be updated.

If we consider n the number of cells (in our specific case,
72× 72) the complexity of Algorithm 1 is influenced by the
selection of alive cells and their neighbors, which is linear in
n, the application of the 3 filters on each cell, which is linear
in n and the forward pass of the filtering result, which is a
array of size n × 48. During a forward pass for one cell, p
multiplications are performed, where p, which is determined
by the number of learnable weights, is approximately 8000.
Therefore, the overall complexity of the algorithm is within
an upper limit proportional to p · n.

During the training step of our experiments, the weights of
the NN are not adjusted directly after one update iteration, but
after evolving the NCA during a number of steps, i.e., several
concatenations of the model in Figure 2. Such an evolution
is described by Algorithm 2, in which the variable num_steps
is a value between 64 and 96, as recommended in [14]. The
complexity is proportional by the number of steps with the
complexity of Algorithm 1.

It can be observed by experiments, that this provides a good
time interval for the NN to learn. The NN is responsible for
the update rule, and it is the one that receives the specified

Algorithm 1 The Application of the Update Rule
Input: Current state of the automaton (the image)
Output: The updated state of the automaton after one step

function apply_update_rule(state_nca)
cells_to_update← get_living_mask(state_nca)
features_vector ← apply_perception_filters(state_nca)
cell_update_values← forward(features_vector)
for cell ∈ cells_to_update do

state_nca[cell]← state_nca[cell]+ cell_update_values[cell]
end for
return state_nca

end function

Complexity proportional with p · n

input and calculates the values that modify the cell’s features
and state. The NN’s weights and biases are refined once a
cycle is finished, i.e., once the update rule has been applied
for 64-96 times, by backpropagation, considering the L2 loss
between the RGB channels of the result of the evolved NCA
and the RGB channels of the target image.

Algorithm 2 Evolution of the NCA
Input: The automaton (nca), number of steps to evolve (num_steps)
Output The evolved nca

function evolution_of_the_nca(nca)
for steps← 1; steps ≤ num_steps do

nca← apply_update_rule(nca) ▷ Apply update for each living cell
end for
return nca

end function

Complexity proportional with num_steps · A1, where A1 is the estimated complexity
of first algorithm, Algorithm 1

D. TRAINING OF THE NCA
Once the training is finished, we will simulate a lifetime of
an NCA similarly: we start from a single living cell and use
the trained NN to apply the update rule for all living cells and
their neighbours at each point in time. This process can be
applied infinitely, as we do not know, how long it has to evolve
until it reaches the desired output. In our experiment, we let it
run a maximum of 2000 iterations. During the experiments,
we observed that after approximately 300 iterations the

VOLUME 12, 2024 45743



S. Catrina et al.: Learning About Growing Neural Cellular Automata

images are distorted and the behavior of the automaton does
not drastically change, resulting in the further destruction of
the image based on similar behaviors observed in previous
iterations, see Figure 9. This is a problem which has to be
solved in order to obtain a stable result and will be addressed
in the following sections.

The model presented above was trained using algorithm 3
on a number of 8000 steps. Each step includes the following
iterations:

1) Get the seed image: all white illustrated pixels are
background (RGB values set to 0) with α = 0 (dead)
except the one pixel in the middle with alpha set to
1. Notice that a cell is considered living if its alpha
channel value exceeds 0.1; the update rule applies to
all living cells and their neighbours. The living cell is
usually centered, except the cases where the figure in
the image does not have values in its center.

2) Let the NCA live for several iterations, which implies
applying the update rule for each alive cell and
its neighbors. We choose the number of iterations
randomly between 64 and 96.

3) Calculate the loss, in our case with L2 function, and
adjust the NN’s weights.

Algorithm 3 Training of the NCA
Input the nca, representing the seed image, and the target image
Output the trained nca

function train_nca(nca, target)
for iteration ∈ range(0, number_of _epochs) do

num_steps← random select a number
of steps in range(64, 96)
nca← evolution_of _the_nca(nca, num_steps)
loss← L2(nca, target)
update weights by backpropagation

end for
return trained_nca

end function

Complexity proportional with number_of _epochs · (A2+ A1+ n), where A2 is the
estimated complexity of the second algorithm, Algorithm 2

The complexity of Algorithm 3 is proportional to the
complexity of Algorithm 2 and the complexity of the
backpropagation, which is similar to that of the forward pass
falling within the linear complexity class of type p · n, where
p ≈ 8000. Note that we considered a total of 8000 epochs.

This training strategy led us to the compelling results,
detailed in the III-A section, and loss plots similar to Figures 4
and 5 for all trained images. Each NCA is trained to recognize
and evolve one type of image. For example, if we want our
NCA to grow the spider web image, this image serves as the
training data for the model during the training process. After
the initial image of a single alive cell is passed the number
of decided steps through the NCA, the output image is then
compared against the preselected target image.

E. STABILIZING TRAINING STRATEGY
The training described in the above approach produced
interesting but unsatisfactory outcomes. When the automaton
reaches the intended state, which is the image it was trained

FIGURE 4. Loss history of spiderweb images.

FIGURE 5. Loss history of caterpillar images.

for, it continues to expand. Moreover, its growing behavior
cannot be predicted (one cannot conclude if the image
will continually expand, disappear, suffer few alterations,
stabilize, etc.). Therefore, the stabilisation goal still needs to
be reached.

To solve this problem, two solutions could be implemented:
• A proposed idea was to let the one iteration in the
training step to run longer, forcing the NCA also to learn
how to remain stable once it reached the desired state.

• Apooling strategy (presented by the original paper [14]).
We followed the second approach in choosing the solution,

since training on our machines takes considerable time. This
strategy is illustrated in Algorithm 4. How the strategy is
applied for one epoch is further depicted in Figure 6.

Algorithm 4 Pooling Strategy
Input the pool of current organisms nca, the target image, the number_of _epochs,
and batch_size representing the number of individuals that will be chosen
Output the updated pool of organisms

function apply_pooling strategy(nca, number_of _epochs, batch_size)
for iteration ∈ range(0, number_of _epochs) do

individuals← random pick batch_size individuals
worst_cell ← cell_with_highest_loss(individuals)
worst_cell ← seed_image
num_steps← random select a number of steps in range(60, 90)
for individual ∈ individuals do

individual ← evolution_of _the_nca(individual, num_steps)
end for
loss← L2(individuals, target)
update weights by backpropagation
updated_pool ← replace updated individuals back in the pool

end for
return updated_pool

end function

Complexity proportional with A3, where A3 is the estimated complexity of the third
algorithm, Algorithm 3

45744 VOLUME 12, 2024



S. Catrina et al.: Learning About Growing Neural Cellular Automata

TABLE 2. NCA and genetic algorithms comparison.

The complexity of Algorithm 4 is upper bounded in the
same way as Algorithm 3, as it only means to apply the pass
through the NCA of batch_size = 8 individuals selected from
the training pool for a number of epochs.

For these experiments, the training set is represented by
the pool of images the cellular automatas is trained on. In our
experiments, the size of this pool is 1024. In the beginning,
this is composed of 1024 images of the single alive cell.
At each step, 8 (or batch_size) images are chosen randomly
from this pool. The one with the highest loss value is then
replaced by a new image of a single alive cell. This is done in
order to preserve the capacity of evolving from a single alive
cell, as this behavior would be forgotten if we trained only
on partially evolved images. After evolving the images from
this batch by passing them through the NCA for a number of
steps, they are put back into the updated pool, meaning that,
the evolved images from the initial batch replace the original
images in the pool.

The pooling strategy which replaces the worst individual
in the pool can be compared to a simplified genetic
algorithm [18], a comparison presented in Table 2.
Similar to NCA, genetic algorithms start with a randomly

generated population, akin to how the automaton begins with
a pool of images and uses the update rules also randomly
generated. In genetic algorithms, individuals are represented
by chromosomes or genes, a string of information influencing
how an individual performs a specific task. Afterward, the
genetic algorithm selects a batch of individuals for each
step to help create a new generation. Usually, in genetic
algorithms, a fitness function is then applied to determine
the best-performing individuals with a higher chance of
combining their genes to create new individuals for the
next generation. After this process, sometimes a mutation
is applied in order for the genes not to converge and
still add some differences among individuals. We can see
the resemblance with the aforementioned strategy since
this algorithm also selects the best-trained individuals and
discards the lowest-scored ones, here with the scope of
training the update rule to recognize when the image is
starting to destroy itself. In contrast with the classic genetic
algorithm, we observe no crossover step - it is not applicable
here. Given this training strategy, we obtained loss plots
similar to Figure 7 for all trained images.

Now, let’s further analyze the process of pooling-based
training by examining images extracted in different stages of

this process. In Figure 8 we sampled 42 pictures from our
pool during the training process for the spiderweb image.
Therefore we can observe the base idea put in practice:
organisms in different stages of evolution will be sampled
at a given time. The NN will randomly choose a batch of
8 images from this pool, evolve them according to their
learned behavior, and put them back in the pool. Since images
are chosen randomly, we reach the desired result: the NNwill
train on seed/very low evolved images (4th row, 4th column),
mildly evolved images (2nd row, 1st column) and more
advanced organisms (almost completed images). We can also
see its flaws during training, such as duplication (4th and
5th rows, 6th column), disappearing (empty, dead images),
or noise (3rd row, 6th column), facts also observed during the
late stages of training.

The term evolve here is essential, since the update rules
needed for the model to reach the desired target image are
practically learned during the training of the NCA. After
training, when these updated rules are fixed, we want to
apply them on a new single living cell and see how the NCA
behaves. As a consequence, from now on, we will name
the process of applying the NCA in multiple steps on these
evolved images letting the image evolve.

III. EXPERIMENTS AND DISCUSSIONS
The main focus of this paper is twofold. Firstly, it aims
to understand the dynamics of the expanding NCA and the
inherent characteristics of the target images, which influence
both model growth and stabilization. Secondly, it investigates
the effect o filters with varying orientations on the learning
and growth processes, highlighting their impact within the
model. Therefore, we conducted the following experiments
on images with different symmetry and color properties:

Experiment 1: The NCA evolves without having any
strategy in-place for the stabilization of the model,
as in Algorithm 3, characterized by always training
from the seed image. This leads to an unpredictable
behavior, which was analyzed onmultiple target images.
Examples are illustrated in Figure 9.
Experiment 2: The same NCA model is trained using
a strategy characterized by pooling as presented in
Algorithm 4. This determines the cellular automaton to
reach its goal and stop expanding the shape at this point.
Experiment 3: In the model the initial Sobelx and
Sobely, used to select the features which are then passed
to the trainable layers, are replaced by other high-pass
filters and the behavior of the NCA is then studied. From
this experiment, it results, that in this model directional
filters are necessary in order to obtain a consistent
growing of the figures, while using the isotropic Laplace
filter does not produce any usable result. Nevertheless,
combining the directional Sobel filters with Laplace,
enhances the results.

Experiment 1 aimed to train the neuronal cellular automa-
ton to learn to grow specific images. However, once

VOLUME 12, 2024 45745



S. Catrina et al.: Learning About Growing Neural Cellular Automata

FIGURE 6. Pooling strategy depicted for one epoch.

FIGURE 7. Loss history of spiderweb image.

this purpose was reached after a number of iterations,
we observed that in the following iterations, the NCA
continued to expand the figure abnormally, exhibiting
different expansion behaviors for different train images.
Thus, the experiments continued to study how different image
features influence this expansion behavior. The features
studied are symmetry, orientation, and contour of the figure
in the training images. Section III-B details this experiment’s
purposes.

The second experiment is set to fix the first experiment’s
shortcomings, more precisely, to stabilize the model. The
NCA has to learn to also keep the image it evolved, no matter
how many iterations follow, and to this effect, the pooling
training strategy described in Algorithm 3 was used. This
experiment and its results are detailed in Section III-C.
In the first experiment, we observed, that the specific

properties of the evolved image, influence in a different way
the growth and alteration of the image during the different

FIGURE 8. Pool of images observed to be in different stages of training.

iterations. In the NCA model, a first feature selection is
done by combining the outputs of the directional high-pass
Sobel masks with the identity mask. As discussed, the
Sobelx and Sobelymasks havemaximum response for vertical
respectively horizontal edges. This led us to the assumption,
that filter orientation might influence the output of the
NCA. Thus, the third experiment was devoted, to analyze
the influence of different filter masks on the evolution of
the model. This experiment and its results are detailed in
Section III-D.

45746 VOLUME 12, 2024



S. Catrina et al.: Learning About Growing Neural Cellular Automata

FIGURE 9. Expansion behaviors for figures in the 1st column exhibiting
different symmetry properties, after 300, 500, 600 and 800 iterations.

As for the implementation, PyTorch was used to train and
evaluate the NCA. The simulations shown in our experiments
were done by employing the trained network and starting
from a single image with a single alive cell at the center. This
imagewas then fed to the trainedNCA for the number of steps
we wanted the evolution to take place (each step represents
one pass through the network).

A. THE SIMPLIFIED PROBLEM: GROWING NCA
Our first experiment was to train the NCA to learn to grow
specific images. The implementation of this plain method
as proposed by [14] was presented in Section II, and even
though the results yielded did not meet our first expectations,
we found them to reveal some interesting insights into how
and what the NCA is actually learning, and therefor was
worth analyzing.

Our first training image was the spiderweb (Figure 9 1st
column), and the parameters used for this training, together
with the hardware configurations, are present in Table 3. The
same parameters were used for the training with four other
shapes, for which the results are also presented and discussed.
In order to check if the NN indeed learns to develop from a
single seed, we fed it such an image and let it run for multiple
iterations, using the rules already learned during training.
Intuitively, we can think of this as letting the seed develop
using the same set of learned rules for each time step. The
results for the five shapes analyzed in this paper are presented
in Figure 9. The original images are on the first row, and the
following rows present the respective evolved CA after 300,
500, 600 and 800 iterations. It can be seen that for each image,
after a certain number of iterations, by continuing to evolve,
the CA ruins the target image. The interesting fact is how the
different shapes are affected.

B. EXPERIMENTAL ANALYSIS OF VARIOUS SHAPES
Various shapes were chosen for testing in order to run as
complete an experiment as possible. The very fact that they
were chosen diversely underlines our final ideas.

1) SPIDERWEB
The first image we trained on was the spiderweb, Figure 9 -
1st column. The behavior displayed in this image is
interesting and relevant since the manner in which it grows
shows the following important observation. Once in a while,
the new cells created by overgrowing will become and act
similar to seeds, displaying a repetitive pattern.

These new seeds are highlighted by red squares in the
1st column and 4th row of Figure 9. Another interesting
observation is the visual interpretation that diagonal lines
seem to be preferred over other lines, similar to how gliders
go through Conway’s Game Of Life.

2) TICKET
The symmetric way of development cannot be observed in the
growth of the ticket emoticon. We can observe that here, the
model destroys itself by reproducing, but individual seeds
cannot be observed (Figure 9, column 2). This can also be
due to the uniformity and repeatability of the image.

3) ALIEN
The same phenomenon described for the spiderweb can also
be seen in the training of the alien head, in which the image
ruins itself completely by iteration 600, but multiple instances
of the alien can be spotted to have been grown out of the
border of the initial alien (Figure 9, column 3).

This also displays an interesting, slightly different behavior
to the spiderweb and the ticket: it ruins itself later, with the
inside of the alien’s head remaining stable until iteration 300.
On the one hand, this could be explained by the size of the
image. However, this cannot be the only reason since, for
example, the ticket and the sleigh are similar in size, while
their behavior is entirely different.

4) SLEIGH
The sleigh emoticon (Figure 9, column 4) displays, however,
surprising results, behaving differently than the other images.
Once evolved, the image does not ruin itself. Instead, it grows
diagonal extensions at the bottom, which grow and multiply
during the following iterations, similar to how gliders travel
in the Game Of Life.

5) CATERPILLAR
The last image we trained our NCA on was the caterpillar.
This is an interesting image since it is the only one we trained
on that was destroying itself after evolving the NCA during
multiple iterations. We can see that around iteration 300, the
head and tail start to disappear.

We wondered why these emoticons behaved differently
and eventually self-destructed after going through the NCA.

VOLUME 12, 2024 45747



S. Catrina et al.: Learning About Growing Neural Cellular Automata

FIGURE 10. Expansion behaviours for the differently colored spiderweb
after 100, 250, 300 and 600 iterations.

FIGURE 11. Evolution results for the sleigh image after 200, 500, 750,
1000, 1500 and 2000 iterations.

Our first hypothesis was that an important criterion has to do
with how symmetric the image is, since the caterpillar and the
sleigh display ‘‘not-so-repeatable’’ behavior, and the others
that have symmetry in them, do.

Symmetry and complexity might matter in the sense that
the NCA works by learning different patterns in the data
based on a NN. Therefore, it should be easier to learn patterns
which are frequently present in the image. Intuitively, if the
image is complex, then a lot of rules have to be learned in
order to recreate the initial shape. On the contrary, if the
parts of the image are more similar, exhibiting a greater
degree of uniformity, this implies that the same pattern can
be recognized more often. As a result, the NCA has more
options to reinforce learning the same rule. In this sense,
the structure of the image is important. We can also observe
this interesting behavior in Figure 10. Here, we can see
that based on which part of the image is colored, different
patterns emerge. In the 1st row, we can observe the image
starting to recreate itself, and ruining the initial organism
by iteration 300, while in the 2nd row, we can see that the
initial structure is preserved despite some expansion being
observed by iteration 300. Additionally, we can observe that
this growth sticks to the initial pattern and that the colors
hold onto their nearby counterparts rather than expanding
haphazardly.

The presence or absence of a colored contour of the figure
seems to influence the evolution over time, which can be
clearly observed in the alien figure’s case. It can be seen,
that in the image of the alien, copies of itself appear around
iteration 250 outside the initial image, along the border of
the figure. Adding a different colored contour to the figure
will impact the way the image evolves compared to the initial
experiment. Figure 12 illustrates an interesting behavior: both
CA are destroying themselves. If we take a look closer, the
genuine alien evolves duplicates of himself from the border.
While this is partly true for the bordered alien, we can see
that this phenomenon happens later. The disturbances from
the first iterations are duplicates of the border rather than the

FIGURE 12. Evolution results for the unbordered and of the bordered
alien after 100, 150, 200, 250, 300 and 500 iterations.

FIGURE 13. Details in the multiplication of the shape during the
evolution of the unbordered and of the bordered alien after
200 respectively 300 iterations.

rebirth of the alien. This is of course, because the seed is not of
red colour, so it is not confused with a point of start. We also
chose the same image but bordered so that other different
factors aren’t taken into consideration. These observations are
detailed in Figure 13.

Another interesting problem is the way, in which lines
propagate in the image during the evolution of the NCA.
Diagonal lines might be preferred due to being the easiest to
create. For example, in Conway’s Game of Life, which works
based on a Cellular Automaton, the glider is the easiest to
find propagating model, which needs only five alive cells to
start propagating diagonally. This preference for the diagonal
lines can be observed in the sleigh emoticon, illustrated in
Figure 11, and the uncolored spiderweb.

One explanation for the apparent preference for diagonal
lines can reside in the orientation of the Sobel filters. In the
case of horizontal, respectively vertical lines, one of the filters
will produce a high response, while the other has a nearly
0 response. This will result in an unbalanced feature vector.
In the case of diagonal lines, both filters exhibit similar
responses. To test if the orientation of the filters influences
the way in which the NCA evolves, a third experiment was
conducted (Section III-D).

C. THE STABILITY OF NCA
The second experiment using the pooling strategy yielded the
desired results. The NCA trained by this strategy is able to
grow from one living cell and, once reaching the targeted
image, stabilizes and the image is not expanded further.

45748 VOLUME 12, 2024



S. Catrina et al.: Learning About Growing Neural Cellular Automata

FIGURE 14. Comparison of an organism grown after training with Algorithm 3 (up) and respectively the Algorithm 4 (bottom) steps 0,
50, 100, 150, 250, 350 and 1000.

FIGURE 15. Batch 700. Based on the approach presented in Algorithm 4, the randomly selected pool of individuals before and after
training of batch number 700.

In this section, the success of the algorithm described in
Section II-E is presented on images sampled during and after
the pool-based training. As for the comparison with the first
approach without pooling, Figure 14 illustrates how the NCA
without pooling expands the spiderweb image in a span of
1000 steps post-training and how the NCA using the pooling
algorithm stabilizes, keeping the figure unchanged evenwhile
further evolving the NCA.

In order to further analyze how the training strategy
influenced the behavior of our NCA the spiderweb image
sampled during training, more precisely from batch no.
700 out of 8000, is presented in Figure 15. In the first row are
represented images from the batch, just before evolving them
through the NCA, while in the second row are illustrated the
results of the NCA for each of the samples in the first row.

In the 1st column of Figure 15 we observe that the NN can
guide the NCA to evolve the seed towards an unfurnished
final state of the target image. In the next six columns, the
advantages of using the pool-based approach become clear:
the NN has learned when to stop expanding the image. Due
to the fact that this batch is extracted in the early stages
of the training, we see a duplication problem in the last
column where 4 intertwined spiderwebs in the input image
are evolved simultaneously without the NCA realizing the
need to remove the excess ones. However this problem is
remedied in later stages of training.

D. DIRECTIONAL VERSUS ISOTROPIC FILTERS
In order to determine the influence of edge orientation we
performed an experiment in which we replaced the original

FIGURE 16. Evolution results for NCA using rotated Sobel filters for the
spiderweb and the sleight: original and after 300, 500, 600 and
800 iterations.

Sobelx and Sobely filters with their, by 450 rotated, corre-
spondents. The results on two of the described emoticons
showed a similar behavior of the NCA, as for the original
filters. After a number of iterations, the figures were distorted
in a manner, which differed only by the direction of the
distortions. This is shown in Figure 16 for the spiderweb and
for the sleight. In both cases, pooling algorithm 4 is necessary
for stabilization.

We were interested to see, if better results could be
obtained, by considering an isotropic high-pass filter. There-
fore, we replaced the pair of Sobel filters with a Laplace filter
mask. The results obtained were unexpected in the sense that
the NCA could not learn to regrow the images in either of
the scenarios, i.e., with or without pooling. In Figure 17, the
result of evolving the NCA for the spiderweb emoticon by
Algorithm 3 are presented for iterations 1, 50, 100, 250, 500,
1000.

VOLUME 12, 2024 45749



S. Catrina et al.: Learning About Growing Neural Cellular Automata

FIGURE 17. Evolution results for NCA using the Laplace filter for the
spiderweb after 1, 50, 100, 250, 500 and 1000 iterations.

FIGURE 18. Evolution results for NCA using the Sobelx , Sobely and the
laplace filters after 50, 100, 250, 500 and 1000 iterations.

By using the pooling algorithm 4, we observed that none
of the samples in the pool gets similar to the expected image
and in later iterations most of the samples are replaced by the
seed, while the others are only distorted examples, similar to
those in the figure.

Although the results obtained when using the Laplace
filter were not encouraging, we hypothesized that this filter
could still augment the NCA by offering supplementary
information, when utilized in conjunction with the Sobelx
and the Sobely filters. Thus we used them together for
evolving and training the NCA. The obtained results are very
promising as can be observed in Figure 18. It can be noticed
that between iteration 250 and 500, the image is almost
perfectly restored, withminimal distortions. Only during later
iterations, the distortions become more pronounced. This is a
first indication that, by integrating the Laplace filter, and thus
providing additional features, the NCA can learn in a more
reliable way how to evolve towards the target image. We still
have to investigate, if we can optimize the process, as to avoid
the elaborated pooling process altogether.

E. HARDWARE DETAILS
To ensure reproducibility, it is also essential to detail the tech-
nical specifications of the device on which the experiments
were performed. Table 3 lists the laptop specifications used
for training alongside with the specific input structure of the
NCA.

TABLE 3. Hardware and software details.

IV. CONCLUSION
The field of NCA is expanding. Models exploiting its behav-
ior, such as robots training for regeneration and movement
using cellular automata, research focussing on programmed
cell death, cell division, cell grafting, models responsive
to genomically-coded and environmental signals [19] are
currently studied and applied in different areas. Moreover,
applications in static and dynamic texture generation [20]
have been proven more efficient than former solutions,
opening this field for research. Other real-life applications
of cellular automata include fine material migration [21] and
spatial-temporal load forecasting [22]. Thus, neural cellular
automata serve as an active research field with numerous
future prospects.

During our study on cellular automata representing images
of 2D objects we observed various behaviors, thus this
article also aims to address some hypothetical issues.
The fundamental issue is what causes such an image to
self-destruct after evolving the NCA for a longer period and
also what are the primary aspects of an image that affect how
it evolves.

The main advantage of such an automaton is the possibility
of reproducing a whole shape from one seed. It also opens
the way to a series of applications, like automatic repair of
structures or even reproduction of different shapes, patterns
or textures starting from one or several sparse starting points.
The disadvantage at the moment is that the automaton has
to be trained separately for each form considered. But it is
a matter of current research on how to train an automaton,
to choose what shape to generate, depending on the input it
gets in the beginning.

An important contribution of the study is that various
properties were studied - symmetry, image complexity, image
orientation, and image evolution considering the object’s
contours, and some relevant conclusions were drawn about
the growth principles of the images considered. This growth
maintains the original pattern, and the colors maintain their
close neighbors rather than spreading randomly.

Another significant contribution is the study of the influ-
ence of different filters on the stabilization process, which has
been thoroughly discussed. Concerning the influence of the
orientation of the high-pass filters used for feature extraction,
we discovered that for this architecture, oriented filters are

45750 VOLUME 12, 2024



S. Catrina et al.: Learning About Growing Neural Cellular Automata

essential in the evolution of the NCA, as our experiment
using the isotropic Laplace filter did not produce any useful
results. Moreover, we found out that significant improvement
in stability can be obtained by combining the Sobel filters
with the Laplace, a result that still needs further investigation.
Still, isotropic filters can perform well in more elaborated
NCA models, as presented in [23].

A series of technical details about what is happening in the
background in the functioning of the NCA were presented in
an algorithmic, easy to follow manner.

This study is an explanatory study that deepens under-
standing of previous approaches, tests theories or hypotheses,
offers various perspectives for making decisions, can increase
the validity of research, and can also be utilized in
conjunction with other research designs.

REFERENCES
[1] J. Kari, ‘‘Theory of cellular automata: A survey,’’ Theor. Comput. Sci.,

vol. 334, nos. 1–3, pp. 3–33, Apr. 2005.
[2] M. Khanjary, ‘‘Cellular learning automata: Review and future trend,’’ in

Computational Vision and Bio-Inspired Computing. Singapore: Springer,
2022, pp. 229–238.

[3] E. W. Weisstein. (2002). Cellular Automaton. [Online]. Available:
https://mathworld.wolfram.com/

[4] W. Li and N. Packard, ‘‘The structure of the elementary cellular automata
rule space,’’ Complex Syst., vol. 4, no. 3, pp. 281–297, 1990.

[5] A. H. Ruiz, A. Vilalta, and F. Moreno-Noguer, ‘‘Neural cellular automata
manifold,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 10015–10023.

[6] E. W. Weisstein. (2002). Elementary Cellular Automaton. [Online].
Available: https://mathworld.wolfram.com/

[7] S.Wolfram,ANewKind of Science. Champaign, IL, USA:WolframMedia,
2002.

[8] K. Bhattacharjee, N. Naskar, S. Roy, and S. Das, ‘‘A survey of cellular
automata: Types, dynamics, non-uniformity and applications,’’ Natural
Comput., vol. 19, no. 2, pp. 433–461, Jun. 2020.

[9] D. A. Zaitsev, ‘‘k-neighborhood for cellular automata,’’ 2016,
arXiv:1605.08870.

[10] B. Breckling, G. Pe’er, and Y. Matsinos, Cellular Automata Ecological
Modeling. Berlin, Germany: Springer, Jan. 2011, pp. 105–117.

[11] A. Mordvintsev and E. Niklasson, ‘‘µnca: Texture generation with ultra-
compact neural cellular automata,’’ 2021, arXiv:2111.13545.

[12] E. Niklasson, A. Mordvintsev, E. Randazzo, and M. Levin, ‘‘Self-
organising textures,’’ Distill, vol. 6, no. 2, Feb. 2021, Art. no. e00027.

[13] K. Horibe, K. Walker, and S. Risi, ‘‘Regenerating soft robots through
neural cellular automata,’’ 2021, arXiv:2102.02579.

[14] A. Mordvintsev, E. Randazzo, E. Niklasson, and M. Levin, ‘‘Growing
neural cellular automata,’’Distill, vol. 5, no. 2, p. e23, Feb. 2020. [Online].
Available: https://distill.pub/2020/growing-ca

[15] S. Sudhakaran, E. Najarro, and S. Risi, ‘‘Goal-guided neural cel-
lular automata: Learning to control self-organising systems,’’ 2022,
arXiv:2205.06806.

[16] S. Sudhakaran, D. Grbic, S. Li, A. Katona, E. Najarro, C. Glanois, and
S. Risi, ‘‘Growing 3D artefacts and functional machines with neural
cellular automata,’’ 2021, arXiv:2103.08737.

[17] R. Gonzales and R. Woods, Digital Image Processing, 4th ed. London,
U.K.: Pearson, 2018.

[18] A. Lambora, K. Gupta, and K. Chopra, ‘‘Genetic algorithm—A literature
review,’’ in Proc. Int. Conf. Mach. Learn., Big Data, Cloud Parallel
Comput. (COMITCon), Feb. 2019, pp. 380–384.

[19] J. Stovold, ‘‘Neural cellular automata can respond to signals,’’ in Proc.
Conf. Artif. Life, 2023, pp. 24–32.

[20] E. Pajouheshgar, Y. Xu, T. Zhang, and S. Süsstrunk, ‘‘DyNCA: Real-
time dynamic texture synthesis using neural cellular automata,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 20742–20751.

[21] R. Castro, R. Gómez, and L. Arancibia, ‘‘Fine material migration modelled
by cellular automata,’’ Granular Matter, vol. 24, no. 1, p. 14, Feb. 2022.

[22] S. Zambrano-Asanza, R. E. Morales, J. A. Montalvan, and J. F. Franco,
‘‘Integrating artificial neural networks and cellular automata model for
spatial–temporal load forecasting,’’ Int. J. Electr. Power Energy Syst.,
vol. 148, Jun. 2023, Art. no. 108906.

[23] A. Mordvintsev, E. Randazzo, and C. Fouts, ‘‘Growing isotropic neural
cellular automata,’’ 2022, arXiv:2205.01681.

SORANA CATRINA is currently pursuing the
bachelor’s degree in computer science with Tran-
silvania University of Brasov. She is passionate
about quantum physics and quantum program-
ming, participating in plenty of courses, contests,
and Summer Schools on this topic. Alongside
quantum, her research interests include algo-
rithms, machine learning, and data structures.

MIRELA CATRINA is currently pursuing the
bachelor’s degree in computer science with
Transilvania University of Brasov. She partic-
ipates in numerous algorithmic contests, Sum-
mer Schools, and projects, affirming an interests
include machine learning, algorithms, and data
structures. Recent projects include a daily meal
plan recommendation platform, a movie recom-
mendation platform, window query processing in
fast dynamic linear quadtrees, and the influence of

genetic algorithms on hyperparameter optimization for neural networks.

ALEXANDRA BĂICOIANU received the Ph.D.
degree from Babeş-Bolyai University, Cluj-
Napoca, in 2016. She was a member with the
Department’s Machine Learning Research Group,
founded in 2018. She has been a Lecturer with
Transilvania University of Brasov, since 2017,
teaching various courses and seminars. She
is currently a Research Engineer in computer
science. She has published more than 30 scientific
papers and is the coauthor of seven books. Also,

she supervised tens of graduation and dissertations thesis, programming
training courses, programming Summer Schools, and code/tech camps,
some of them in collaboration with IT companies. Her research interests
and expertise include the field of machine learning, formal languages
and compilers, algorithms, remote sensing and Earth observation data,
autonomous driving, and electric and hybrid vehicles.

IOANA CRISTINA PLAJER received the B.E.
and M.S. degrees in computer science from the
University of Bucharest, Romania, in 1997 and
1998, respectively, and the Ph.D. degree in com-
puter science from Transilvania University of
Brasov, Braşov, Romania, in 2011. She was a
member with the Department’s Machine Learning
Research Group, founded in 2018, and part of the
Project Artificial Intelligence and Earth Observa-
tion for Romania’s Agriculture (AI4AGRI). She

is currently a Lecturer with the Faculty of Mathematics and Computer
Sciences, Transilvania University of Brasov. Her research interests include
machine learning, image processing, spectral imaging and remote sensing,
formal languages, algorithms, and data structures.

VOLUME 12, 2024 45751


