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ABSTRACT Rare event detection (RED) involves the identification and detection of events characterized by
low frequency of occurrences, but of high importance or impact. This paper presents a Systematic Review
(SR) of rare event detection across various modalities using Machine Learning (ML) and Deep Learning
(DL) techniques. This review comprehensively outlines techniques and methods best suited for rare event
detection across various modalities, while also highlighting future research prospects. To the extent of our
knowledge, this paper is a pioneering SR dedicated to exploring this specific research domain. This SR
identifies the employed methods and techniques, the datasets utilized, and the effectiveness of these methods
in detecting rare events. Four modalities concerning RED are reviewed in this SR: video, sound, image, and
time series. The corresponding performances for the different ML and DL techniques for RED are discussed
comprehensively, together with the associated RED challenges and limitations as well as the directions for
future research are highlighted. This SR aims to offer a comprehensive overview of the existing methods in

RED, serving as a valuable resource for researchers and practitioners working in the respective field.

INDEX TERMS Artificial intelligence, deep learning, detection, machine learning, rare event detection.

I. INTRODUCTION

Rare Event Detection (RED) refers to the task of identifying
and detecting events that have a low frequency of occurrences
but of high importance or impact [1]. Due to its infrequency,
rare events pose significant challenges for detection, predic-
tion, and classification tasks [2].

In the context of deep learning, rare event detection
involves developing techniques that can effectively identify
and classify these rare events using deep learning models [2].
The goal is to achieve high accuracy in detecting these rare
events, even when there is limited labeled data available for
training the models [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva

Rare events are events that are exceptionally infrequent and
have significant consequences. They are difficult to predict,
but they are expected to occur eventually [4]. Some examples
of rare events as highlighted by Ivanov et al. [5] include a
person walking in a forbidden zone, a vehicle driving on
the wrong side of the road, and a person running in an area
where people are expected to walk [5]. Narayanan et al. [6]
provided a similar definition, defining rare events as
events having low probabilities of occurrences with high
impact.

Rare events can also be defined as events that occur
infrequently, displaying transient characteristics with unpre-
dictable occurrences, and no prior indication of their
completion once they have transpired [7].

Recently, it has been widely acknowledged that rare event
detection is a prominent area of research [8] within the
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domain of event detection. This area of research primarily
focuses on the environment, health, and various industrial
applications dealing with digital signals.

However, it is worth noting that the majority of research
works concentrate on the realm of anomaly and outlier
detection [8]. According to [9], the identification of different
types of anomalous events can be challenging due to diverse
patterns and typical incidents within distinct scenes. Anoma-
lies are defined as events that deviate from normal patterns,
which may not always result in accuracy or effectiveness [10].
Anomaly detection involves the process of identifying data
patterns that exhibit behaviors significantly different from the
expected norm [11]. In review [12], Zideh et al. examine the
use of Physics-Informed Machine Learning (PIML) in power
systems for detecting, classifying, localizing, and mitigating
anomalies. They address challenges in smart grid data usage,
the role of ML in supporting control room decision-making,
and the integration of system physics into ML models.

Detecting rare events is the process of identifying patterns
that occur much less frequently. It involves analyzing events
that occur infrequently or irregularly in a given dataset or
system [1]. If an observation occurs infrequently and deviates
significantly from other observations, it may indicate an
irregularity or anomaly in the given set of observations [8],
[13], [14].

Furthermore, when determining a rare event, it is based on
a combination of factors including the rarity of the event,
its unique characteristics, and the use of both positive and
negative evidence for detection.

RED is incredibly significant in various applications. Some
examples include RED as part of face detection systems for
security purposes [15], RED based fraud detection systems
used in financial transactions, RED in video and image
retrieval, and using RED within the context of epidemiology
for disease outbreak detection [1]. Developing efficient RED
systems can positively impact the accuracy and effectiveness
of these respective applications [1], [14].

RED can be used to create surveillance systems that
detect and alert users or authorities of potential disturbances
or threats in real-world environments [8]. According to
Sokolova et al. [4], these systems have the ability to identify
and predict valuable events that occur with extreme rarity,
making them difficult to predict. RED systems have the
potential to quickly detect critical events close to their
source, allowing necessary actions to be taken in a timely
manner [13].

Failure to detect rare events can result in serious conse-
quences such as system failures, security breaches, or medical
errors [14]. Automatic detection of rare events is challenging
due to pattern variations in different scenes. In fact, rare
events vary based on the types of applications and scenarios.

A. MAIN CONTRIBUTION OF THE SYSTEMATIC REVIEW

The contributions of this review can be summarized below.
« A comprehensive and systematic review of RED using

both machine and deep learning techniques is presented
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to provide a state-of-the-art review of RED across
various modalities. These modalities include time series,
videos, sounds, and images. As presented in Table 1,
this review addresses the scarcity of comprehensive
systematic reviews and surveys in the field of RED
across multiple modalities.

o A discussion of the different processes involved in
RED is presented. The different processes in RED are
elaborated in detail for each type of modality. This
provides a clear overview of the required approach to
achieve RED for the different modalities.

« The review systematically identifies challenges, gaps,
and limitations within the field of RED, with a clear
indication of areas in RED that require further research
and development, allowing an enhanced understanding
of the existing limitations within the field.

B. REVIEW ORGANISATION

This review is structured as follows: Section II outlines
the search strategy and eligibility criteria for rare event
detection, detailing the sources as well as the inclusion
and exclusion criteria. Sections III, IV, V, and VI present
separately the processes of preprocessing, low-level feature
extraction, high-level feature extraction, classification and the
available datasets for video, sound, image, and time series
modalities, respectively.

Section VII provides the comparative analysis of the per-
formance of different approaches across different modalities.
Section VIII discusses and highlights the review’s findings.

Finally, Section IX concludes the review and provides
recommendations for future research.

Il. SEARCH STRATEGY AND ELIGIBILITY CRITERIA

In this review, we analyzed articles published since 2000 that
primarily focus on detecting rare events using ML and DL
techniques as shown in Figure 9, with several relevant articles
related to anomaly and outlier detection. We conducted
a comprehensive literature search across several databases
within AIl, ML, DL, and computer science domains.

Other sources, including reference lists, archives, bib-
liographies, and other materials that met the systematic
review criteria, were considered. Our search spanned articles,
journals, conference proceedings, and theses/dissertations
from reputable scientific publishers such as IEEE Xplore,
Elsevier, Scopus, JMLR, PubMed, Springer, ACM Digital
Library, BASE, Google Scholar, ResearchGate, ArXiv, and
Litmaps. The search keywords used in this study included
“rare event detection”, “artificial intelligence”, “machine
learning”, ““deep learning”’, “‘video rare events”, “‘sound rare
events”’, “image rare events”’, “1D signal rare events”, and
“time series rare events’’.

The inclusion criteria, as illustrated in Figure 2, for select-
ing pertinent studies were: (i) publication in peer-reviewed
journals or conference proceedings; (ii) a focus on the
application of artificial intelligence for rare events; and (iii)
the use of machine learning or deep learning techniques for
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FIGURE 1. The figure shows a typical ML pipeline for RED, which includes preprocessing, high & low levels feature extraction, classification and model

testing.

TABLE 1. Overview of key reviews related to rare event detection, detailing the reference, publication year, modality or area covered, and specific
remarks. This table provides a comparative snapshot, highlighting the scope and coverage of each study. This review focuses on multiple modalities and

comprises of 28 articles.

Reference Year Modality/Area Covered Remark
Maalouf et al. [16] 2015 Imbalanced dataset General imbalanced dataset
Liu et al. [17] 2019 Meta-analysis on rare events List of articles were not provided
Zhou et al. [18] 2020 Existing protocols on SR 1,004 articles
Jia et al. [19] 2021 Meta-analysis on RE on Cochrane database of SR 4,177 articles
Radulescu et al. [20] 2021 Case reports on RE 74 articles
Current Review 2023  Various Modalities (Video, Sound, Image & Time series) 28 articles

rare events in video, sound, image, and time series modalities.
Studies without abstracts, inaccessible full papers, non-
English publications, or those published before 2000 were
excluded.

A total of 28 research articles meeting our inclusion
criteria were identified and subsequently analyzed. Figure 3
outlines the PRISMA steps followed in article selection.
The identified articles were further evaluated based on the
inclusion and exclusion criteria detailed in Figure 2. This
survey follows closely the PRISMA guideline [22] for quality
assessment, performance evaluation of results, and reporting.
The break-down of the percentage of the articles reviewed in
this article can be found from Figure 4.

The ML pipeline adopted in this review is summarized in
Figure 1. It encompasses preprocessing, high-level feature
extraction, low-level feature extraction, and classification for
all the discussed approaches. Each of these blocks will be
presented in detail in the following sections.

lll. VIDEO BASED APPROACHES FOR RARE EVENT
DETECTION

Video-based rare event detection involves the identification of
uncommon or abnormal events within video sequences. This
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issue poses a formidable obstacle in the realm of computer
vision and video processing. With the increasing popularity
of video recording and sharing, there is a need for solutions
that can analyze video content in a robust and scalable
manner [23].

A. PREPROCESSING

Preprocessing plays a pivotal role in video rare event
detection. Some of the preprocessing approaches include
dimensional reductions of captured videos, selection of
distinctive features from the video frames, and performing
background subtraction on the captured videos.

In the study by Sharma et al., specific features are chosen
from each frame to delineate pixels, and background subtrac-
tion is executed using the Gaussian mixture procedure [24].

The incorporation of binary values to mitigate the influence
of noise and other sources of uncertainty in data is introduced
in [25]. Spatial relations are encoded within a binarized
feature vector representation, and temporal constraints in
events are articulated using the Hidden Markov Model
(HMM) framework. This approach facilitates the modeling
of semantic primitives’ dynamics, enabling the detection and
recognition of rare events in video frames.
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FIGURE 2. lllustrates the inclusion criteria for selecting pertinent studies, emphasizing publications in peer-reviewed platforms, the use of
artificial intelligence in rare events, and the application of machine or deep learning techniques across video, sound, image, and time series
modalities. Exclusions were made for studies not meeting these criteria, those lacking abstracts, inaccessible full papers, non-English

publications, and those published before 2000.

In the work of Ma et al. [26], as depicted in Figure 5,
a set of preprocessing techniques is used to improve the
rate-distortion performance of a video. The goal of their work
is to preserve the quality of the video while at the same time
reducing the bitrate usage of the video.

In reference to the preprocessing step for videos, with
regards to RED, most of the works are focused on making use
of the spatial correlation between the video frames within the
videos (e.g., background subtraction). This is done to achieve,
among others, a reduction in size or removal of noises with
the goal of enhancing the final accuracy and efficiency of the
detection process [9], [24].

B. LOW-LEVEL FEATURES EXTRACTION

Low-level feature extraction involves generating basic fea-
tures and cross-scale path embedding to enhance fine-grained
details in video frame interpolation [27]. These encompass
color features (such as histograms, color moments, and color
spaces like RGB, HSV, & LAB), temporal features (such as
texture and STFT), shape features (such as object trajectory
and silhouette), and motion features (such as vectors, frame
differencing, and optical flow) [28].

Aljaloud et al. [9] and Ullah et al. [29] highlighted
hand-crafted features such as trajectory, flow, and vision
modeling. These features encode spatiotemporal information
based on color, texture, optical flow, and bag-of-words fea-
tures. Such handcrafted features are fundamental components
in existing models for detecting unusual events.

In their study, Sharma et al. employed trajectory-based
trackers to identify movements. Shape-based motion detec-
tion was determined by extracting relevant features. They
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utilized a spatial-temporal method to extract features from
images, with a focus on critical elements [24].

In the work by Kwon et al. [30], a video is graphically
represented using nodes to denote segmented events. Node
edges describe related events, with edge weights reflecting
the degree of the relationship. The graph is optimized using
the Data-Driven Markov Chain Monte Carlo technique.
This optimization reduces energy consumption by merging
subgraphs or pruning edges. The energy model incorporates
parameters representing events’ causality, frequency, and
significance. Specific models were designed for event
summarization and rare-event detection.

Extracted low-level features discussed in [23], such as
Scale Invariant Features Transform (SIFT) [31], Space-Time
Interest Points (STIP) [32], and OpponentSIFT [33], are
inadequate for comprehending semantic nuances in complex
situations.

Binary features vectors derived from video training enable
HMMs to recognize events using a single exemplar. Thresh-
olds are established based on object sizes and calibration data.
For visual features extraction in a 3D scene, a color mask
serves as a features list filter [25].

It is observed that the majority of the approaches that
utilized low-level features extraction for RED, focus on
utilizing spatio-temporal information from the video frames
in order to potentially use it to characterize the unusual events
within the videos.

C. HIGH-LEVEL FEATURES EXTRACTION

High-level features extraction in video RED involves
abstracted representations, that are used to represent infre-
quent or unusual events. This process captures complex
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FIGURE 3. Flowchart adopted from [21] illustrating the PRISMA-based selection process for the 28 research articles that met our inclusion criteria,

in alignment with the PRISMA guidelines [22].

patterns, behaviors, and contextual information. It relies on
ML and DL models that are capable of analyzing vast
amounts of data to recognize patterns [11].

The use of Bayesian Deep learning by [30] employs
the Data-Driven Markov Chain Monte Carlo (DDMCMC)
approach for event summarization by reducing the energy
model. Multiple graph samples were generated, from which
the best was selected. This was then used for event synthesis
or rare event recognition.

Convolutional Neural Network (CNN) have demonstrated
its effectiveness and yielded good results when applied to
event detection tasks [34]. CNNs are also used for video
analysis tasks such as for action recognition and event
detection. CNNs excel at extracting high-level features from
video data [35]. This features extraction method captures
meaningful data with semantic information. In another
approach, Luisier et al. [34] used deep convolutional
neural network features that were trained on the ImageNet
dataset. These features contain both mid-level and semantic
information.
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FIGURE 4. Distribution of research articles by modality, showing the
proportion of articles focused on video, sound, image, and time Series
out of a total of 28 articles.

CNNs were proposed by [35] for detecting events in
videos. Bansod et al. [36] utilized 3D CNNs to learn deep
representations of appearance and motion for anomalous
event detection. They computed 3D gradient features in the
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FIGURE 5. Preprocessing in video showing the deployment workflow of the rate-perception optimized preprocessor (RPP) and a comparison of

frame segments of H.265 and RPP + H.265 at the same MS-SSIM, [26].

horizontal and vertical directions to represent appearance
and motion features. These features were then characterized
along the temporal direction to represent video events. The
computed 3D gradient features were obtained by convolving
the video frames using 3D Sobel filters.

It is evident that for videos, RED approaches that utilize
high-level features extraction depended on ML or DL
approaches to capture a higher magnitude of information that
is beyond spatial and temporal. Instead, semantic information
was successfully captured that proved to be useful for RED.

D. CLASSIFICATION

Classification in video-based rare event detection involves
categorizing video segments/frames into different classes,
with one class representing the rare event. This process entails
training a model to accurately classify rare events in the video
data [35].

The methodologies used for image classification are
often modified and expanded to effectively work on video
datasets [37].

In an example of a work [5] focusing on video classifica-
tion for RED, trajectories of moving objects are categorized
as normal or abnormal based on their high-level features.

In [24], both CNN and Support Vector Machine (SVM)
were used for classification to perform video surveillance.
This approach involves extracting image features, reducing
time complexity, and utilizing a fused classification frame-
work to accurately detect abnormal events in video frames.

Ye et al. [23] discusses various classification techniques
that can be applied to video-based event detection. These
techniques include one-versus-all classification based on
various features representations using a two-class SVM,
as well as graphical models like the transition Hidden Markov
Model (HMM) and Conditional Random Fields (CRFs) for
analyzing sequential video frames.

Bansod et al. [36] employs trackers and Restricted Boltz-
mann Machines (RBM) for features representation. They then
used Support Vector Machines (SVM) for classification.

Madan et al. [38] presented an interesting anomaly
detection approach that is achieved by utilizing the magnitude
of the reconstruction error as an indicator for the abnormality
level. This indicator is then used to classify and detect
anomalies in videos. Their approach is depicted in Figure 6.

In [25], the authors trained a Hidden Markov Model
(HMM) using binary features extracted from semantic

47096

channel-wise transformer block
gy positional
embeddings

convolution 7

osegseoo

___ground-truth S

FIGURE 6. An overview of self-supervised masked convolutional
transformer block (SSMCTB). At every location where the masked filters
are applied, the proposed block has to rely on the visible regions
(sub-kernels) to reconstruct the masked region (center area).

A transformer module performs channel-wise self-attention to selectively
promote or suppress reconstruction maps via a set of weights returned by
a sigmoid layer. The block is self-supervised via the mean squared error
loss (LSSMCTB) between masked and returned activation maps [38].

primitives. Their approach incorporates multiple objects and
spatio-temporal dynamics. They differentiate true events
from incidental activities by comparing the likelihood scores
to a threshold. This approach outperforms direct continuous
observable approaches and is effective at detecting rare events
even with limited training data.

In this section, it is observed that the classification of
RED in videos makes use of a variety of techniques and is
not dependent on direct classification approaches. Instead,
several interesting classification methods such as in [25] and
[38], made use of the magnitude of reconstruction errors
of videos, as well as usage of likelihood scores of true
events against incidental activities. It is rather clear that RED
in videos is a complex task that requires significant effort
in designing the classification approach to achieve optimal
performance.

E. DATASETS FOR VIDEO BASED APPROACHES FOR RARE
EVENT DETECTION
Table 2 contains information on various video datasets
and the associated performance metrics for RED. Various
RED-specific video datasets are available, with various
anomalous or rare events types of scenarios. There are
different datasets focusing on various scenarios that are
anomalous. This includes datasets recording a scenario where
a person is approaching a train in motion or another dataset
that records videos containing violence outbreaks. This
proves that there is significant research attention with regard
to RED in videos.

It is also important to note that the performance metrics
recorded in Table 2 are the metrics achieved by the different
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works reviewed in this systematic review. For some of the
datasets, to the extent of our knowledge, there were no
performance analysis recorded.

Researchers can make use of these datasets for per-
formance metrics benchmarking and also for developing
rare event detection algorithms across different scenarios.
Among the datasets with available performance metrics is
the UCSDPed2 Dataset [39]. For this dataset, the highest
accuracy recorded is 99.44% [36]. This dataset contains
anomalies associated with running, walking, and biking.

Although some datasets lack performance metrics, it is
observed that the UCF-101 [37] dataset is rather challenging
since the accuracy achieved is slightly over 80%. Another
challenging dataset is the Sport-1M dataset [23] which
contains more than a million videos with 487 labels.

IV. SOUND BASED APPROACHES FOR RARE EVENT
DETECTION

Sounds are auditory sensations created by vibrations that
travel through a medium, such as air, and are perceived
by our ears. The automatic detection of environmental
sound events has recently gained attention [53]. Unlike
speech and music, environmental sounds lack stationary
patterns. Chen et al. [54] described sound event detection
(SED) as a technology enabling devices to comprehend their
surroundings by identifying multiple target sound events that
can occur concurrently.

There are many similarities between sound and 1D
signals when it comes to detecting rare events. These
similarities include how data is represented, how features
are extracted, and how machine learning techniques are
used. By recognizing these similarities, we can apply proven
methods and algorithms from one domain to the other. This
approach leads to more effective and efficient rare event
detection in both sound and 1D signal data.

The process of detecting rare events using 1D signal-
centric techniques involves carefully examining 1D signals.
This approach has applications in various fields, including
healthcare (for ECG and EEG) [55], [56], finance (for stock
analysis) [57], telecommunications (for network monitoring)
[58], and environmental monitoring (for seismic detection)
[59]. Specialized algorithms are employed to accurately
identify and classify these rare events within the signal.

A. PREPROCESSING
Preprocessing sound for rare event detection involves enhanc-
ing sound quality and is necessary to reduce variability in
the acoustic characteristics of rare events. It is also needed in
order to enhance the performance of ML models for RED [8].
Surampudi et al. used a low-pass Butterworth filter in
their extraction approaches to preprocess audio signals for
detecting sound events. Audio signals are filtered with
a 1500 Hz low-pass Butterworth filter before features
extraction. They demonstrated the addition of features from
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different signals improves the performance of the learning
algorithms [8].

In 1D signal preprocessing, raw signal data is prepared
and enhanced for detection algorithms, ensuring improved
data quality by removing noise and artifacts while identifying
infrequent occurrences. The Time Window Slicing (TWS)
function trims time series data and isolates anomaly inci-
dents, increasing the sample substance before widening the
augmentation possibilities across domains. Once the TWS
process is complete, anomaly incident seeds are transformed
using upsampling-downsampling, fast Fourier transform, and
time series decomposition [60].

In their submission, Torres et al. [61] referred to prepro-
cessing in signals as the techniques used to remove noise and
artifacts from signals.

It can be observed that for RED in sound, most approaches
employ sophisticated digital signal processing approaches to
enhance the sound quality in order to improve the overall
performance of their approaches.

B. LOW-LEVEL FEATURES EXTRACTION

Low-level feature extraction is crucial for sound-based rare
event detection, as it involves extracting basic acoustic
characteristics from sound data. This process captures the
acoustic properties of rare events and provides discriminative
information for ML models [8].

Spectrogram computation and features extraction methods
(e.g., MFCCs or log-mel spectrograms) are commonly used
in sound event detection [53]. In [62], Mel log energy (MLE)
features are derived using the fast Fourier transform (FFT) to
discern distinct frequencies in an audio signal. Recognizing
these unique frequency bands is important in the detection of
sound events, as each sound is characterized by its particular
frequency spectrum.

Short-Time Fourier Transform (STFT) coefficients serve
as low-level features for identifying infrequent sound occur-
rences [54]. STFT coefficients contain important information
from the initial audio and enhance detection accuracy. This
process involves extracting basic signal-level features from an
audio waveform that represents its acoustic properties [63].
These features capture sound signal properties for analysis
and classification.

In [3], Hyungui et al. extracted log-amplitude mel-
spectrograms as the input acoustic features. These spectro-
grams are 2D time-frequency representations of sound signals
used in signal processing. They represent energy distribution
across different frequency bands, with higher resolution in
the lower frequency range. The logarithmic compression
enhances the perceptual relevance of features.

Wang et al. [64] presented a model that integrates
both utterance-level and frame-level losses to categorize
event instances and pinpoint their time boundaries. The
utterance-level loss determines the presence of the event in
the sound, while the frame-level loss pinpoints the specific
frames related to the event. Both types of losses employ
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TABLE 2. Summary of datasets used in video-based approach, detailing dataset references, benchmark performance, sample sizes, events detected, and
repository locations.

Ref. Name of Dataset Benchmark No. of Sample Event Detected Repository / Location
Performance
[9] Violent-Flows Dataset | ACC =92.5% 246 real-world videos of | Violence outbreak detection https://paperswithcode.com/
[40] crowd violence (123 vio- dataset/violent-flows
lence x 123 non-violence)
[9] UMN Dataset [41] ACC=91.5% 11 sequences x 3849 train- | Detect anomalous events, such | http://mha.cs.umn.edu/Movies/
ing x 3872 testing frames as a person running in the
wrong direction, vehicle driv-
ing on the sidewalk in videos
captured by surveillance cam-
eras
[9] Web Dataset [42] For performance eval- | 12 normal crowd x 8 ab- | Escape panics, protesters clash- | https://github.com/webdataset/
uation normal crowd ing & crowd fighting webdataset
[23] Sport-1M [43] No performance pro- | 1,133,158 videos x 487 la- | Human actions recognition in | https://www.kaggle.com/
vided bels videos such as basketball, soc- | datasets/sabahesaraki/
cer, tennis, and gymnastics sports- I m-dataset
[23] CCV dataset [44] No performance pro- | 9,317 youtube videos x 20 | human activities https://www.ee.columbia.edu/
vided semantics In/dvmm/CCV/
[23] FCVID [45] No performance pro- | 91, 223 web videos x 239 | social events,objects https://fvl.fudan.edu.cn/
vided categories dataset/fcvid/list.htm
[23] Columbia EventNet | No performance pro- | 95, 321 videos x 4490 | NA https://www.ee.columbia.edu/
Dataset [46] vided events In/dvmm/newDownloads.htm
[30] BOSS [47] No specific numeri- | 10 video sequences x | Event summarization and rare | http://velastin.dynu.com/
cal values or detailed | 1 story-line x multiple | event detection based on ap- | videodatasets/BOSSdata/
performance analysis | events proaching train in motion
provided
[30] London Traffic [48] No specific numeri- | 827 nodes x 2353 edges Approaching train in motion https://data.london.gov.uk/
cal values or detailed dataset/traffic-flows-borough
performance analysis
provided
[30] Subway Platform Se- | No specific numeri- | 1846 rows (subway en- | Wrong direction, no payment, | https://data.beta.nyc/en/dataset/
quence [49] cal values or detailed | trance) x 32 columns (at- | and loitering subway-station-entrances
performance analysis | tribute of the entrances).
provided
[35] Swimming data [50] F1-Score =0.967 15,000 labeled strokes x | Continuous video to simple | https://data.world/datasets/
650,000 frames at 50fps signals for swimming stroke | swimming
detection with Convolutional
Neural Networks
[35] Tennis Data [51] F1-Score =0.977 1,300 labeled strokes x | Non-anomaly of strokes in the | https://datahub.io/sports-data/
270,000 frames at 30fps wild, freestyle and breast stroke | atp-world-tour-tennis-data
[36] UCSDPed1 [39] ACC =96.75% 34 training x 36 testing | cycle, skater, truck, car, | http://www.svcl.ucsd.edu/
sequences (200 video | wheelchair & baby cart projects/anomaly/dataset.htm
frames each) x 6700
training and 7200 testing
frames & (158x238) frame
dim.
[36] UCSDPed2 [39] ACC =99.44% 16 training x 12 testing | running walking & biking http://www.svcl.ucsd.edu/
sequences (120-180 frame projects/anomaly/dataset.htm
size) x 2550 training x
2010 testing frames &
(240x320) frame dim.
[36] UMN Dataset [41] ACC =98.07% 11 sequences x 3849 train- | Abnormal crowd activity, sud- | http://mha.cs.umn.edu/Movies/
ing x 3872 testing frames den running of people
[37] UCEF-101 [52] ACC =81.5% 13320 videos x 101 Cate- | Human actions recognition in | https://www.crcv.ucf.edu/data/

gories

videos such as household activ-
ities, and animal interactions

UCF101.php

a common vector representation and are interconnected
through an attention mechanism, highlighting the model’s

efficiency in detecting rare sound events.

Venkatesh et al. [65] cautioned against the common
use of spectrogram-based features in sound event detection
tasks. These features involve transforming the audio signal
into a time-frequency representation using techniques like
short-time Fourier transform (STFT) or Mel-frequency
cepstral coefficients (MFCCs). Mesaros et al. [63] illustrated
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how MFCCs are calculated using 40 ms frames with a
Hamming window, 50

Log Filter Bank Energies (LFBEs) is a features extraction
technique in sound and speech processing that captures
spectral characteristics of sound signals [64]. These features
describe key traits of sound signals in artificial intelligence
(AI) analysis. Extracting features from 44.1 kHz mono audio
signals, the authors extracted 64-dimensional LFBEs from
46 ms frames every 23 ms for 30-second audio clips.
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The utilization of Finite Impulse Response (FIR) filters
on input seismograms to extract effective signals for dis-
criminating events was emphasized in [59]. These filters
extracted low-frequency components with cut-off frequencies
typically around 7-9 Hz. The distinction in power between
high-frequency and low-frequency components proved cru-
cial for accurate signal classification.

It can be observed that for low-level features extraction of
sounds in RED, most approaches are focused on analyzing
the sound frequencies via techniques such as the Fourier
Transform, or the usage of the spectrum of frequencies with
spectrogram-based features.

C. HIGH-LEVEL FEATURES EXTRACTION

High-level features extraction from sound data for rare event
detection captures abstract and semantic representations.
This process emphasizes the identification of advanced
characteristics, including temporal and spectral patterns,
to offer a richer understanding of rare events [5]. The 1D
ConvNet effectively extracts high-level features and captures
temporal dependencies, which are crucial for detecting rare
sound events [3]. The 1D ConvNet converts spectral features
in log-amplitude mel-spectrograms using 128 filters and
batch normalization. It produces 97 elements with batch
normalization, ReLU activation, max-pooling, and dropout,
ensuring a consistent output features size. These features
capture the unique traits required for the detection and
classification of rare target events. High-level sound features
originate from the basic features. These features offer
semantic sound descriptions linked to human interpretations.
To enhance the detection accuracy of their method, CNNs
and FNNs were used, and a novel data augmentation (DA)
technique was introduced. This technique utilizes dynamic
time warping to mitigate the issue of data imbalance.

Recurrent Neural Networks (RNNs) were used by [64]
for multi-resolution features extraction to handle time axis
variations. This architecture sub-samples time at a rate of two,
averaging the outputs of neighboring RNN cell frames. The
resulting sequence is half the input length and is used as input
into the next recurrent layer. Higher layers view the original
utterances at coarser resolutions and extract information from
a larger context.

The introduction of an adaptive few-shot learning algo-
rithm for rare sound event detection aimed to improve
few-shot learning in sound-event recognition [53]. This algo-
rithm identifies rare auditory events with limited information,
which is a common issue in practical situations.

Surampudi et al. classified the detection of rare events in
sounds into two domains: audio processing and audio event
detection [8]. Hyungui et al. introduced a rare sound event
detection system using a combination of a 1D ConvNet and
an RNN with LSTM [3].

In [53], metric-based few-shot learning with a task-
adaptive module was used to detect rare sound events by
identifying class uniqueness and support set commonality.
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The module improved the performance of the two datasets,
particularly for the transductive propagation network.

High-level features play a crucial role in enhancing the
accuracy and robustness of signal detection. Employing
features extraction techniques like principal component
analysis (PCA) and independent component analysis (ICA)
offers the capability to effectively reduce the dimension of
the data while extracting features [60].

In evaluating multi-class anomalous classifications, 1D-
CNN is used. The model was trained on generated data and
tested on original data. The 1D-CNN learns both high-level
and low-level features [60].

In [66], DNNs were used to implement GANs for
generating rare events in wireless communication data. The
GAN:Ss utilized two networks - a generator and a discriminator
- in an adversarial learning process. The generator creates a
sample and the discriminator compares it to a real sample.

In [59], ID CNN and 2D CNN were compared in
discriminating events in a dataset. The study found that
1D CNN successfully learned the necessary features to
effectively discriminate between signal classes.

High-level features extraction of sound for RED is
dominated by the usage of DL approaches. DL approaches
are effective in capturing the semantic information contained
within the sound since DL has the capability of effectively
extracting sound features at multi-resolution (through its
various hidden layers).

D. CLASSIFICATION

Classification in sound-based RED, categorizes sounds into
classes, with one class representing a rare event. The goal
is to train a model to identify rare events in sound data.
Classification in RED also involves assigning a label to a
sound segment based on its acoustic characteristics. The
labels correspond to the presence or absence of rare events
in the sound segment [8]. Additionally, classifying each
frame of a sound signal based on its acoustic contents is
another classification method [65]. As an example, figure 7
presents the architecture of the You Only Hear Once (YOHO)
algorithm [65], which is based on a similar architecture that
is used for object detection.

Sound event detection involves identifying specific sound
events within an audio recording, such as a dog barking, a car
passing by, or a person speaking [63].

Detecting rare events based on sound requires accurate
classification. Features derived from audio data can be used
to train ML models to differentiate between normal and
rare events. In [8], it is emphasized that the efficacy of rare
event detection in sound can be enhanced by utilizing digital
signal processing techniques for features extraction and
supervised ML methods for classification. Five classification
methods: the Boosted Tree Classifier (BTC), Random Forest
Classifier (RFC), k-Nearest Neighbour (k-NN), SVM, and
Artificial Neural Network (ANN), were employed in the
model classification process.
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FIGURE 7. Architecture of the YOHO algorithm, which consists of a deep neural network that performs frame-level
classification of mel spectrogram features. The network is based on the You Only Look Once (YOLO) object detection
architecture and is modified to predict the presence or absence of sound events in each frame of the input audio

signal, [65].

Hyungui et al. used the temporal dependency of the
extracted features to incorporate the RNN-LSTM model.
The RNN-LSTM is a well-known DL model that prevents
the vanishing gradient problem and captures the temporal
dependencies between the features over time [3].

In their proposed method, [54] used an SVM classifier with
an RBF kernel for model fusion in sound event detection. The
use of a hybrid approach combining CNN and RF for sound
event detection (SED) in a natural forest environment in [62]
achieved a remarkable performance, showing improvement
with a 0.82 F1 score and a minimum false alarm rate of 10%
in SED.

In signal-based methods, rare occurrences are identified
by categorizing input signals according to their unique
characteristics and properties. The aim is to differentiate
normal patterns from abnormal ones. Classification algo-
rithms use labeled data to learn how to categorize the signals.
Classification is a technique for identifying patterns in the
data that correspond to different states or conditions [61].

In a recent study [60], a 1D-CNN model was used as a
classifier to evaluate the effectiveness of a newly proposed
data generation framework. The model was trained on the
generated data and then tested on the original datasets.

TP + TN
Accuracy = x 100 (1)
TP+ TN + FP 4+ FN
.. TP
Precision = —— )
TP + FP
TP
Recall = —— 3
TP + FN

“

Precision x Recall
F1—score =2 x

Precision + Recall

47100

The model’s performance was assessed in terms of accuracy,
precision, recall, and Fl-score, as defined by equations (1),
(2), (3), and (4), respectively.

The importance of carefully selecting features for clas-
sification and assessing performance was stressed in [61].
Techniques like LDA, SVM, and ANNs were discussed for
classification in signals.

For features extraction and classification, a deep learning
approach with CNN was employed [59]. CNNs are known for
their ability to automatically learn high-level features from
raw input data by utilizing multiple layers of convolution
and pooling operations. The CNN’s parameters were trained
using a cross-entropy loss function with the Adam optimiza-
tion algorithm in mini-batches of 64 waveforms.

It can be observed that for RED in sounds, the majority of
the approaches generalize the approaches that are typically
used for image or video types of modalities. It can also be
observed often ML techniques are used in combination with
DL approaches for classification.

E. DATASETS FOR SOUND BASED APPROACHES FOR
RARE EVENT DETECTION

Table 3 provides information about various sound datasets
used for rare sound event detection, along with corresponding
performance metrics achieved by relevant works using the
datasets, where available.

The first column in Table 3 denotes the works that
evaluated their approaches against the specific datasets in a
particular row.

Among the datasets with available performance metrics
is the TUT Acoustic Scenes2016. Mesaros et al. [63]
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FIGURE 8. A flow diagram to illustrate image pre-processing steps to
generate input of a CNN model, where (1) is the original Image in the
dataset. (Ip) is the diaphragm removed image. (leq) is an image after
applying histogram equalization on (Ip), and (Ip) is an image after
applying bilateral filtering on (Ip). Three images (Ip), (Ip), and (leq) are fed
into three channels of the CNN model to simulate the RGB image [77].

achieved an FI1-Score of 96.26% [3] and error rate
of 0.07 [63].

In summary, the table provides insights into various sound
datasets used for rare sound event detection. Some datasets
achieve high performance, while others address specific
challenges associated with detecting rare sound events. It can
be observed that RED for sounds based on the various
performances against the different datasets have reached a
good level of RED performance. Most of the datasets are
paired with corresponding works that achieved more than
90% in terms of classification performance.

V. IMAGE BASED APPROACHES FOR RARE EVENT
DETECTION

Image-based methods utilize computer vision to identify rare
events in visual data by extracting relevant features and
classifying visual data.

The application of an image-based approach in RED often
involves traditional handcrafted methods. However, these
existing methods require domain-specific knowledge and
manual tuning, making them time-consuming and difficult to
scale for large datasets. In recent years, approaches such as
deep learning have emerged, focusing on learning complex
representations of input data automatically. These methods
have shown promising results [10].

A. PREPROCESSING

Preprocessing in image-based rare event detection involves
preparing visual data for analysis. This includes steps to
improve image quality, reduce noise, and extract important
data for rare event detection. The preprocessing stage aims to
enhance raw image data [76].

Figure 8 depicts the flow diagram from the works of
Heidari et al. [77], which contains image pre-processing steps
to generate input for a CNN model.

Resampling plays a pivotal role in detecting rare events
within industrial datasets. In the study by [78], imbalanced
datasets were resampled to address the infrequent occur-
rences of rare events compared to others. By adjusting the
dataset to balance these rare instances, the classifier’s efficacy
in recognizing and interpreting events is enhanced.
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Dimokranitou et al. preprocessed frames by resizing them
to 192 x 192 in order to reduce computational complexity
and ensure uniform input images. They normalized the
images by subtracting mean pixel values and dividing
them by the standard deviation, which improved learning
performance [10].

It can be observed that in the preprocessing of images
for RED, most approaches are focused on reducing the size
and dimension of the images to reduce the computational
complexity via techniques such as images resampling and
resizing.

B. LOW-LEVEL FEATURES EXTRACTION

Low-level features extraction in image rare event detection
focuses on obtaining fundamental attributes without deeper
semantic or contextual interpretations. Common techniques
include edge detection, textures, color, shape, brightness,
contrast, histograms, and spatial frequency. These features
provide a foundational understanding of the image’s content,
especially when anomalies or rare events are subtle or
embedded within the image [10].

In [10], handcrafted features such as optical flow, his-
togram of oriented gradients (HOG), and scale-invariant
feature transform (SIFT) are used to extract important
information from images.

Here, it is observed that low-level features extraction in
images for RED is mostly based on handcrafted techniques
that contains mainly visual information, however, lacking the
semantic information.

C. HIGH-LEVEL FEATURES EXTRACTION

To detect rare events, image-based approaches extract
high-level features by capturing abstract and semantic
information from the images. These features are relevant
to the detection of rare events and aid in advanced image
analysis and classification.

High-level features extraction involves extracting more
abstract and complex features from the raw pixel values of
an image. These features are typically global and semantic,
encompassing characteristics such as object categories, scene
types, and human actions [10].

Hamaguchi et al. [76] employed a pre-trained CNN to
extract features from input images. This CNN consists of
multiple convolutional layers designed to discern features
at various granularities, ranging from fundamental ones like
edges and corners to more intricate attributes such as object
components and textures. The features thus extracted serve as
the foundation for training a change detection model. During
the fine-tuning process, negative samples are purposefully
under-sampled to align with the quantity of positive samples.

In their research work, [10] noted that deep learning (DL)
methods like the proposed Adversarial Autoencoder (AAE)
model can be valuable for high-level features extraction.
DL methods are capable of learning complex and abstract
representations of input data through multiple layers of
nonlinear transformations. This enables the model to capture
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TABLE 3. Summary of datasets used in sound-based approach, detailing dataset references, benchmark performance, sample sizes, events detected, and
repository locations.

Ref. Name of Dataset Benchmark No. of Sample Event Detected Repository/Location
Performance
[31] DCASE 2017 Chal- | ER=0.13,F1- 330-second audio segments | Multiple target sound https://dcase.community/
[54] lenge Task 2 Dataset | Score=93.1 from 15 acoustic scenes challenge2017/download
[64] [67] EER=15.33%
F1-Score=94.2%
[3] TUT Acoustic Scenes | ACC =72.9% 1500 Mixtures baby cry, gunshot, glass break https://zenodo.org/record/
[63] 2016 [68] ER= 0.07,F1- 401395#.ZDv9U3ZBwW2w
[65] Score= 96.26
F1-Score=0.63
[8] Real-world  Dataset | F1-Score = 0.98 1500 Mixtures baby cry, gunshot, glass break https://scikit-learn.org/
[69] stable/datasets/real_world.
html
[8] Synthetic Dataset F1-Score = 0.99 1500 Mixtures baby cry, gunshot, glass break Personally generated
[53] ESC-50 & noiseESC- | ACC =80.5% 2000audios x 50 classes challenges of rare sound event de- | https://github.com/
50 datasets [70] tection, which include data deficit | karolpiczak/ESC-50
and cold start
[54] DCASE 2016, EER=15.90% 30-sec audio segments x 15 | glass breaking, smoke alarm https://dcase.community/
DCASE 2019 datasets | EER=19.58% acoustic scenes challenge2016/download
[63]
[59] Sakurajima  Dataset | BACC =0.943 Ashfall deposition data explosion earthquake (ER), non- | https://www.
[71] explosion earthquake (NER) & tec- | designsafe-ci.org/
tonic tremor (TT) data/browser/public/
designsafe.storage.
published/PRJ-2848
[59] NKL Dataset [72] BACC = 0.965 5,000 images of various scenes | explosion earthquake (ER), non- | https://kaizhao.net/nkl
explosion earthquake (NER) & tec-
tonic tremor (TT)
[60] ECG5000  Datasets | F1-Score= 5,000 ECG recordings x 1,500 | Anomaly detection in 1D signals https://www.
[73] 15.50% datapoints timeseriesclassification.
com/description.php?
Dataset=ECG5000
[62] Personal data collec- | - data was divided into in-sample | sound events of tree cutting, chain | Not public
tion from natural for- & out-of-sample subsets saw, vehicle activities
est
[65] (MIREX) competition | F1- 27 hrs audio x 8TV programs Audio Segmentation and Sound | https://www.music-ir.org/
dataset 2018 [74] Score=90.20% Event Detection to detect the pres- | mirex/wiki/2018:Music_
ence of an audio class and predict | and/or_Speech_Detection
its start and end points
[66] Channel Estimate | No performance | 10,000,000 data points used in experiment 1 to generate | https://github.com/topics/
(CE) dataset [75] provided rare events. The experiment com- | channel-estimation
pares the performance of a con-
ventionally trained GAN with one
trained using incremental learning
for generating the CE data
[66] SINR dataset No performance | 15,000,000 data points used to quantify the rate of informa- | Not public
provided tion that can reliably be transferred
in wireless communication systems

high-level patterns and relationships in the data that may be
difficult to capture using handcrafted features or low-level
features alone.

In the study conducted by [10], a pre-trained VGG-16
network was utilized to extract features from input images
through a transfer learning approach. The output of the VGG-
16 network subsequently served as the input for the AAE
model.

In this section, it can be concluded that high-level features
extraction in images for RED is often achieved using DL
techniques that make use of multiple layers, that are either
convolutional or utilize nonlinear transformations. These
multiple layers allow for semantic information within the
images to be captured and utilized for image based RED.
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D. CLASSIFICATION

Image-based rare event detection involves categorizing each
image or segment as normal or rare based on the extracted
features. This process is carried out by training a model using
a set of labeled training data, which consists of a collection
of images for which you know whether they correspond to a
rare event.

Almost all classified models use a fine-tuned event detector
that is trained on pairs of observations with class-imbalanced
datasets. In these datasets, one observation contains a rare
event while the other does not [76].

The AdaBoost-based features selection algorithm for rare
event detection, proposed by [1], highlights different boosting
algorithms, such as FloatBoost, Gentle AdaBoost, and CART
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decision trees. For difficult classification tasks requiring
real-time or online learning, a faster algorithm is preferred.

The use of a combination of algorithms to detect rare events
in industrial datasets for classification was discussed in [78].
Methods such as feed-forward neural networks (FFNNs)
were used to identify metal sheet surface defects by analyzing
the chemical composition and cleaning process parameters.
DTs were used for detecting surface defects on metal sheets,
while RF enhances accuracy, robustness, and detects clogging
in wastewater plants within the classification model. SVM
and KNN are employed to detect faults in manufacturing
plants.

The CNN’s VGG-16 network, commonly used for image
classification tasks, was employed to extract features from
the input images in [10]. They adopted the Transfer Learning
(TL) approach, using the last convolutional layer of the
VGG-16 network as input for the AAE model. The primary
advantage of using DL methods, such as VGG-16, is that they
can automatically learn important features from any situation
without the need for manual feature engineering.

In image-based RED classification, the task involves
categorizing images as normal or rare based on the extracted
features. Training models using labeled training data is
crucial for successful classification. AdaBoost-based feature
selection algorithms like FloatBoost, Gentle AdaBoost, and
CART decision trees are commonly used in RED. The
combination of algorithms such as FFNNs, DTs, RF, SVM,
and KNN can effectively detect rare events in industrial
datasets. CNNs, such as VGG-16, are utilized for image
classification tasks, often adopting the Transfer Learning
(TL) approach to automatically learn important features.

E. DATASETS FOR IMAGE BASED APPROACHES FOR RARE
EVENT DETECTION

Table 4 provides information about various image datasets
used for rare event detection, along with their performance
metrics. The one with the highest performance is the ABCD
Dataset [79] with an accuracy (ACC) of 89.70% achieved
by the work of Hamaguchi et al. [76]. It focuses on detecting
building changes from aerial images taken before and after
the tsunami disaster.

It can be observed from the list of performances achieved
against the various datasets that RED for images is a rather
difficult task. Based on the results reported in Table 4, the
performances range between 75% to almost 90% in terms of
classification accuracy. This can be attributed to the fact that
images are more complex, and RED in images is often a not
straigh-forward task.

V1. TIME SERIES BASED APPROACHES FOR RARE EVENT
DETECTION

Analyzing time series data involves detecting unusual
patterns that occur over time. This technique is particularly
valuable in industries like finance, healthcare, and environ-
mental monitoring, where tracking sequential data helps to
identify significant deviations from the norm. Such deviations
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are referred to as rare events, as they represent anomalies that
deviate from the typical operation of a system [84]

A. PREPROCESSING

Effective preprocessing plays a crucial role in time series rare
event detection, significantly influencing result quality and
analysis performance. A range of preprocessing techniques
are essential to optimize algorithm effectiveness. These
techniques encompass noise handling, data normalization,
addressing missing values, and transforming time series data.
Preprocessing refers to a set of operations performed on
raw time series data prior to its utilization in analysis or
modeling [55]. Preprocessing steps are essential to ensure that
the data is clean, relevant, and in the right format for building
a classification model [85].

Filtering is also essential for preprocessing, particularly
to remove trends in time series when detecting financial
bubbles. Reference [57] applied Hodrick-Prescott (HP) and
Kalman filters to preprocess time series data, and found that
the HP filter was the best preprocessing method for their
proposed approach.

Cy Xe—1, Xt} 5)

In Pillai et al. [86] study, several preprocessing steps
were performed to optimize training and inference. These
included imputing missing data and unevenly sampled time
series using the mean, forward-filling missing rare event
and workplace performance labels, applying within-subject
feature normalization, and transforming each participant’s
time series into windows of length 1=10 using equation (5).

It can be observed that the preprocessing techniques used
for time-series data often rely on the nature of the data.

Wi = {x—141, ..

B. LOW-LEVEL FEATURES EXTRACTION

Low-level features extraction in multivariate time series
data involves extracting features directly from the raw data
without any prior knowledge of the data [85].

Time series-based methods extract basic features from raw
data for rare event detection. These features capture key
data properties, such as statistics, distribution, or temporal
patterns [87]. Low-level features aid in identifying anomalies
or rare events.

Coffinet et al. [57] suggested a machine learning toolkit
to detect rare events in banking crises in time series data,
utilizing low-level features extraction methods such as credit
and GDP lag versions and inflation rates. Lagged credit and
GDP series also enhance crisis detection.

C. HIGH-LEVEL FEATURES EXTRACTION
Extracting high-level features from time series data for
rare event detection involves complex or abstract features
extraction. These traits detect rare occurrences based on
advanced patterns, relations, or context. High-level features
enable advanced analysis for rare event detection.

A method for detecting rare life events using mobile
sensing data proposed in [86], used a multi-task framework
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TABLE 4. Summary of datasets used in image-based approach, detailing dataset references, benchmark performance, sample sizes, events detected, and

repository locations.

Ref. Name of Dataset Benchmark No. of Sample Event Detected Repository/Location
Performance
[10] UCSD Pedsl | AUC=0.93 34 training x 36 testing | Passage of non-pedestrian access, | http://www.svcl.ucsd.edu/
dataset [39] videos x 200 frames such as vehicles & bicycles from the | projects/anomaly/dataset.
pedestrian path htm
[10] UCSD Peds2 | AUC =0.91 16 training x 12 testing | Passage of non-pedestrian access, | http://www.svcl.ucsd.edu/
dataset [39] videos x 12 abnormal | such asvehicles & bicycles fromthe | projects/anomaly/dataset.
events pedestrian path htm
[34] ImageNet dataset | AP = 0.2797, | 14,197,122 annotated im- | Used to train a deep learning model | https://www.image-net.
[80] R=0, FP = | ages and extract features that were used | org/update-mar-11-2021.
0.5373, AUC = in the experiments php
0.9611
[76] Augmented ACC =81.54% 60,000 training X | baby cry, gunshot, glass break https://www.kaggle.
MNIST [81] 10,000 test set com/datasets/hojjatk/
mnist-dataset
[76] ABCD Dataset | ACC =89.70% ABCD  cohort = | This dataset is used for detecting | https://nda.nih.gov/abcd/
[79] 11,880) changes in buildings from a pair of
aerial images taken before and after
a tsunami disaster
[76] PCD dataset [82] ACC =78.20% 45 classes of images airport, beach, bridge, & farmland https://paperswithcode.
com/dataset/pcd
[76] WDC Dataset | ACC =75.70% 14 rare events landslide, flood & fire http://
[83] webdatacommons.org/
largescaleproductcorpus/
[78] Metal Sheets | R=20% 7,000 observations x 13 | Machine faults, defective products Not public
Datasets features

with an unsupervised autoencoder to capture irregular
behaviour and an auxiliary sequence predictor to iden-
tify transitions in workplace performance to contextualize
events.

The use of long short-term memory units (LSTM)-
layer to take multivariate dependencies into account was
highlighted in [84]. LSTMs are RNNs that can capture
temporal dependencies in sequential multivariate time series
data. Meng et al. [14] highlighted the use of an Extensible
Markov Model (EMM). The EMM method models the
spatiotemporal environment using a graph structure with
nodes representing states and edges representing transi-
tions. The EMM algorithm learns transition probabilities
between states and constructs a graph representing the
system behaviour. When a new event is observed, the
EMM algorithm calculates the probability using transition
probabilities in the graph. The event is rare and flagged as
an anomaly if the probability is too low. The EMM approach
works for supervised and unsupervised rare-event detection.
In their study, Pillai et al. [86] utilized an unsupervised AE
to extract low-level features from raw sensor data. These
features, obtained through the AE, were used as input data
for the sequence predictor. To learn the normal patterns of
the multivariate time series data, the researchers employed
AEs and counterfactual explanations. The counterfactual
explanations were generated by perturbing the input data to
the autoencoder and observing changes in the output. The aim
of these perturbations was to highlight the features that are
most relevant to the anomaly [84].
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D. CLASSIFICATION

Classifying time-series approaches identify normal and rare
events based on the given time series’ features. Classification
trains a model with labelled examples to predict unseen data.
Rare event detection models differentiate between normal and
rare patterns in time series data.

However, binary classification tasks can be used in time
series data to discriminate between events with the goal
to detect anomalies in the data. A method that combines
strong simulation and multilevel splitting to estimate rare
event probabilities in Markov processes was proposed in [88]
with strong simulation ideas to avoid bias but there is a
need for improvement in the scalability of the method.
The utilization of the XGBoost and AdaBoost models
has been employed in [85] for training the predictive
models. Initially, the models were trained to utilize the
provided predictor variables. Coffinet et al. [57] proposed
the use of data science models to detect rare events like
banking crises, including RF methods. They used Breiman’s
Random Forest (BRF) with 500 trees and replacement
sampling.

ML methods are used to detect and classify unusual pat-
terns or anomalies in time-series data, particularly in power
systems, to help operators understand what is happening
and make decisions quickly. This involves using advanced
algorithms like Generative Adversarial Networks (GANs)
and Neural Ordinary Differential Equations (ODE:s) to create
synthetic data that mimics real Phasor Measurement Unit
(PMU) data [12].
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TABLE 5. Summary of datasets used in time-series based approach, detailing dataset references, benchmark performance, sample sizes, events detected,

and repository locations.

Ref. Name of Dataset Benchmark No. of Sample Event Detected Repository/Location
Performance
[14] MnDot traffic data | No performance No information pro- | https://www.dot.state.mn.
[90] provided vided us/traffic/data/tma.html
[14] VoIP Traffic Data No performance No information pro- | Not public
provided vided
[58] Multivariate time- | DR = 80%, FDR | 67% Training, 33% | Contamination event | Not Public
series =9% test in water
[84] New York City Taxi | No performance | 13yrs trips x 19 fea- | trip count,avg. tripdu- | https://data.
[91] provided tures ration, avg. no of pers. | cityofnewyork.us/
per trip Transportation/
2018- Yellow-Taxi-Trip-Data/
t29m-gskq
[86] Tesserae study dataset | FI-Score =0.29 10106days x 198 rare | Time durations | https://tesserae.nd.edu/
[89] events (walking, sedentary,
running, distance,
phone unlock), No.
of locations visited
& unique locations
visited
[92] MODIS [83] No performance | spatial resolution of | Time & amplitude https://modis.gsfc.nasa.
provided 250m x 250m gov/data/dataprod/

E. DATASETS FOR TIME SERIES BASED APPROACHES FOR
RARE EVENT DETECTION
Table 5 provides information about various time series
datasets used for rare event detection, along with their
performance metrics. It’s important to note that several
datasets do not have any associated performance metrics,
which limits our ability to directly compare the different
datasets.

For the Tesserae Study Dataset [89], Pillai et al. achieved
an F1-Score of 0.29 [86].

It can be observed that although there are a number of
datasets focusing on time series data, there is a lack of work
focusing on RED for time series data.

VIl. COMPARATIVE ANALYSIS OF THE PERFORMANCES
OF THE PROPOSED APPROACHES

The performances of different approaches across different
modalities are shown in Table 6. The table contains a
compilation of research studies for different modalities,
including video, sound, image, and time series. Each row
corresponds to a study, providing details about the year of
publication, modality, ML/DL methods/ models used, tech-
niques/ algorithms applied, associated datasets (referenced
with their corresponding dataset tables), and the reported
performance metrics.

In the video modality, multiple studies incorporate CNNSs,
AE, and SVMs. The VGG 16 architecture is utilized in one
study for rare event detection on the UCSDPedl dataset,
achieving a Detection Rate (DR) of 92.5% and a False Alarm
Rate (FAR) of 0.0001. Other studies involve methods like
Bayesian DL and HMM.

However, in sound, various ML/DL methods are explored
including RNNs, Few-Shot Learning (FSL), and CNNs.
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Different datasets are employed, and performance metrics
include Accuracy (ACC), F1-Score, and Equal Error Rate
(EER). The image modality studies utilized CNNs, Adaboost,
FFNN, and DT. The ResNetl8 architecture is used in
one study with AUC-ROC metrics for class performance
measurement.

Additionally, in time series modality, ML/DL methods
such as AdaBoost, XGBoost, AE, Bayesian NN, LSTM, and
RNN were used. Reported performance metrics consist of F1-
Score, Precision, Recall, AUC-ROC, and more.

To summarize, we have conducted an analysis based on the
information presented in the table, and these are our findings:
The video modality exhibits the highest performance with
an accuracy (ACC) of up to 98.5%, F1-Score of up to 0.91,
and detection rate (DR) of 92.5%. The sound modality has
the most significant representation in the table, indicating
its popularity in rare event detection research. The analysis
reveals that the choice of modality significantly affects the
performance of rare event detection methods. The video
modality demonstrates the highest performance, while the
sound modality is the most popular among researchers. The
analysis also reveals that CNN is the most popular method
used in video, sound, and image modalities and AE is the
most commonly used in the time series modality.

These methods are widely adopted for rare event detection
tasks across different modalities. Researchers should con-
sider the specific modality, method, available datasets, and
performance metrics when selecting the appropriate approach
for their rare event detection tasks.

VIil. DISCUSSION

There are numerous challenges that the RED encounters
across the modalities. In video modality, the lack of labels
and the complexity of relations between events can make it
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FIGURE 9. An overview of the number of publications per year across various modalities from 2000 to 2023. The figure showcases
trends in publications related to Video (6 total), Sound (11 total), image (6 total), and time series (5 total). Notably, there’s been a
surge in sound-related publications in recent years, while time series publications saw a peak in 2019 and 2023.

TABLE 6. Table of performance: Overview of research works categorized by modality, showcasing the year of publication, utilized machine learning or
deep learning models, applied techniques or algorithms, referenced dataset tables, and respective performance metrics.

Ref. | Year | Modality | ML/DL Method/Model | Technique/Algorithm | Dataset (Table) | Performance Metric |
91 2021 Video CNNs, SVM TIA-SSLM Table [2] ACC-98.5%,P-98.2%,R-98.4%,F1-Score-98.3%
[36] | 2019 Video CNN, AE, SVM VGG 16 Table [2] Pedl: DR-92.5%, FAR-0.0001
[35] 2017 Video CNNs - Table [2] F-Score - 0.91 & F-Score - 0.85
[23] | 2015 Video SVM HMM & CRF Table [2] -
[37] | 2014 Video CNNs ConvNets Table [2] ACC-88.0% & ACC-59.4%
[30] 2012 Video Bayesian DL DDMCMC Table [2] -
[53] 2022 Sound Few-SHot Learning AFSL Table [3] ACC- 80.5%
[65] | 2022 Sound CNNs YOHO Table [3] F1-Score - 0.89
[62] 2022 Sound CNN & RF FFT Table [3] Fl1-score-0.82, FAR - 10%
[59] | 2022 Sound CNN 1D CNN Table [3] BACC-0.943 & BACC-0.986
[60] | 2021 Sound 1DCNN Data augmentation Table [3] ACC-84.5%
[66] | 2021 Sound GANSs Balance Replay GAN Table [3] (AUC-ROC):0.998 & PR-AUC:0.997
[8] 2019 Sound KNN, SVM & ANN Butterworth filter Table [3] ACC-69.13%
[54] | 2019 Sound CNN & FNN - Table [3] EER- 16.70%, 23.15%, 18.76%
[64] | 2018 Sound RNNs GRU Table [3] ER-011, FI-Score - 0.57
[63] | 2016 Sound MFCC & GMM SASCS Table [3] ACC-72.9%, F1-Score - 0.44
[3] 2015 Sound ID CNN, RNN & LSTM HMM, NMF Table [3] EER-13.46
[93] 2020 Image SVM, LR, NB & KNN PMQ-L - MPCD - 0.9879
[76] | 2019 Tmage CNN ResNet18 Table [4] (AUC-ROC): 0.5(rand. Guess) to 1.0 (perf. class)
[10] | 2017 Tmage AAE, CNN & SVM VGGI6 Table [4] (AUC-ROC): Ped1-0.98 & Ped2-0.96
[34] | 2014 Tmage DCNN Linear SVM Table [2] -
[781 | 2010 Tmage FFNN & DT BR N .
[1] 2003 Tmage AdaBoost FFS - -
[86] | 2023 | Time Series AE - Table [5] (AUC-ROC) - 0.7t0 0.9
[84] | 2023 | Time Series LSTM,AE & RNN - Table [5] (AUC-ROC)-0to 1
[85] 2019 | Time Series AdaBoost & XGBoost - - F1-Score - 0.114, Prec -0.071, FPR-0.026
[57] | 2019 | Time Series RF & FFANN - - (AUC-ROC) - 0.7 t0 0.9
[58] 2017 | Time Series Bayesian NN BPNN Model Table [5] RD-40%, FAR-45%

difficult to learn the storyline and detect rare events. In sound,
the low signal-to-noise ratio (SNR) and lack of labeled data
make it difficult to train ML models accurately. Likewise,
generating reliable data in 1D signals is also challenging
due to the unavailability and inaccessibility of datasets for

extremely rare cases signals.
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Inimage, class imbalance and computational efficiency are
challenges, as rare events are significantly outnumbered by
non-event images. The imbalanced distribution of data can
lead to the overfitting of common events and the underfitting
of rare events. In time series, the rare and infrequent nature of

events in time series data can lead to complexity in detection
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and analysis. The demand for large amounts of data by deep
learning approaches and the dimensionality of data make it
difficult to identify relevant features and patterns.

During our review, we discovered a pressing need for
research into real-time detection of rare events using video
surveillance and audio. Furthermore, there is potential
for improvement in the use of recently advanced deep
learning architectures and techniques for rare event detection
especially in the transformers and diffusion-based models,
utilizing unlabeled data for training across multiple modal-
ities.

This research delved into various studies regarding RED
and evaluated their relevance to the research objective.
Table [6] showcases the methods that are most suitable for
detecting rare events across all four modalities and their
corresponding performance. CNN and SVM have proven
to be effective in detecting events in video, sound, and
image-based approaches due to their dynamic nature. When
combined with LSTM, they can accurately identify complex
features like objects and scenes, which are formed from
simpler features like edges and textures. On the other hand,
AE and RNN are prominent in the remaining time series
approaches, as noted in the studied articles. This study
focuses solely on rare-event detection research and avoids
any bias in the analysis by evaluating the performance of
each method based on the performance metric used in the
referenced article.

IX. CONCLUSION AND FURTHER WORK

Our objective is to study and evaluate advanced ML and DL
techniques and frameworks that are suitable for rear event
detection in video, sound, image, and time series modalities.
This area has not been extensively studied in existing
literature despite its significance. Our research discovered
that specific methods are more effective and reliable in
dealing with rare events in these four modalities. Although
our study was limited by a lack of research, it provides
valuable initial insights into the significant challenges in
RED.

This research highlights the pressing need for more
extensive studies in this area. By thoroughly examining
techniques used in various articles and utilizing features
extraction methods, it was discovered that CNN, SVM and
AEs outperformed other ML/DL methods.

However, this study focused solely on identifying the
most effective method for detecting rare events. We reviewed
217 research articles and found 28 that met our inclusion
criteria. This study serves as a foundation for future studies
in this field. Traditional signature-based detection methods
cannot be effective for detecting rare events in a number of
domains such as meteorology, environment, and finance due
to their challenging nature, hence the need for the use of ML
and DL methods.

To enhance the performance of Rare Event Detec-
tion (RED), future research should focus on explor-
ing various types of AEs, evaluation metrics, and data
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preprocessing techniques. Furthermore, researchers could
investigate the utilization of DL techniques and architectures
to enhance detection in crowded scenes. Additionally,
advanced approaches based on recent DL advancements, such
as Transformers, LLM, and diffusion models in real-time,
could be explored to further improve the detection of rare
events.
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