
Received 1 February 2024, accepted 12 March 2024, date of publication 27 March 2024, date of current version 3 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3381958

Implementation of Alpha-Beta Pruning and
Transposition Tables on Checkers Game
CRISTIAN C. SUANCHA 1, MARCO J. SUAREZ1, AND FELIPE A. BESOAIN 2, (Member, IEEE)
1Ingeniería de Sistemas y Computación, Universidad Pedagógica y Tecnológica, Sogamoso 152211, Colombia
2Department of Interactive Visualization and VR, Faculty of Engineering, Universidad de Talca, Campus Talca, Talca 3460000, Chile

Corresponding author: Marco J. Suarez (marco.suarez@uptc.edu.co)

This work was supported in part by Proyecto Sistema de Gestión de Investigación (SGI) under Grant 3727, and in part by Universidad
Pedagógica y Tecnológica de Colombia (UPTC).

ABSTRACT Checkers is a strategy game for two players on an 8× 8 square board. This document outlines
the creation of a checkers game, employing alpha-beta pruning as a search algorithm and transposition
tables to enable the game to learn from past play sessions. The utilization of these techniques enhances
the game’s strategic decision-making process, contributing to an improved overall gaming experience. The
execution time of the machine’s moves in games with and without using transposition tables showed that it is
possible to make some games faster by using the data stored in the tables. However, under some conditions
this can be more time-consuming than the search performed by the alpha-beta algorithm. A user survey
resulted in positive outcomes, indicating a favorable user experience when using the implemented game
with the transposition tables. Comparative analysis against other algorithms demonstrated the successful
implementation of the approach. This research contributes to the field of gameAI optimization by integrating
alpha-beta pruning and transposition tables into a web-based checkers game. The implementation offers a
balance between computational efficiency and user engagement in the web-based checkers game.

INDEX TERMS Checkers, computer games, game algorithm, user experience.

I. INTRODUCTION
Checkers, also known as draughts, is a player vs. player
or player vs. machine game based on strategy. This game
has been popular for centuries in Anglophone countries. The
goal of checkers is to defeat the opponent by ‘‘eating’’ all
their pieces, or by making them unable to move any other
piece [1]. Zachariah et al. [2] define checkers as a two-player
game with a board size of 8 × 8. Only the dark squares
of the checkered board are used. Each player moves a
piece diagonally to an adjacent unoccupied square at a time.
If the adjacent square contains an opponent’s piece, and the
square immediately beyond it is vacant, the piece may be
captured (and removed from the game) by jumping over it [3].
Although there are many rule variations, in almost all variants
the player without pieces remaining or who cannot move due
to being blocked loses the game [3].
With the advancement of computer technology, it is now

possible to develop a computer program that can play

The associate editor coordinating the review of this manuscript and

approving it for publication was Andrea Bottino .

checkers at a high level. One approach to developing such
a program is to use a combination of a production system and
the alpha-beta pruning algorithm [4].

Alpha-beta pruning is a search algorithm used in artificial
intelligence to find the best move in two-player strategy
games like checkers [5]. The algorithm uses two values, alpha
and beta, to limit the number of possibilities that need to be
evaluated. A production system, on the other hand, uses a
set of rules to make decisions and control the flow of the
program [6].
In this context, a potential issue to address is the scalability

and efficiency of the search algorithm as the complexity
of the checkers game increases. The search space expands
exponentially as the game board size and branching factor
grow, leading to longer computation times and higher
resource consumption. Ensuring that the algorithm remains
effective and responsive even for larger game scenarios is a
crucial aspect to work on. In this context, while transposition
tables help avoid redundant evaluations, their management
and memory usage could pose challenges in web-based
environments, where resources are limited [7] optimizing the

46636

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0003-8420-3445
https://orcid.org/0000-0002-2810-9433
https://orcid.org/0000-0002-8894-5089


C. C. Suancha et al.: Implementation of Alpha-Beta Pruning and Transposition Tables on Checkers Game

use of transposition tables and exploring ways to minimize
memory overhead are vital tasks for improving the overall
performance of the implementation [8].

Moreover, web checkers users expect to gain significant
knowledge from the implementation of the game. Players
will experience faster and more strategic gameplay as the
pruning algorithm enables the AI opponent to make smarter
moves, enhancing the overall gaming experience. Moreover,
this work can serve as a valuable educational resource for
students and developers interested in learning about game AI
and algorithmic optimizations.

Although production systems alone can give the checkers
game developer a summary of how the game works and
how it can be implemented in a computer system, including
an Alpha-Beta algorithm can also provide developers with
the best set of moves that can be implemented so that the
computer can defeat real-world players [9]. It is also worth
noting that the alpha-beta pruning algorithm has the potential
to be improved by implementing transposition tables.

This work describes the development of a game of
checkers by using alpha-beta pruning as a search algorithm,
and transposition tables to make the game learn from
previous play sessions. The article is structured as follows:
first, we describe the Alpha beta and transposition tables
optimization technique; second, we present the materials
and methods, which are principally the main features of
the software; third, describe the results and discussion;
and finally, we describe our conclusions and future work,
including some recommendations based on the experience of
the development.

A. ALPHA BETA AND TRANSPOSITION TABLES
Alpha-Beta Pruning is an optimization technique used to
reduce the search space of minimax, which is a tree-
based algorithm [5]. Minimax is used in sequential games
(games where players alternate turns) to determine the most
promising move at each game state with the assumption
that the opponent plays optimally, and that the available
information is organized in a tree-search. As the name of
the algorithm suggests, there is a minimizer (the opponent)
and a maximizer (the player). The children of max-nodes
(maximizers) are min-nodes (minimizers) and vice versa. The
depth for a node ni is the number of edges between ni and the
root, which in this context serves as the number of moves
from the current game state to the node. Every game state
has a value that is obtained from an evaluation function.
An evaluation function receives a board state as input and
returns a value as output. Thus, given a depth value, the AI
will pick a move that leads to the highest board state value in
d turns assuming optimal responses [10].
The tree-search generated for any strategy game with the

values of the deeper nodes can explain how minimax tree
search is generated with each evaluation value (see Figure 1.
Tree-search from minimax algorithm).

As previously stated, checkers is a complex game based
on various rules where playing and defeating their opponent

FIGURE 1. Tree-search from minimax algorithm. Adapted from: [3].

gives players happiness and satisfaction. These rules open
many possibilities on scientific computation research ground,
specifically on Artificial Intelligence (AI) research. AI can
make the game more interesting because it can be played
using a computer or other electronic devices.

Game theory is a mathematical theory used to ana-
lyze strategic interactions among rational decision-makers.
It focuses on understanding and predicting the behavior
of agents in situations where the outcome depends on the
choices made by all participants involved. At its core, game
theory seeks to identify Nash equilibria, which are sets of
strategies where no player has an incentive to unilaterally
deviate from their chosen strategy, given the strategies
chosen by the other players. These equilibria represent stable
outcomes in strategic interactions, providing insights into
decision-making processes and potential outcomes in various
scenarios [22].

In this context, when strategy games use artificial intel-
ligence, game theory takes an important role on design-
ing techniques to take any game as a big number of
possibilities, in this case, AI development possibilities.
As Gupta et al. [11] say, with efficient and accurate game
theory and AI algorithms, it is now possible to solve games
involving a decision-making method with a huge set of
possibilities. Checkers is a zero-sum game, which means that
each player’s benefit or loss in value is exactly accounted for
by the losses or gains in utility of the other players, with a
game-tree complexity of about 1040 [11], [12].

In the context of checkers, the rules and conditions of
the game determine the possible moves, meanwhile the
alpha-beta pruning algorithm can be used to evaluate the
best move based on these rules [4]. By combining these two
approaches, it is possible to develop a computer program that
can play checkers at a high level andmake informed decisions
based on the rules of the game.

A record is maintained for each leaf node in the tree,
documenting the maximum value encountered at each layer.
As the search algorithm progresses through the tree, it only
seeks to identify the maximum value for each layer before
terminating the exploration and moving on to the next layer.
This optimized approach enables the algorithm to bypass

VOLUME 12, 2024 46637



C. C. Suancha et al.: Implementation of Alpha-Beta Pruning and Transposition Tables on Checkers Game

FIGURE 2. Alpha-beta pruning cutting branches.

the exhaustive exploration of all leaf nodes at certain levels,
leading to substantial time savings [3].

As shown in Figure 2. Alpha-Beta Pruning cutting
branches it is possible to see the pruning of a search tree using
the alpha-beta algorithm. It is not necessary to evaluate all the
branches of the tree If a good move is found, the algorithm
just cuts the other branches and returns the solution.

Also, as the alpha-beta pruning algorithm can be consid-
ered as a tree and as a direct acyclic graph [4], moves already
visited can be saved in Transposition tables. These tables can
reduce the evaluation steps of alpha-beta pruning trees by
storing all the moves that were evaluated in the past, saving
time when searching the best move in a game. The algorithm
searches for an existing move in transposition tables and uses
it without evaluating a new tree.

As [8] said, the result of these two cases (tree search and
transposition tables) is the same, so we should store informa-
tion about each move and its score on the transposition table
and search there first. Only if that procedure fails, the nodes
should be searched.

With transposition tables, the alpha-beta pruning algorithm
can be improved and made to spend less time when searching
for the best move.

This research aims to explore the integration of alpha-beta
pruning and transposition tables into a checkers game
to enhance strategic decision-making and performance.
Significantly, this research addresses scalability challenges in
complex game scenarios while maintaining user engagement.

The research question to be addressed in this work is:
will the implementation of checkers with alpha beta pruning
and transposition tables will optimize performance without
losing attractiveness for users? To answer this question,
a web version of checkers with the implementation of
both algorithms and analyze performance was developed,
in addition, tested the software with users to assess the user
experience trough a survey.

II. MATERIALS AND METHODS
To create the system, a play session performed by one of
the authors and the machine was used. The game followed
standard rules, with the addition of mandatory jumping and
promotion of pieces to queen status [13]. Amodular approach
to coding, which leverages Object-Oriented Programming
(OOP) principles, was employed. This methodology involves

FIGURE 3. GUI checkers.

the organization of code into distinct functions and modules,
facilitating enhanced maintainability and ease of modifica-
tion [14]. Object-Oriented Programming allow to encapsulate
data and behaviour into objects, promoting code reusability
and fostering a clearer understanding of the system’s struc-
ture. To evaluate the best moves for the AI, the alpha-beta
pruning algorithm was used as the control strategy, with
utility heuristics to assess the value of each state [15].

A. DEVELOPMENT
Theweb game is a distributed system [16], where the frontend
calls endpoints for interaction with the game through restful
architecture using communication protocols such as fetch and
web sockets. The backend is allocated in a different server, but
they work as a whole. Various programming techniques were
implemented to make the game as playable as possible in a
web platform. For example, sockets over specific ports [15],
were necessary to create rooms where two people were able
to play the game without being interrupted by other people.
Frameworks to connect to the backend and some libraries to
create synchronization in the game were also used.

Checkers is a game based on strategy [18], which means
that ‘‘each player is in a singular position where they
know nearly everything about their current state’’ [19]. If a
player can know their current state, so can a machine.
By understanding the rules and strategies of the game, the
machine can use this knowledge to develop awinning strategy
and make the best possible moves, in this case, condition
statements were used to evaluate how a player can move in
the game and how the machine can simulate it.

B. STRATEGY
The possible objects that can simulate checkers were
identified. In this way, they created two main objects: pieces,
and a board [18]. Each board is created with 12 pieces for

46638 VOLUME 12, 2024



C. C. Suancha et al.: Implementation of Alpha-Beta Pruning and Transposition Tables on Checkers Game

FIGURE 4. Alpha beta pruning method.

each player in the game. The board evaluates all the possible
movements a piece can make, so it is easy to simulate the real
game.

Also, as in checkers it is important to know if a piece can
become a queen, a piece with a crown was used to represent
a queen. On Figure 3. GUI checkers the Graphical User
Interface can be seen.

The following algorithmic rules were implemented,
to make the game as real as possible:

• A player may not move the same piece to the same two
places more than twice in a row.

• Whoever runs out of pieces on the board loses, and
the last one is that a player with very few pieces can
withdraw from the game, which is done by exiting from
the current room.

• Detect when the game has finished. This is achieved
by evaluating the possible moves available to each
player on each turn and determining if any of them
lead to the capture of all the opponent’s pieces or to
the impossibility of making any move. In this way, it is
ensured that the game ends appropriately and results can
be displayed.

C. ALPHA-BETA PRUNING
To implement the algorithm, it was necessary to create
two specific methods. One of them evaluates the heuristics
of each node of the tree [20], which means setting a
specific number of utilities that improve the play style of the
machine. The second method defines the alpha-beta pruning
implementation, evaluating the usefulness of each node, and
pruning the branches when it finds that,

Alpha ≥ Beta. (1)

which means that it breaks the execution of the recursive
method (see Figure 4. Alpha Beta pruning method).

This algorithm was implemented because it is the best way
to simulate that the machine is playing in an intelligent way,
as Mohamad Achmad said [1], the application of artificial
intelligence in checkers makes the game playable anywhere
and anytime. Alpha-Beta pruning is an optimization tech-
nique from the Minimax algorithm that can reduce the
number of branch/node extensions to get better search results
in less time.

The alpha_beta function operates recursively [22], explor-
ing every potential move of the current player. When the
is_maximizing function is true, the algorithm seeks to
maximize the heuristic value at the current depth level.
By contrast, when is_maximizing is false, the algorithm aims
to minimize the heuristic.

The heuristic is computed by the evaluation method of
the board object, which assesses the current board state and
returns a value indicating the favorability of the position for
the current player. A random value was introduced to the
utility calculation to prevent the game from entering repetitive
loops where pieces move to the same spaces repeatedly. The
heuristic is computed by the evaluate method of the board
object. This function evaluates the current state of the board
and returns a value indicating how favorable the position is
for the current player. Sometimes the game comes into a loop,
moving pieces to the same spaces many times. To avoid that
problem, it was necessary to add a certain random value to
the utility.

At each depth level, the algorithm updates the alpha
and beta values and uses alpha-beta pruning to remove
unpromising (child) nodes. If the current value of the
evaluation is greater than beta (in the case of the maximizing
player) or less than alpha (in the case of the minimizing
player), the current branch is pruned, and the algorithm
proceeds to the next move. Finally, the function returns the
best evaluation found and the corresponding move.

Also, in a comparative study between Monte-Carlo tree
search (MCTS) and alpha-beta pruning algorithms, Hikari
Kato [9] concludes that the latter method is effective and
that ‘‘it looks like there is more to gain in playing strength
by improving the evaluation function and using classical
methods like Alpha-Beta pruning than by increasing the
number of playouts using the MCTS strategy’’.

D. TRANSPOSITION TABLES
Transposition tables were implemented using hashed keys
for each board. All the movements made by the machine
are saved in a JSON file, along with the hashed key and the
evaluation value. Those persisting movements are important
for later implementations of AI [8], [23] specifically on
alpha-beta pruning algorithm for the game, and on the
simulation of learning using the transposition tables (see
Figure 5. Transposition table example)
Considering the web checkers implemented, the following

parameters can be extracted:

VOLUME 12, 2024 46639



C. C. Suancha et al.: Implementation of Alpha-Beta Pruning and Transposition Tables on Checkers Game

FIGURE 5. Transposition table example, an example of persisting boards.

• Data structure: A matrix sized 8*8 spaces.
• Initial state:

– 12 pieces for player 1 and 12 for player 2,
distributed in 3 rows, each piece separated by a
column. Player 1 gets ‘‘red’’ pieces and player
2 gets ‘‘beige’’ pieces.

– Piece distribution for player 1: [(7,0), (7,2), (7,4),
(7,6), (6,1), (6,3), (6,5), (6,7), (5,0), (5,2), (5,4),
(5,6)].

– Piece distribution for player 2: [(0,1), (0,3), (0,5),
(0,7), (1, 0), (1,2), (1,4), (1,6), (2,1), (2,3), (2,5),
(2,7)].

The initial configuration can be seen in Figure 6a. Initial
state.

The final state of the game corresponds to a finishedmatch,
in which there can be a winner or a draw. A simulation of
a match is carried out where there are several moves from
each player, until a winner can be determined. Some rules
determine the final states of the game, which means there are
many ways to finish the game.

The game rules are:

• The player who eats all the opponent’s pieces wins;
• if player 1 and player 2’s pieces are equal to 1, it is a
draw;

• if players do not have any moves remaining, the player
who has more pieces wins;

• if players do not have any legal moves available and both
players have the same number of pieces, it is a draw.

Another important aspect to define is the space configu-
ration for states. A checkers game has 5 ∗ 1020 ‘‘possible
figure positions which, although pale in comparison to chess
with approximately 1043 possible figure positions, was a high
enough number that the gamewas not simply solvable and yet
small enough for researchers to do their research on’’ [24].

FIGURE 6. Game states.

Considering the last statement, it can be somewhat difficult
to completely define the space configuration of states for this
game. However, it is possible to describe the sequence the
game follows from initial state, mid-game, and final state (see
Figure 6a. Initial state, Figure 6b. Mid-game, Figure 6c. Final
state).

Furthermore, inside the space configuration of states for
the checkers game, two possible situations can be represented
as follows:

• A player makes an illegal movement, where they try to
move a piece to another space where there is another
piece, or where they try to move a piece two or more
spaces than what is allowed. When a movement is
illegal, the game shows the possible legal movements a
player can make.

• When any player gets to the opposite side of the board,
the piece they are using becomes a queen. When this
happens, said piece changes to one with a crown (see
Figure 7. A piece becoming a queen).

46640 VOLUME 12, 2024



C. C. Suancha et al.: Implementation of Alpha-Beta Pruning and Transposition Tables on Checkers Game

FIGURE 7. A piece becoming a queen.

Transposition tables along with the alpha-beta pruning
algorithm are widely used techniques in game programming
and artificial intelligence to improve the efficiency of game
search algorithms.

The alpha-beta pruning algorithm is a tree search technique
that reduces the number of evaluated positions in a game, thus
saving computation time. The algorithm is an extension of the
minimax algorithm, which evaluates all possible moves in a
game tree to determine the best move to make. However, the
minimax algorithm is computationally expensive, especially
for games with large search spaces. The alpha-beta pruning
algorithm seeks to reduce the number of positions evaluated
by cutting branches of the search tree that are unlikely to lead
to a better outcome.

Transposition tables, on the other hand, are a caching
technique used to store previously evaluated game positions
and their evaluation values, to avoid reevaluating the same
position in the future. When using a transposition table, each
game position is associated to a unique key, which is used as
an index in a search table. If a position is found in the table, its
stored evaluation value can be used. Otherwise, the position
is evaluated and stored in the table with its evaluation value.

III. RESULTS AND DISCUSSION
A. IMPLEMENTATION ALPHA-BETA AND
TRANSPORTATION TABLES
By combining transposition tables with alpha-beta pruning,
game search algorithms can significantly reduce compu-
tation time, allowing for more efficient and faster game
play [4], [25].

In this study, transposition tables were implemented as a
persistence technique to make the machine learn from every
move, which is saved on the tables and later used for other
gameplays. If the machine finds a play state that is the same
as the current one, it just uses the move from the transposition
table and does not execute the alpha-beta pruning, reducing
the time and machine resources needed to make a move.

The win rate before transposition tables for red and white
pieces is approximately the same, while the draw rate stays

TABLE 1. Win rate results of pieces before implementing transposition
tables.

TABLE 2. Win rate results of pieces after implementing transposition
tables.

around 30 games. There is not a clear difference between
the two pieces; they are winning with a similar distribution.
It is important to mention that they are not using any other
search or learning algorithm besides alpha-beta pruning.
Those results can be seen at table 1.

Results show that white pieces reduced their win rate.
As red pieces are using transposition tables, this result
suggests that red is learning, but in this case, time is being
evaluated, so it is not possible to conclude anything about the
win rate. It is important to say that alpha-beta pruning is only
implemented for red pieces. Those results can be shown at
table 2.

Finally, the average game time was evaluated. The blue
line shows the time spent on the game by the player when
using transposition tables. This time is sometimes reduced to
nearly zero seconds, which means that transposition tables
are working as expected. However, the last thirty games
sometimes took a long time to finish. This can be due to a
slow interaction by the user or to the amount of data the game
must read to use the information on the transposition tables
(see Figure 8. Average game time).

FIGURE 8. Average game time.

It is important to consider that while transpose tables
can improve game efficiency by reducing the number of
redundant computations, they may also require careful
memory management and performance optimisation to avoid
significant delays, especially when handling large volumes
of data. Implementing strategies such as adaptive table sizing
and periodic cleanup of stale entries can help maintain a
balance between speed and memory usage.

VOLUME 12, 2024 46641



C. C. Suancha et al.: Implementation of Alpha-Beta Pruning and Transposition Tables on Checkers Game

At the initiation of these measurements, there were no
saved games. Following 131 plays involving mandatory
captures when jumping over a game piece, and another
131 plays where such captures were optional, a total of
2,796 moves were recorded in the database for the first game
mode, while 4,904moves were recorded for the secondmode.
The variance in the number of moves can be attributed to
the selection process: when captures are not obligatory, the
algorithm chooses the most advantageous moves in real-time,
whereas in situations with mandatory captures, certain moves
are pre-stored for immediate use.

The next step was comparing the implemented checkers
game to other existing implementations. This study focused
on assessing unique features, and overall user experience
in relation to other checkers games. Factors such as AI
strategies, search algorithms, performance optimization, and
user interface design were evaluated.

Tao et al. [3] used neural networks and specific game
rules to create a version of the English checkers game. Their
implementation incorporated alpha-beta pruning to enhance
gameplay performance, which allowed for best decision-
making capabilities. However, the one presented in this
document intends to leverage the advantages of a web-based
platform, enabling users to enjoy the game across various
devices and operating systems. Additionally, utilization of
transposition tables optimizes the game’s execution times,
enhancing overall gameplay performance and providing a
foundation for potential integration with neural networks in
future iterations. By combining these elements, the imple-
mentation described in this document offers both accessibility
and scalability, providing an enriched user experience while
paving the way for future advancements in game AI and
neural network integration.

In a study made by Idzham et al. [7], they developed
a web-based English checkers game that incorporates
alpha-beta pruning and specific game rules. Their implemen-
tation aimed to enhance gameplay performance by efficiently
exploring different move possibilities and providing optimal
strategies. The game presented in the present document
incorporates an additional enhancement by using transposi-
tion tables. This improved execution times and established
a foundation for future scalability, including the potential
integration of neural networks. This improvement further
enhances the overall gameplay experience by optimizing
move calculations and ensuring efficient decision-making
processes.

As seen in both cases, the checkers game developed in
this study focuses on the user experience and accessibility by
building the game on a web platform and using transposition
tables to make the game more scalable and its features easier
to perform.

B. USER STUDY
A total of 30 users volunteered to take part in a exploratory
study. The survey administered for this study encompassed
a diverse array of participants. Ensuring a comprehensive

TABLE 3. Win rate results of pieces after implementing transposition
tables.

evaluation of the checkers game implementation by including
individuals with no prior knowledge of computing, hailing
from various academic majors and possessing varying levels
of experience. This broad and inclusive approach, allowed
to gather insights and feedback that are representative of a
diverse user base, ensuring a more holistic assessment of the
system’s usability and accessibility [26].

Participants were instructed to engage with each of the
three distinct checkers gamemodes on a single occasion, after
which they were requested to assess their experiences via
the survey. This approach ensured that the evaluation process
was based on a one-time interaction with each game mode,
providing a snapshot of user feedback and impressions in a
controlled way.

The survey included questions that aimed to assess the
user 1) experience of the web-based platform, 2) level of
satisfaction with the visual appearance of the website, 3)
usefulness and 4) intention. In this context, Participants were
requested to rate the level of ease they encountered while
navigating the website, their perception of the interface’s
intuitiveness and clarity, as well as how easy it was to locate
the different functions and features within the game [27].
Responses were collected using a 5-point likert scale [28],
where higher scores represented greater comfort or ease.

The outcome of the survey demonstrated that participants
had an overall positive experience with the website (see
Table 3). 5, indicating a high level of comfort while
exploring the site. This suggests that the website’s layout
and organization effectively facilitated seamless movement
across various sections and pages of the game.

Overall, the results indicate a high level of user satisfaction
with the web platform for playing checkers. Participants
found the website easy to navigate, the interface intuitive
and comprehensible, and the different functions and features
of the game conveniently accessible. These positive findings
underscore the effectiveness of the implemented design
choices and highlight the overall user-friendliness of the web
platform.

The survey included additional questions that focused on
assessing the usability of the web platform. Participants

46642 VOLUME 12, 2024



C. C. Suancha et al.: Implementation of Alpha-Beta Pruning and Transposition Tables on Checkers Game

were asked to rate their level of satisfaction with the visual
appearance of the website, their perception of the clarity
and organization of the design, and the helpfulness of the
instructions and tutorials provided to understand the game.
Responses were measured on a scale from 1 to 5, where
5 indicated a high level of satisfaction.

The results of the survey showed that participants expe-
rienced high levels of satisfaction with the usability of the
website. When evaluating the visual appearance of the site,
most respondents rated their satisfactionwith a score of 4 or 5,
indicating that they were happy with how the website looked
like. This suggests that the visual design elements were well
received by users, contributing to a better experience.

Participants also reported positive perceptions for the other
questions. This indicates that the layout and presentation
of the information on the website were effective in provid-
ing a seamless and user-friendly experience. The answers
demonstrated that participants were highly satisfied with the
usability of the web platform for playing English checkers.
Users expressed contentment with the visual appearance of
the website, perceived the design as clear and organized,
and found the provided instructions and tutorials helpful.
These positive results reflect the successful implementation
of user-friendly features and contribute to an overall positive
user experience on the web platform.

Following the assessment of usability, participants were
also asked to report if they encountered any noticeable
problems or delays while interacting with the website.

The survey results indicated thatmost respondents reported
no issues with performance or speed on the web platform.
This positive outcome suggests that the website was able
to deliver a smooth and responsive experience to users,
allowing them to seamlessly navigate and interact with the
checkers game. Participants’ feedback indicated that they did
not encounter any significant hindrances or frustrations due
to performance-related factors. Only two responses (6,7%)
reported issues during game execution, and only one said that
the website was ‘‘too slow’’.
Then, participants were asked to evaluate if the website

adapted properly to their devices and screen size. This
question aimed to assess the responsiveness and compatibility
of the web platform across different devices and screen
resolutions.

Most respondents reported positive experiences regard-
ing the website’s adaptation to their devices and screen
sizes. Participants expressed satisfaction with the responsive
design, noting that the website adjusted seamlessly to their
specific device, whether it was a desktop computer, laptop,
tablet, or smartphone. This suggests that the web platform
successfully catered to various screen sizes, providing an
optimized and visually pleasing experience for users.

Only three responses (10%)manifested issues with respon-
siveness features, and some of them said that ‘‘on mobile
devices, the entire dashboard is not visible, it becomes tedious
to scroll to see the entire dashboard’’ and ‘‘the game stopped
giving me options with the white tiles once, despite having

TABLE 4. Win rate results of pieces after implementing transposition
tables.

options for that within the game’’. Those problems could be
related to the users’ internet connection or to other issues out
of the hands of the developers.

The survey concluded with the question ‘‘would you
recommend the English checkers game website to other
individuals interested in playing checkers?’’. This inquiry
aimed to assess the level of satisfaction participants had
towards the website.

The results of the survey revealed that most respondents
expressed a positive inclination towards recommending the
website to others. They indicated a willingness to endorse the
English checkers game website based on their own positive
experiences and satisfaction with the platform. This suggests
that users found the website to be engaging, enjoyable,
and well-suited for playing checkers, which underscores the
perceived quality of the gaming experience provided and
the level of confidence they had in the platform. The users’
approval attests to the success of the implemented techniques
and algorithms in creating an appealing and user-friendly
web-based checkers game.

These results can be seen at Table 4.

IV. CONCLUSION AND FUTURE WORK
There is potential to further improve the efficiency and
effectiveness of the checkers game search algorithm by
incorporatingmachine learning and deep learning techniques.
For example, one could use reinforcement learning to develop
a heuristic evaluation function that canmore accurately assess
the value of a game position [28]. Alternatively, one could
use neural networks for the machine to directly learn a
policy for making moves, based on a given game position.
Additionally, one could explore the use of Monte Carlo
tree search techniques, which can improve the efficiency of
game search algorithms by sampling likely game outcomes.
By incorporating these advanced techniques into the checkers
game, it may be possible to create an even more challenging
and engaging game that can adapt to the play style of
individual users [29].

In addition to machine learning and deep learning tech-
niques, forecasting may also be useful in the context of
the checkers game. Specifically, forecasting could be used
to predict the likely moves of the opponent based on their
past moves and playing style using transposition tables. This
could be done by using time-series analysis techniques from
transposition tables, which can identify patterns and trends in

VOLUME 12, 2024 46643



C. C. Suancha et al.: Implementation of Alpha-Beta Pruning and Transposition Tables on Checkers Game

time-series data, such as the sequence of moves made by the
opponent. By forecasting the opponent’s likely moves, it may
be possible to develop more effective strategies for winning
the game, such as anticipating and countering the opponent’s
moves. However, forecasting in this context may be challeng-
ing due to the complexity of the game and the large number of
possible moves, and further research is needed to determine
the feasibility and effectiveness of this approach.

To further augment the intelligence and sophistication of
the web checkers game, the incorporation of neural networks
as an additional strategy holds great promise. By integrating
neural networks into the decision-making process, the AI
opponent can learn from past gameplay experiences and adapt
its strategies dynamically. Neural networks offer the potential
to capture complex patterns and features of the game,
enabling the AI to make more informed and strategic moves
using deep learning. This fusion of traditional search algo-
rithms like alpha-beta pruning and transposition tables with
the learning capabilities of neural networks can lead to a more
challenging and engaging gaming experience for players.

Implementing a checkers game can be a complex task,
requiring careful consideration of the game rules and logic.
The production of such a system is the best way to become
familiar with how a strategy game works, and it also serves as
the initial step to implement an AI algorithm. The game was
tested and validated through simulations of multiple moves
by both players, utilizing system production for validation as
well.

Overall, the implementation of a checkers game as
a software serves as an example of applying program-
ming concepts and techniques in game and simulation
development. Alpha-beta pruning is an effective algo-
rithm for optimizing the game’s performance by reducing
the number of nodes that need to be evaluated. Other
authors referenced in this research paper have also stated
that it is the most effective algorithm for this strategy
game.

Also, the implementation of transposition tables in the
checkers game, along with the alpha-beta pruning algorithm,
can significantly improve the efficiency of the game search
algorithm. The use of transposition tables allows for the
caching of previously evaluated positions, which can save
significant computation time by avoiding the reevaluation
of the same positions. Additionally, the alpha-beta pruning
algorithm reduces the number of positions evaluated by
cutting off branches of the search tree that are unlikely to lead
to a better outcome.

The combination of transposition tables and alpha-beta
pruning is a powerful technique that can improve the per-
formance of game search algorithms, allowing for faster and
more efficient gameplay. By implementing these techniques
in the English checkers game, it is possible to create a
more challenging and engaging game that can be enjoyed by
players of all skill levels.

The survey results indicated a high level of user satisfaction
with the web platform for the game. Participants reported

comfort and ease in navigating the website, finding the
interface intuitive and easy to understand, and locating the
different functions and features of the game without signif-
icant difficulty. The visual look, clarity, and organization of
the website design received positive feedback from users. The
instructions and tutorials provided were found to be helpful
in understanding how to play the checkers game.

Additionally, participants reported no significant issues
with performance or speed on the web platform, indicating
a smooth and responsive experience. The positive responses
demonstrate the successful implementation of the strategies
and technologies, including alpha-beta pruning and transposi-
tion tables, which contributed to an enjoyable and challenging
gaming experience.

Considering positive feedback and the level of user
satisfaction, it can be concluded that the developed checkers
game is likely to be recommended to other individuals
interested in playing checkers. The findings highlight the
successful integration of artificial intelligence techniques and
algorithms, coupled with a user-friendly interface, resulting
in a compelling and engaging gaming experience.

These conclusions provide valuable insights for the con-
tinued improvement and development of the web platform,
ensuring that it meets the expectations and needs of users
interested in playing English checkers.

ACKNOWLEDGMENT
The authors would like to thank the Research Center, Facultad
Seccional Sogamoso, Universidad Pedagógica y Tecnológica
de Colombia, for their invaluable support and resources,
which greatly contributed to the successful completion of
this research and also would like to thank the Faculty
of Engineering, Talca University, for their guidance and
collaboration, enhancing the quality and depth of this work.
Their unwavering support is sincerely appreciated.

REFERENCES
[1] M. A. A. Abdullah and H. M. Judi, ‘‘Try dam: Digital checkers game

application based on machine learning,’’ Int. J. Academic Res. Bus. Social
Sci., vol. 13, no. 1, p. 818, Jan. 2023, doi: 10.6007/ijarbss/v13-i1/15561.

[2] A. Zachariah, A. Louis, P. Kumar, G. Balamurali, and A. Martin,
‘‘Checkers using reinforcement learning,’’ in Proc. Int. Colloq. Recent
Trends Eng. (IC@MACE), Apr. 2020.

[3] J. Tao, G. Wu, and X. Pan, ‘‘Design and application of computer games
algorithm of checkers,’’ inProc. Chin. Control Decis. Conf. (CCDC), 2020,
pp. 231–234.

[4] A. Parashar, A. K. Jha, andM. Kumar, ‘‘Analyzing a chess engine based on
alpha–beta pruning, enhanced with iterative deepening,’’ in Expert Clouds
and Applications (Lecture Notes in Networks and Systems), vol. 444.
Singapore: Springer, 2022, pp. 691–700, doi: 10.1007/978-981-19-2500-
9_51.

[5] O. Marckel, ‘‘Alpha-beta pruning in chess engines,’’ in Proc. UMM CSci
Senior Seminar Conf., 2017, pp. 1–6.

[6] S. Mandadi and S. Vijayakumar. (2020). Implementation of Sequential and
Parallel Alpha-Beta Pruning Algorithm View Project. [Online]. Available:
https://www.researchgate.net/publication/343945419

[7] K. K. Idzham, M. W. N. Khalishah, Y. W. Steven, M. S. M. F. Aminuddin,
H. N Syawani, A. Zain, and Y. Yusoff, ‘‘Study of artificial intelligence
into checkers game using HTML and Javascript,’’ IOP Conf. Ser., Mater.
Sci. Eng., vol. 864, no. 1, May 2020, Art. no. 012091, doi: 10.1088/1757-
899x/864/1/012091.

46644 VOLUME 12, 2024

http://dx.doi.org/10.6007/ijarbss/v13-i1/15561
http://dx.doi.org/10.1007/978-981-19-2500-9_51
http://dx.doi.org/10.1007/978-981-19-2500-9_51
http://dx.doi.org/10.1088/1757-899x/864/1/012091
http://dx.doi.org/10.1088/1757-899x/864/1/012091


C. C. Suancha et al.: Implementation of Alpha-Beta Pruning and Transposition Tables on Checkers Game

[8] Z. Qi, X. Huang, Y. Shen, and J. Shi, ‘‘Optimization of Connect6 based
on principal variation search and transposition tables algorithms,’’ in Proc.
Chin. Control Decis. Conf. (CCDC), Aug. 2020, pp. 198–203.

[9] H. Kato, S. Z. Fazekas, M. Takaya, and A. Yamamura, ‘‘Comparative
study of Monte-Carlo tree search and alpha-beta pruning in amazons,’’
in Information and Communication Technology: Third IFIP TC 5/8
International Conference, ICT-EurAsia 2015, and 9th IFIP WG 8.9
Working Conference, CONFENIS 2015, Held as Part of WCC 2015,
Daejeon, Korea, October 4–7, 2015, Proceedings 3. Springer, 2015,
pp. 139–148.

[10] D. Ye and J. Trossing, ‘‘Playing the fox game with tree search: MCTS vs.
alpha-beta,’’ Bachelor’s Degree Thesis, School Elect. Eng. Comput. Sci.
(EECS), Stockholm Univ. Appl. Sci., Stockholm, Sweden, Sep. 2022.

[11] P. Gupta, Vividha, and P. Nagrath, ‘‘Checkers-AI: American checkers game
using game theory and artificial intelligence algorithms,’’ inDeep Learning
in Gaming and Animations. Boca Raton, FL, USA: CRC Press, Dec. 2021,
pp. 1–18, doi: 10.1201/9781003231530-1.

[12] B. Gill, ‘‘Machine learning in checkers: Using coevolution to drive game
strategy,’’ Bachelor of Science thesis, Univ. Exeter, Exeter, U.K., Tech.
Rep., 2023, doi: 10.13140/RG.2.2.23824.17928.

[13] E. E. Kopets, A. I. Karimov, G. Y. Kolev, L. Scalera, and D. N. Butusov,
‘‘Interactive robot for playing Russian checkers,’’ Robotics, vol. 9, no. 4,
p. 107, Dec. 2020, doi: 10.3390/robotics9040107.

[14] R. Al-Msie’Deen, A. H. Blasi, and M. A. Alsuwaiket, ‘‘Constructing a
software requirements specification and design for electronic IT news
magazine system,’’ Int. J. Adv. Appl. Sci., vol. 8, no. 11, pp. 104–118,
Nov. 2021, doi: 10.21833/ijaas.2021.11.014.

[15] S. Slyman, M. Gillies, and V. Lytra, ‘‘Developing an evaluation
framework for analysing educational simulation games,’’ in Proc. 16th
Eur. Conf. Games Based Learn., 2022, vol. 16, no. 1, pp. 526–534, doi:
10.34190/ecgbl.16.1.363.

[16] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen,
and J. S. Rellermeyer, ‘‘A survey on distributed machine learning,’’
ACM Comput. Surveys, vol. 53, no. 2, pp. 1–33, Mar. 2020, doi:
10.1145/3377454.

[17] N. Bonelli, F. D. Vigna, A. Fais, G. Lettieri, andG. Procissi, ‘‘Programming
socket-independent network functions with nethuns,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 52, no. 2, pp. 35–48, Jun. 2022, doi:
10.1145/3544912.3544917.

[18] G. Fabris, L. Scalera, and A. Gasparetto, ‘‘Playing checkers with an
intelligent and collaborative robotic system,’’ Robotics, vol. 13, no. 1, p. 4,
Dec. 2023, doi: 10.3390/robotics13010004.

[19] J. Parker, Game Development Using Python. Mercury Learning and
Information, 2021, Accessed: Feb. 24, 2023.

[20] M. Esteve, J. J. Rodríguez-Sala, J. J. López-Espín, and J. Aparicio,
‘‘Heuristic and backtracking algorithms for improving the performance of
efficiency analysis trees,’’ IEEE Access, vol. 9, pp. 17421–17428, 2021,
doi: 10.1109/ACCESS.2021.3054006.

[21] A. N.W. Jofanda andM.Yasin, ‘‘Design of checkers game using alpha-beta
pruning algorithm,’’ INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan
Teknologi Sistem Informasi, vol. 5, no. 2, pp. 279–295, Aug. 2021, doi:
10.29407/intensif.v5i2.15863.

[22] T. Bilen and B. Canberk, ‘‘Overcoming 5G ultra-density with game
theory: Alpha-beta pruning aided conflict detection,’’ Pervas. Mobile
Comput., vol. 63, Mar. 2020, Art. no. 101133, doi: 10.1016/j.pmcj.2020.
101133.

[23] Y. Xie, W. Gao, Z. Dai, and Y. Li, ‘‘Research and improvement of alpha-
beta search algorithm in Gobang,’’ Adv. Transdisciplinary Eng., vol. 20,
pp. 819–829, Feb. 2022, doi: 10.3233/ATDE220084.

[24] J. Popic, B. Boskovic, and J. Brest, ‘‘Deep learning and the game
of checkers,’’ MENDEL, vol. 27, no. 2, pp. 1–6, Dec. 2021, doi:
10.13164/mendel.2021.2.001.

[25] B. Vollenwyder, S. Petralito, G. H. Iten, F. Brühlmann, K. Opwis,
and E. D. Mekler, ‘‘How compliance with web accessibility standards
shapes the experiences of users with and without disabilities,’’ Int.
J. Hum.-Comput. Stud., vol. 170, Feb. 2023, Art. no. 102956, doi:
10.1016/J.IJHCS.2022.102956/BIBTEX.

[26] S. Ma, B. Zhao, Z. Hou, W. Yu, L. Pu, and L. Zhang, ‘‘Robust visual
object tracking based on feature channel weighting and game theory,’’
Int. J. Intell. Syst., vol. 2023, pp. 1–19, Jul. 2023, doi: 10.1155/2023/
6731717.

[27] A. T. Jebb, V. Ng, and L. Tay, ‘‘A review of key Likert scale
development advances: 1995–2019,’’ Front. Psychol., vol. 12, May 2021,
Art. no. 637547, doi: 10.3389/FPSYG.2021.637547.

[28] A. Bashar, ‘‘Survey on evolving deep learning neural network archi-
tectures,’’ J. Artif. Intell. Capsule Netw., vol. 2019, no. 2, pp. 73–82,
Dec. 2019, doi: 10.36548/jaicn.2019.2.003.

[29] G. Tan, P. Wei, Y. He, H. Xu, X. Shi, and P. Yi, ‘‘An algorithm based on
valuation forecasting for game tree search,’’ Int. J. Mach. Learn. Cybern.,
vol. 12, no. 4, pp. 1083–1095, Apr. 2021, doi: 10.1007/s13042-020-
01222-3.

CRISTIAN C. SUANCHA is currently a Research
Assistant with the Systems and Computer Engi-
neering Program, Seccional Sogamoso Faculty,
Universidad Pedagógica y Tecnológica de Colom-
bia, demonstrates a keen interest in the fields
of artificial intelligence and advanced program-
ming. Engaging actively in research endeavors,
their work revolves around exploring innova-
tive applications and methodologies within these
domains. With a commitment to contributing to

the academic community, the research assistant is dedicated to advancing
knowledge in the intersection of systems and computer engineering,
particularly emphasizing the cutting-edge realms of AI and advanced
programming.

MARCO J. SUAREZ received the M.Sc. degree
in information management from the Colombian
School of Engineering Julio Garavito, in 2012,
and the Ph.D. degree in strategic planning and
technology management from UPAEP-Mexico,
in 2016. He was with ECI University-Colombia
and UPAEP Mexico. He is currently an Associate
Professor with UPTC Colombia. He is also a
Research Associate with the Ministry of Sci-
ence, Technology and Innovation, Colombia. His

research interests include machine learning, AI, and deep learning. He serves
on the editorial board for numerous technology journals.

FELIPE A. BESOAIN (Member, IEEE) received
the B.S. degree in bioinformatics engineering from
the Faculty of Engineering, Universidad de Talca,
Talca, Chile, in 2010, the M.S. degree in free
software, in 2012, and the Ph.D. degree in network
information technologies from Universitat Oberta
de Catalunya, Barcelona, Spain, in 2018. In 2021,
he was a Postdoctoral Researcher in social psy-
chologywith Universidad de Talca, combining app
development with current attitude change theory.

He is currently a Researcher in various research and development projects
with demonstrable experience in the development of mobile, immersive
technologies (virtual reality) in the industry of health, agronomy, tourism,
culture, and heritage. His current research interests include the application of
persuasive technologies in intelligent contexts for the promotion of health,
tourism and cultural heritage, the use of ubiquitous computing and mobile
devices, gamification, and immersive technologies for the form/change of
attitudes.

VOLUME 12, 2024 46645

http://dx.doi.org/10.1201/9781003231530-1
http://dx.doi.org/10.13140/RG.2.2.23824.17928
http://dx.doi.org/10.3390/robotics9040107
http://dx.doi.org/10.21833/ijaas.2021.11.014
http://dx.doi.org/10.34190/ecgbl.16.1.363
http://dx.doi.org/10.1145/3377454
http://dx.doi.org/10.1145/3544912.3544917
http://dx.doi.org/10.3390/robotics13010004
http://dx.doi.org/10.1109/ACCESS.2021.3054006
http://dx.doi.org/10.29407/intensif.v5i2.15863
http://dx.doi.org/10.1016/j.pmcj.2020.101133
http://dx.doi.org/10.1016/j.pmcj.2020.101133
http://dx.doi.org/10.3233/ATDE220084
http://dx.doi.org/10.13164/mendel.2021.2.001
http://dx.doi.org/10.1016/J.IJHCS.2022.102956/BIBTEX
http://dx.doi.org/10.1155/2023/6731717
http://dx.doi.org/10.1155/2023/6731717
http://dx.doi.org/10.3389/FPSYG.2021.637547
http://dx.doi.org/10.36548/jaicn.2019.2.003
http://dx.doi.org/10.1007/s13042-020-01222-3
http://dx.doi.org/10.1007/s13042-020-01222-3

