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ABSTRACT Recent times have witnessed significant progress in deep learning-based finger vein pattern
extraction methods, but two unavoidable issues still remain to be addressed. One is that the model trained
on a single finger vein dataset shows poor generalizability, and the model performance is limited by the
image quality of the single dataset; the other is that it is hard for the deep model to extract real-time finger
vein patterns because of its large number of parameters and poor real-time performance. To address the
aforementioned issues, we propose a novel lightweight domain-adaptive segmentation framework (Lite-
HDNet) that learns a generic representation of different domains to improve the extraction of finger
vein patterns. We propose a multi-domain feature knowledge transfer strategy and a domain migration
loss converter to enable the trunk network to learn the robust representations of different finger vein
datasets as well as to compensate for the heterogeneity between them. In the proposed framework, two
lightweight segmentation networks are designed as the trunk branch and the auxiliary branch to achieve
real-time extraction of finger vein patterns. Our approach has been extensively tested on four finger vein
datasets available to the public, and the results show that our Lite-HDNet not only improves segmentation
performance on all datasets but also effectively reduces heterogeneity between different domains. In addition,
we also validated the real-time performance of Lite-HDNet on NVIDIA embedded terminals, proving the
outperformance of our approach compared with previous lightweight segmentation networks.

INDEX TERMS Image segmentation, domain adaptation, finger vein extraction, knowledge transfer.

I. INTRODUCTION
With the increasing demand for security systems on the
market, more and more attention has been paid to biometric
identification, which is becoming one of the most criti-
cal and challenging tasks in information security. Because
of its live recognition, high uniqueness, and strong anti-
counterfeit properties, finger vein recognition technology has
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been widely used in information security, network payment,
and other fields. Finger vein recognition technology mainly
includes two key steps: feature extraction and matching
recognition. The former is the basis for the latter, and extract-
ing a clearer finger vein pattern can effectively improve the
accuracy of matching recognition. Therefore, how to extract
clear finger vein patterns has become a hot problem that many
researchers are concerned with and devoted to solving.

Previous methods for extracting finger vein patterns
mainly divide vein regions and background regions by some
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attribute assumptions (such as valleys and straight lines),
including repeated line tracking (RLT) (Miura et al. [1]),
regional growth (Qin et al. [2]), maximum curvature point
(MC) (Miura et al. [3]), Gabor filters (Yang et al. [4]), and
wide line detectors (WLD) (Huang et al. [5]), etc. These
traditional methods have some drawbacks: (1) Most methods
perform poorly on low-quality images; (2) Finger vein pat-
terns are marked by different thresholds, and it is difficult to
determine these different thresholds, which makes it difficult
to distinguish vein regions from non-vein regions; (3) Some
methods to extract the finger vein pattern may exist with
a vein line break. Now, many researchers have employed
deep learning-based image segmentation techniques for the
extraction of finger vein patterns in order to avoid the short-
comings of conventional approaches. Because the features of
the vein are extracted directly from the original image in the
deep learning method, the crucial error of model extraction is
minimized. In addition, the rich prior knowledge can be fully
utilized by forming a large number of digital vein images,
which also resolves the problem of class imbalance.

Current deep learning-based approaches for extracting fin-
ger veins have two key issues: weak model generalizability
and subpar real-time performance. Many segmentation net-
works can achieve good results on a single finger vein dataset
through training but perform poorly on other datasets or
practical applications because of the poor generalizability of
the model due to a single training dataset, which limits the
segmentation performance of the model. An effective way
to improve the generalizability of the model is to include
multiple finger vein datasets in the training phase of the
network, which can not only enrich the diversity of finger
vein features but also improve the segmentation performance
of the model. However, due to the heterogeneity between
different finger vein datasets, direct training between finger
vein images from different domains is undesirable, and direct
use of mixed datasets to train the model does not yield good
results. As a result, one of the topics of our research is how to
effectively reduce heterogeneity between finger vein images
in order to improve the model’s generalizability. In practical
applications, finger vein recognition systems need to have a
low manufacturing cost, a good effect, a fast response, etc.
Finger vein feature extraction is one of the key steps in finger
vein recognition technology, and the real-time performance
of finger vein extraction will directly affect the real-time
performance of the whole recognition process, while many
deep learning-based finger vein extraction methods have
low real-time performance and are difficult to deploy on
low-cost embedded platforms. Therefore, another focus of
our research is to extract finger vein patterns in real time on
embedded platforms.

To solve the above problems, we propose a novel
lightweight domain-adaptive segmentation framework (Lite-
HDNet) that utilizes knowledge distillation to transfer feature
information from multiple finger vein datasets to a trunk
network, and instructs the trunk network to train so that the

trunk network can learn a generic representation of finger
veins, address the heterogeneity between different finger
vein datasets, and improve the generalizability and real-time
performance of the model. For learning a more robust rep-
resentation in the model, we propose a middle-layer guided
multi-source feature knowledge transfer strategy (MDFKT)
so that the trunk network can learn feature knowledge from
different domains in a focused manner. It is not an easy
task to solve the problem of heterogeneity between different
domains of data.

To better compensate for the existing heterogeneity,
we propose domain migration loss converters that jointly
guide the training of the trunk network through the output of
the framework’s auxiliary branches and the labeling informa-
tion of different domains. To achieve real-time extraction of
finger vein patterns, we design two lighter and more efficient
lightweight segmentation networks as the trunk and auxiliary
branches in the Lite-HDNet framework for the purpose of
more precise and rapid segmentation. Our major contribu-
tions are summarized below:

1) In this research, for the purpose of extracting finger
vein features, we develop a brand-new, lightweight, domain-
adaptive real-time segmentation system called Lite-HDNet.
The framework can combine multiple datasets for training
and use knowledge refinement to migrate feature knowledge
from multiple finger vein datasets into the backbone network
to improve the generalizability of the backbone network and
weaken the heterogeneity existing among data. To the best of
our knowledge, this is the first domain adaptation work in the
field of finger vein extraction.

2) The middle-layer guided multi-domain feature knowl-
edge transfer (MDFKT) technique is a new learning paradigm
that we suggest. This method approximates steering the trunk
network by using the feature distribution of finger veins
from various domains. The trunk network can then concen-
trate on learning generic representations of data from several
domains, enhancing model performance and generalizability.

3) The domain migration loss converter (DMLC) is pro-
posed to better reduce the heterogeneity between different
finger vein datasets and improve the generalizability of the
model. This strategy combines the output of the auxiliary
branch with the segmentation loss of the corresponding real
labels, while the logits of the auxiliary branch and the trunk
branch are jointly used to guide the training of the trunk
network.

4) To achieve real-time extraction of finger vein patterns,
we designed two lightweight networks for building the trunk
branch and auxiliary branch in Lite-HDNet. On four-finger
vein public datasets, the designed trunk and auxiliary net-
works achieve SOTA performance when compared to other
lightweight segmentation networks.

The strategy proposed in this study produces the most
cutting-edge experimental results on four publicly accessible
finger vein datasets (SDU [6], MMCBNU [7], HKPU [8],
and UTFVP [9]). On the NVIDIA integrated terminals,
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we additionally test our method’s real-time performance
(JETSON NANO, JETSON TX2, JETSON XAVIER NX,
JETSON AGX XAVIER).

The structure of this paper is built as follows: Section II
presents related work in the field, while section III describes
our proposed methodology. Then, section IV lists our exper-
imental results, and Section V concludes the article.

II. RELATED WORK
A. METHOD FOR EXTRACTING FINGER VEINS BASED ON
DEEP LEARNING
Finger vein feature extraction techniques based on deep learn-
ing have produced some outstanding outcomes. Qin et al. [10]
proposed that convolutional neural networks (CNN) should
be used to extract vein patterns and fully convolutional net-
works (FCN) should be applied to resume the missing finger
vein patterns in segmented images. Fang et al. [11] proposed a
dual-stream lightweight network to integrate raw finger vein
images and mini ROI for efficient finger vein verification.
Yang et al. [12] used a generative adversarial network (GAN)
approach for finger vein pattern extraction and designed an
adversarial training strategy and loss function to enhance
the segmentation effect. In order to extract vein features,
Qin et al. [13] suggested a unique network that combines
the long-short-termmemorymodel (LSTM) and CNN, where
CNN learns robust features of vein texture pattern represen-
tation and LSTM retains complicated spatial relationships
of vein patterns. With the use of a state-of-the-art semantic
segmentation network, Jalilian et al. [14] extracted vein pat-
terns from finger images and regarded them as actual vein
features in biometric finger vein recognition. Zeng et al. [15]
suggested an end-to-end approach for extracting vein textures
that combines a fully convolutional neural network (FCN)
with a conditional random field (CRF) that can capture com-
plicated vein structural elements by adaptively modifying the
receptive field based on the vein’s scale and form. In the
work of Noh et al. [16], they devoted themselves to extract-
ing actual finger vein patterns directly from finger images
without any pre- or post-processing assisted by a semantic
segmentation convolutional neural network. Li et al. [17]
established a finger vein infrared image segmentation dataset
and proposed to segment finger vein images using the pyra-
midal structure and attentionmechanism. However, the issues
of weak model generalizability and subpar real-time perfor-
mance have not been addressed in any of the aforementioned
deep learning-based finger vein extraction projects. In this
research, we offer a way to overcome these two drawbacks.

B. SOLVE THE PROBLEM OF DATA HETEROGENEITY
BETWEEN DIFFERENT DOMAINS
Researchers in the field of medical image processing have
compensated for the scarcity of medical images by federating
multiple datasets, but the inherent heterogeneity of different
datasets adds difficulties to the combined training among
them. Many recent studies have used domain adaptation

methods to deal with the heterogeneity that exists among
domain data. To optimize the automatic grading function of
breast cancer in lymph nodes, Wollmann et al. [18] adopted
cyclic consistent generative adversarial networks (Cycle-
GAN) as well as densely connected deep neural networks
for domain adaptation methods. Javanmardi et al. [19] trained
CNN with adversarial-based training methods to reduce the
discrepancies between source domain and target domain
datasets. Chen et al. [20] worked out a collaborative image
and feature adaptation approach to effectively address the
domain transfer problem by implementing adaptive co-fusion
from the perspective of images and features. Wang et al. [21]
established a low-rank representation-based multisite adap-
tation framework to find a common low-rank representation
for data from multiple sites and reduce data heterogeneity
between the target and source domains. Liu et al. [22] used
multisite guided knowledge migration to improve the kernel
and develop a domain-specific batch normalization layer to
allow the network to estimate statistics and perform feature
normalization for each site separately. Zhao et al. [23] refine
the source classifier by minimizing the empirical Wasserstein
distance between the source and the target, mapping the target
to each source’s feature space separately, and selecting source
training samples closer to the target. Zhou et al. [24] made
use of nonlinear transformations to enhance source-similar
and source-different images and suggested the batch nor-
malization layer in the proposed dual normalization-based
model be normalized separately. He et al. [25] proposed a
bidirectional image synthesis and segmentation module that
used an intermediate data distribution generated for both
domains to segment brain tumors. Han et al. [26] created
a depth-symmetric architecture for medical image segmen-
tation by introducing bidirectional alignment via a shared
encoder and two private decoder schemes to simultaneously
align the features between the source and target domains to
narrow domain differences. These domain adaptation meth-
ods can combine multiple datasets to train the network, which
improves model performance and generalizability; however,
no domain adaptation method exists for finger vein extrac-
tion, and the method proposed in this paper is the first
lightweight domain adaptation segmentation framework for
finger vein extraction.

C. LIGHTWEIGHT NEURAL NETWORKS
Due to the unrealistic requirements of long training times
and powerful computation hardware devices in deep neu-
ral networks, designing lightweight neural network models
becomes an ideal solution to this problem. Hence, the design
of lightweight neural network models has received con-
siderable attention in academia and industry, with several
lightweight models proposed. To separate the correlation in
two directions, Xception [27] departs from spatial convolu-
tion and channel convolution. SqueezeNet [28] divides the
convolution layer into an extension layer and a compression
layer, with the compression layer compressing the number of
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FIGURE 1. Our proposed lightweight domain-adaptive real-time segmentation framework (Lite-HDNet).

channels in the model. MobileNet [29] employs deep separa-
ble convolution to reduce model complexity while improving
performance, and MobileNetV2 [30] proposes a reverse
residual block to replace positive residuals. ShuffleNet [31]
introduced the channel shuffle method to solve the problem
of exchanging information between groups in grouped convo-
lution. ShuffleNetV2 [32] discussed four basic principles for
faster network operation by considering a real-time model.
GhostNet [33] proposed a ghost module to compress the
model by considering feature redundancy. MicroNet [34]
proposed microfactor decomposition convolution to reduce
node connectivity, resulting in a lower FLOP model, and
introduced dynamic activation functions to improve nonlin-
earity.

III. PROPOSED METHOD
In this section, we give an overview of our proposed
lightweight domain-adaptive real-time segmentation frame-
work (Lite-HDNet) for finger vein pattern extraction, which
is illustrated in Fig. 1. It is made up of a trunk branch and two
auxiliary branches: the source domain branch and the target
domain branch. The target domain finger vein images are
used to train the trunk branches and target domain branches,
while the source domain finger vein images are used to train
the source domain branches. And the feature knowledge dis-
tribution extracted in the network layer of auxiliary and trunk
branches is approximated by feature loss, which enhances the
segmentation performance of the shallow trunk branches as
well as their generalizability.

A. EQUATIONS
We propose an intermediate layer-guided multi-domain fea-
ture knowledge transfer strategy (MDFKT) to overcome the
heterogeneity in finger vein data and improve the robustness
of the trunk branch. The MDFKT strategy was influenced by

research like that found in [35], [36], [37], [38], and [39],
which introduced intermediate representations to create more
accurate models of students and directly linked teacher and
student knowledge of characteristics. The MDFKT strategy
differs from all previous feature knowledge-based distillation
strategies in that the trunk branchmust learn not only the deep
feature representation of the target domain finger vein data
from the target domain branch but also the generic feature
representation of the source domain finger vein data from the
source domain branch, as well as how the trunk branch should
trade off feature knowledge between domain branches, which
we view as a challenge. Previous approaches to multi-teacher
distillation have involved transferring knowledge by identi-
fying models of teachers who perform well across multiple
teachers or using a general averaging strategy that takes all
teachers’ knowledge into account equally. However, individ-
ual strengths may exist among teachers, and focusing solely
on the knowledge of the best teacher may deplete the student
model of the strengths of other teachers, whereas learning
knowledge from all teachers equally may lead to conflicts
among teachers during the knowledge transfer process, fail-
ing to optimize the best student model. Compared with
the previous distillation work, which trained both teacher
and student models with the same dataset, we proposed the
MDFKT strategy, the first multi-domain multi-teacher distil-
lation strategy, and this work is the first attempt at finger vein
segmentation.

As previously stated, when solving the multi-domain
multi-teacher distillation problem, we try to improve the
trunk branch’s generalization ability to the source domain
data and its robustness in the hope of the trunk branch being
able to accept the auxiliary branch’s guidance to the greatest
extent. Figure 2 depicts the MDFKT strategy’s implemen-
tation. First, we use converters to resize the middle layer
feature map of the source branch and the target branch so
that they coincide with the middle layer feature map of the
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FIGURE 2. An overview of the multi-source feature knowledge transfer strategy (MDFKT) guided by the middle layer. The
trunk branch’s feature maps are aligned with the two auxiliary branches’ feature map dimensions, and the corresponding
feature loss functions aid the trunk branch in learning feature knowledge from different domains in a focused manner.

trunk branch, and then we measure the similarity between
the two groups of feature maps with the help of the squared
parametric as a distancemeasure. Finally, branch controllable
variables K are introduced to control the share of the source
domain branch’s characteristic distillation loss and the target
domain branch’s characteristic distillation loss in the trunk
branch guidance in order to obtain more robust and general-
ized trunk branches. The MDFKT strategy can be expressed
by the following equation:

LSTKD =

∑n

i=1
Distl2 (Trans(F

i
M ),F is), i ∈ [1, n] (1)

LTTKD =

∑n

i=1
Distl2 (Trans(F

i
M ),F iT ), i ∈ [1, n] (2)

where Distl2 (, ) denotes the similarity of two sets of feature
maps measured using the square l2 parametric; Trans(·) rep-
resents the converter to adjust the size of the feature map; F iM
stands for the feature map of the trunk branch’s middle layer;
i refers to the middle layer of the i layer; and n shows the
number of layers of the middle layer, which in this paper is
n = 5. By substituting the square paradigm, Eq. (1) and Eq.
(2) can be simplified to Eq. (3) and Eq. (4), respectively.

LSTKD =
1
2

∑n

i=1

∥∥∥F is − Trans(F iM )
∥∥∥2 (3)

LTTKD =
1
2

∑n

i=1

∥∥∥F iT − Trans(F iM )
∥∥∥2 (4)

At length, with the introduction of controllable variables, the
overall loss of MDFKT can be expressed as:

LMSFKT = (1 − K ) · LSTKD + K · LTTKD,K ∈ (0, 1) (5)

The MDFKT strategy trains the trunk branch commonly
by two auxiliary branches from different domains, so that
the trunk branch can learn specific knowledge of differ-
ent domains more comprehensively for the improvement in
robustness and generalization ability of the trunk branch.

B. DOMAIN MIGRATION LOSS CONVERTER (DMLC)
In this paper, it is one of our objectives to use finger vein data
from different domains to provide a more efficient training
for the trunk network, to address the heterogeneity that exists
between data from different finger veins and improve the
generalization ability of themodel. Therefore, it is inadequate
to solely rely on the MDFKT strategy to guide trunk branch
training. Previous works on image segmentation have shown
that true labels are indispensable in guiding the training
of segmentation networks, which inspires us to explore the
effectiveness of employing true labels of finger veins from
various domains to guide the training of trunk branches. Nev-
ertheless, the real labels of different domains cannot directly
guide the training of the trunk branch, which could lead to
errors in the training results. we design a domain migration
loss converter is introduced to indirectly guide the training of
the trunk branch using the real labels of finger veins from
different domains to further solve the heterogeneity in the
data and improve the trunk branch’s performance.

In essence, the domain migration loss converter is a train-
ing loss function that converts the trunk branch. We use the
output of the auxiliary branch to match the corresponding
true labels, then pass the label information of the source and
target domains through the loss function, and finally combine
the loss from the auxiliary branch with the trunk branch’s
segmentation loss to obtain the final loss for guiding trunk
branch training. The design of the domain migration loss
converter can be found in Fig. 3. It begins with denoting
the output logits of the auxiliary branches and the trunk
branch as as, atand am, respectively, with the minimization
of discrepancy between the auxiliary branch output and the
trunk branch output by the vanilla KD loss. This process can
be expressed as Eq. (6) and Eq. (7).

LS−vanilla = H
(
pm, ps

)
= H

(
σ

(
am;T

)
, σ

(
as;T

))
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FIGURE 3. Domain migration loss converter.

= −

∑K

k=1
ps [k] logpm [k]

= − < ps, log pm > (6)

LT−vanilla = H
(
pm, pt

)
= H

(
σ

(
am;T

)
, σ

(
at ;T

))
= −

∑K

k=1
pt [k]logpm[k]

= − < pt , log pm > (7)

where pm is the trunk branch’s output vector, ps and pt are
the source and target branches’ output vectors, respectively,
T is the temperature of the softened logits, σ (·) is the softmax
operation, p[k] is the k component of the vector p, and <, >

is the vector’s inner product operation.
The next step is to measure the similarity between the

output of the auxiliary branch and the corresponding real
labels, whose results will be utilized to adjust the Dice loss so
as to obtain the loss function guided by the real labels from
different domains to facilitate the main ranch training.

LsGT =

∑N
i Dist(Ms,MGT ) · 2

∑N
i pigi∑N

i p
2
i +

∑N
i Dist(Ms,MGT )·

∑N
i g

2
i

(8)

L tGT =

∑N
i Dist(MT ,MGT ) · 2

∑N
i pigi∑N

i p
2
i +

∑N
i Dist(MT ,MGT )·

∑N
i g

2
i

(9)

where pi stands for the predicted binary segmentation pixel
and gi represents the label binary pixel, for a total ofN pixels.

The loss function LGT that represents the true labels of dif-
ferent domains and the vanilla KD loss function that reduces
the discrepancy between the auxiliary branch and the trunk
branch are then input to the loss converter in Fig.3. After

weighted and averaged, they are used to guide the network
training in the trunk branch. The loss function’s operation in
the loss converter can be written as follows

LS =
1
2
(LS−vanilla + LsGT ) (10)

LT =
1
2
(LT−vanilla + L tGT ) (11)

At last, we use the loss functions LS and LT output by
the loss converter with the binary BCE loss for guiding the
training of the trunk branch. To control the dependence of
the trunk branch on the knowledge of different domains,
the hyperparameter γ was introduced to regulate the loss
guidance of the source domain branch and the target domain
branch, and the final loss function used to guide the trunk
branch training can be expressed as

LDM =
1
3
((1 − γ ) · LS + γ · LT + LBCE ) (12)

In short, our proposal of the domain migration loss con-
verter serves to enable the trunk branch to better learn specific
knowledge from different domains and resolve heterogeneity
between different finger vein data, which will be more useful
in improving the model’s generalization ability.

C. DESIGN OF LIGHTWEIGHT SEGMENTATION MODEL
To achieve more efficient finger vein pattern extraction and
improve the real-time performance of the model, we designed
two lightweight segmentation networks to build Lite-HDNet,
which are the trunk branch network and the auxiliary branch
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FIGURE 4. The structures of the auxiliary branch network and the trunk branch network.

TABLE 1. Details of finger vein dataset.

network, and the network structures are shown in Fig. 4.
We use the Unet [40] model of architecture as the bench-
mark for the design, which is because its U-shaped structure
can take into account both global and local features of the
image, while the shallow part of the network focuses more
on local features such as texture, and the deep part of the
network focuses more on the essential features of the image.
We use lightweight depth-separable convolution to replace
the standard convolution and follow the principle of spatial
transformation in higher dimensions, which effectively alle-
viates the loss of feature information and gradient confusion.

To enhance the effectiveness of the module, we added the
attention module ECA [41] to avoid performing dimension-
ality reduction operations in the attention dimension, which
in turn affects the network performance.

To make the trunk branch network have higher real-time
performance in the final prediction, we use the idea of
grouping in the trunk network to reduce the connectivity
between point convolution channels and group the sparse
point convolution. By sparsifying the connectivity between

FIGURE 5. Raw images of the four finger vein datasets.

point convolutions, we can reduce the complexity of convo-
lutional operations and introduce two different group shuffle
strategies for inter-group information exchange to ensure the
performance of the model.

Compared with previous lightweight segmentation net-
works, our designed trunk branch network and auxiliary
branch network possess better segmentation performance and
fewer parameters, with experimental results shown in Table 3.

IV. EXPERIMENTS
A. DATASETS AND EXPERIMENTAL CONFIGURATION
The finger vein dataset SDUMLA-HMT (SDU) from
Shandong University’s Machine Learning and Data Min-
ing Laboratory, the finger vein dataset MMCBNU 6000
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(MMCBNU) from Jeonbuk National University, Korea, the
finger vein dataset from Hong Kong Polytechnic University
(HKPU), and the finger vein dataset from the University
of Twente, the Neth, were chosen separately to validate the
effectiveness of the proposed method. The imaging effect
varies greatly due to the different acquisition devices they
used, and the placement of the fingers, the area of the col-
lected fingers, and the clarity of the blood vessels in the
fingers are all different, as shown in Fig. 5. To be fair,
we performed the same preprocessing operation in the image
preprocessing stage for all four datasets, and since the incon-
sistent image sizes in the datasets may affect the fairness of
the experimental results, we resized the images and labels of
the four finger vein datasets after preprocessing to a uniform
size of 270 × 150. In this study, we used the maximum
curvature method [3] to generate true labels for the four
datasets of finger veins for experiments and divided the data
in each dataset into training and test sets in a 4:1 ratio.

Our experiments were run on the pytorch1.8.0 frame-
work, which employed a single NVIDIA GeForce RTX 3090
TURBO GPU for training, a SGD optimizer for network
training, a momentum of 0.9, a weight decay of 0.01, and a
batch size of 256. During training, the chunking strategy was
adopted for feature extraction and prediction, which not only
completed the work of expanding data but also better pre-
dicted the finger vein detail part. We set the step size of each
patch’s width and height to 5, extract multiple consecutive
overlapping blocks for each image, and calculate the proba-
bility that a pixel is a vein by averaging the probability of all
predicted blocks that cover the pixel. Moreover, we validate
the real-time performance of finger vein pattern extraction
on NVIDIA embedded terminals JETSON NANO, JETSON
TX2, JETSON XAVIER NX, and JETSON AGX XAVIER.

B. EVALUATION INDICATORS
In this paper, we used three segmentation metrics—Dice,
AUC, and accuracy—as the basis for evaluating the per-
formance of finger vein segmentation. Dice: The most
frequently used segmentation metric, which represents the
ratio of the intersection area of two segmentation results and
labeling to the total area.

C. ABLATION EXPERIMENTS
In this section, we conduct a large number of experiments
to demonstrate the effectiveness of our proposed method.
In subsection (a), the effectiveness of the MDFKT and
domain migration loss converter (DMLC) proposed in this
paper is verified, i.e., finger vein images from other domains
can be used to improve the finger vein pattern extraction from
the target domain. In subsection (b), the segmentation results
of the two designed lightweight segmentation networks and
some recent lightweight segmentation networks on the finger
vein dataset are analyzed to demonstrate their feasibility.
In subsection (c), the real-time performance of the proposed
two lightweight segmentation networks is tested on the PC
side and on NVIDIA embedded terminals. Finally, we verify

in subsection (d) that the Lite-HDnet framework proposed in
this paper is a lightweight and efficient framework for finger
vein segmentation.
(a)Effectiveness of MDFKT and Domain Migration Loss

Converters (DMLC): To validate the effectiveness ofMDFKT
and DMLC, we verified the effectiveness of the proposed
methods on four finger vein datasets, respectively, and the
experimental results are shown in Table 2. Among them,
we used the Unet network as the baseline and used the control
variables method to validate the effectiveness of each of the
MDFKT and DMLC methods as well as the combined effect
of the two methods. In addition, since one of the main objec-
tives of this paper is to improve finger vein pattern extraction
in the target domain using finger vein images from different
domains, we introduce finger vein images from different
domains as source domains in the experiments in Table 2 to
assist the training.

We have selected different source-domain finger vein
images for their auxiliary training and observed the experi-
mental results to find that the MDFKT and DMLC methods
can combine the source-domain finger vein images to
improve the segmentation effect of Unet. When the target
domain is SDU, theMDFKTmethod improves themodel per-
formance and has a greater effect on the improvement of the
AUC metric and a smaller improvement of the Dice metric,
while the DMLC method can better improve the Dice value,
and the improvement of the AUC metric is slightly smaller
than the increase of the MDFKT method. When trained with
bothMDFKT andDMLC, the overall experimental results are
better than those of the single method, and the segmentation
effect is substantially improved compared with the base-
line. By analyzing the results of different source domains,
it can be found that introducing different source domains for
assisted training results in improved segmentation of the tar-
get domain, even for the basic Unet. When combined with the
MDFKT and DMLCmethods, the segmentation performance
of the network can be improved to the greatest extent. Our
method motivates the network to better learn the finger vein
features from different source domains and make full use of
the source domain features to improve the extraction effect
of the target domain finger vein pattern. In addition, by com-
paring different source domain images, it can be found that
the segmentation effect is improved the most when UTFVP
is selected as the source domain. Thus, it can be concluded
that the data heterogeneity between UTFVP and SDU is the
least compared to other finger vein datasets, which is more
beneficial to improving the segmentation effect of SDU.

Similar to the conclusion obtained when the target domain
is SDU, when the target domain is MMCBNU, the segmen-
tation effect of the target domain can be improved by using
MDFKT, DMLC, and the joint method, among which the
best results are obtained by the joint method. By comparing
the results of different source domains, we found that the
segmentation effect of the base Unet is optimal when the
source domain is MMCBNU, while the direct introduction of
other source domains leads to a decrease in the segmentation
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TABLE 2. Comparison of segmentation performance of MDFKT and DMLC methods with baseline Unet.

effect of MMCBNU. This is due to the fact that the base-
line method does not use any domain adaptation method to
address the inherent heterogeneity between different finger
vein images, making it difficult for the model to learn a
better representation from multiple datasets, and the results
in Table 2 demonstrate that it is difficult to obtain a more
robust segmentation effect by directly uniting multiple finger
vein datasets for training. The MDFKT and DMLC methods
suggested in this paper can effectively address the issue. The
heterogeneity between data sets can be gradually reduced by
using one method alone, and the best results can be obtained
by combining the two methods.

The analysis shows that when the source domain is SDU,
Dice and AUC improve by 5.04% and 5.39% when both
methods are used simultaneously compared with the base-
line; when the source domain is MMCBNU, Dice and AUC
improve by 1.08% and 1.64%; when the source domain is
HKPU, Dice and AUC improve by 3.45% and 4.46%; and
when the source domain is UTFVP, Dice and AUC improve
by 3.39% and 4.05%. The effectiveness of the proposed
method is further verified by analyzing the experiments with
the target domain as MMCBNU.

When the target domain is HKPU and UTFVP, the same
conclusions are obtained as when the target domain is
MMCBNU. The baseline Unet results in a degradation of
segmentation performance on the target domain when the tar-
get domain is directly trained jointly with the source domain
images, and the degradation of performance varies depend-
ing on the degree of heterogeneity differences between the
datasets. In the experiments where the target domain is
HKPU, we can find that the source domain selection of SDU
has the greatest effect on the segmentation effect of the target
domain, while the source domain selection of UTFVP has

the least effect on the segmentation effect, which can infer
that the heterogeneity between UTFVP and HKPU is smaller
than that between SDU andHKPU.When the target domain is
UTFVP, the heterogeneity between HKPU, MMCBNU, and
UTFVP is much smaller than that of SDU. The proposed
method can not only solve the problem that heterogeneity
between source and target domains leads to the degradation
of finger vein segmentation but also improve finger vein
pattern extraction in the target domain by learning the feature
representation of the source domain so that the segmentation
performance can be improved.

In this subsection, the experimental results show that our
proposed method can effectively use different finger vein
datasets to improve the model segmentation performance and
enhance the extraction of target domains, and it can well
solve the heterogeneity problem between different finger vein
datasets to enhance the generalizability of the model.
(b)The designed lightweight segmentation network’s

robustness: In order to improve the segmentation of finger
vein patterns and ensure a lightweight model with high real-
time performance, we designed two effective lightweight
segmentation networks: a trunk branching network and an
auxiliary branching network. In this subsection, we exper-
imentally compare the two proposed networks with some
lightweight segmentation networks to verify the effectiveness
of the proposed networks.

We compare the performance of the designed trunk branch
network and auxiliary branch network with some lightweight
segmentation networks on four publicly available finger vein
datasets, and the results are shown in Table 3. According to
the experimental results, our proposed auxiliary branch net-
work outperforms Unet and other lightweight segmentation
networks on all datasets. It is worth noting that the auxiliary
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TABLE 3. Performance of our proposed Lightweigjt network on NIR finger vein datasets.

branch network has only 516K parameters and 42.97M flops,
which is 25.3M fewer flops compared to Shuffle Unet. Com-
pared with Unet, the auxiliary branch network not only has
a more robust segmentation performance but also has 66
times fewer model parameters and 95 times fewer Flops. The
proposed trunk branch network is smaller than the auxiliary
branch network, with only 60.59K parameters and 28.25M
loops. It is not only much smaller in terms of model param-
eters than other lightweight segmentation networks, but its
segmentation performance is roughly comparable to and even
exceeds that of some networks.

According to the results of Table 3, we designed two
lightweight segmentation networks (a trunk branching net-
work and an auxiliary branching network) that performed
exceptionally well in segmenting finger vein patterns and
modeling lightweighting. For visual comparison, we also
present some examples of finger vein segmentation in Fig. 6.

The extracted veins are smoother and more consistent with
the vascular characteristics, and they also lessen the genera-
tion of burrs to some extent. The auxiliary branching network
is more advantageous in extracting the fine details of the
finger veins and illustrating the fine branches of the veins.
The trunk branching network greatly ensures the model’s seg-
mentation performance while keeping the model lightweight,
and the segmentation effect is superior to Unet and Mobile
Unet.

In this subsection, we validate the segmentation results
of the proposed two lightweight segmentation networks on
finger vein images, and the results demonstrate the excel-
lent performance of the trunk branching network and the
auxiliary branching network in terms of both segmentation
performance and model lightweighting.
(c)Verify the real-time nature of finger vein extraction:

In this subsection, we investigate the real-time performance
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FIGURE 6. Results of finger vein extraction for the two lightweight networks we designed as well as other
networks.

TABLE 4. Real-time experiment on the PC side.

of the proposed method on the PC side and the embedded
side, respectively. Due to the low computing power of the
embedded terminal, the number of images in a single test
cannot be too large. To ensure fairness, we limit the num-
ber of images in each batch of tests to 20 on both PC and
embedded terminals, and compare the average time required
for inference on a single image by calculating the average
time required for inference on a single image. Among them,
due to the unsatisfactory computing power of Jetson NANO,
which cannot support single processing of 20 finger vein
images, we set the number of images per batch tested on

Jetson NANO to 5 and obtained the time required for single
image processing by summing and averaging. Table 4 shows
the experimental results comparing the real-time performance
of our proposed method with some lightweight networks on
the PC side. The results indicate that our method outperforms
general lightweight methods in terms of real-time perfor-
mance, processing a single finger vein image in as little as
0.052s and requiring less memory when tested. When the
experiments are conducted on the PC side, we note that the
variation in the number of parameters and Flops of the model
has less impact on the real-time performance of the network,
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TABLE 5. Real-time experiment on the NVIDIA embedded terminals.

TABLE 6. Performance comparison of Lite-HDnet framework with baseline on finger vein datasets.

but the model’s complexity and memory usage are the more
important factors affecting the real-time performance of the
model. Ma et al. [29] proposed that the key factor influencing
model speed is the memory access cost (MAC) required for
the model to run, whereas we discovered that model com-
plexity can also have a significant impact on model speed.
Table 5 shows the parameters, Flops, and multiplication and
addition operations of the lightweight network, in which the
model size and operations of Shuffle Unet are much smaller
than those of Ghost Unet, but in the real-time experiments,
the real-time performance of Shuffle Unet is worse than that
of Ghost Unet, and the memory occupation is higher.

This is because there are too many group convolution
and channel shuffling operations in Shuffle Unet, which
complicate the network structure and reduce the real-time
performance.

Table 5 lists the experimental results on the NVIDIA
embedded terminals, from which our method achieves the
best results on all four embedded terminals with different
arithmetic powers, requires less inference time on the embed-
ded terminal compared to other lightweight models, and
achieves fast segmentation of finger vein images without
using any quantization operations during the experiment. For
JETSON NANO equipped with the lowest arithmetic power,
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FIGURE 7. Visualization of the performance of the Lite-HDnet framework with Unet.
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our proposed method only takes 0.7938s to extract a finger
vein pattern image in the fastest situation.
(d)Analysis of the effectiveness of Lite-HDnet: In this

subsection, we evaluate the Lite-HDnet that was created by
combining the three techniques. The domain migration loss
converter with the Lite-HDnet, which can be divided into
four different groups of experiments depending on the target
domain, is compared to the original Unet, the Unet using
MDFKT and the domain migration loss converter. From the
experimental results in Table 6, it can be seen that if the source
domain finger vein images and the target domain finger
vein images are trained jointly directly without the method
proposed in this paper, there is heterogeneity between the
datasets due to the different ways and devices used to collect
different finger vein datasets, which leads to the degradation
of the model training effect.

The proposed method can not only alleviate the hetero-
geneity between different datasets and improve the gener-
alization performance of the model but also help the model
learn more robust feature representation and richer feature
information from other datasets so that it can extract finger
veins better. When other finger vein datasets are introduced
as the source domain, the model performance is better than
when the same dataset is used as the source domain. The best
model performance is achieved when a mixed dataset is used
as the source domain.

When the target domain is SDU, direct introduction of
the source domain finger vein image can improve the seg-
mentation effect on the target domain, and our method not
only fully learns the feature knowledge of different domains
and transfers the feature knowledge to the target domain to
improve the segmentation effect on the target domain, but also
creates the model with high real-time performance to achieve
real-time finger vein pattern segmentation. When the source
domain is SDU, Lite-HDnet increases Dice by 3.3% andAUC
by 5.87% compared to Unet; when the source domain is
MMCBNU, Lite-HDnet increases Dice by 0.84% and AUC
by 5.77% compared to Unet. When the source domain is
HKPU, Lite-HDnet improves Dice by 0.79% and AUC by
4.01% compared to Unet; when the source domain is UTFVP,
Lite-HDnet improves Dice by 1.88% and AUC by 3.9%
compared to Unet; when the source domain is mixed dataset,
Lite-HDnet improves Dice and AUC by 0.53% and 3.9%
compared to Unet. Dice and AUC are improved by 0.53% and
3.9%, respectively. The difference between Lite-HDnet and
Unet after usingMDFKT and DMLC is that the segmentation
network is different. Lite-HDnet is composed of the trunk
branch network and the auxiliary branch network designed
in this paper. From the experiments, we can observe that
Lite-HDnet has better segmentation results compared with
Unet usingMDFKT and DMLCmethods, thanks to the better
performance of the two lightweight segmentation networks
we designed and the fact that the Lite-HDnet model is lighter
and has higher real-time performance.

When the target domain is MMCBNU, Unet directly intro-
duces the source domain finger vein images with the target

domain to jointly train the network, which does not improve
the segmentation performance of the network. This is due to
the different acquisition devices, imagingmethods, and finger
placement positions used in different datasets of finger vein
images, resulting in a large heterogeneity between different
finger vein datasets, and direct joint training will affect the
extraction effect of finger veins and make the performance
of the model drop sharply. Lite-HDnet is proposed to be a
good solution to this problem. As shown in Table 6, when the
source domain is SDU, Lite-HDnet improves Dice and AUC
by 5.57% and 5.74% compared to Unet. When the source
domain is MMCBNU, Lite-HDnet improves Dice by 1.46%
and AUC by 2.06% compared to Unet. When the source
domain is HKPU, Lite-HDnet improves Dice by 4.11% and
AUC by 4.61% compared to Unet. When the source domain
is UTFVP, Lite-HDnet improves Dice by 4.01% and AUC
by 4.61% compared to Unet. When the source domain is
FUSION, Lite-HDnet improves Dice by 2.65% and AUC by
3.38%. Compared with Unet after using MDFKT and DMLC
methods, Lite-HDnet has better segmentation results, further
proving that the two lightweight segmentation networks we
designed are more effective for the finger vein segmenta-
tion task. Lite-HDnet improves Dice by 2.65% and AUC by
3.38%. Compared with Unet after using MDFKT and DMLC
methods, Lite-HDnet has better segmentation results, further
proving that the two lightweight segmentation networks we
designed are more effective for the finger vein segmentation
task.

When the target domain is HKPU and the target domain is
UTFVP, the conclusions obtained from analyzing the experi-
mental results in Table 6 are the same as those onMMCBNU,
further proving that Lite-HDnet is effective and feasible.
To make it easier to compare the performance of Lite-HDnet
and the baseline, we plotted Fig. 7, in which the enhancement
effect of Lite-HDnet can be observed more visually.

In this subsection, it is demonstrated through extensive
experiments that our proposed Lite-HDnet can improve the
extraction of finger vein patterns in the target domain using
finger vein images from different domains. Lite-HDnet can
effectively resolve data heterogeneity to ensure the model’s
segmentation effect.

V. CONCLUSION
In this paper, we propose a new lightweight domain adap-
tation real-time segmentation framework (Lite-HDNet) to
solve the problems of poor generalizability and low real-time
performance in current deep neural network-based finger vein
pattern extraction. This is the first work to improve finger
vein pattern extraction using a domain-adaptive approach
to combine multiple finger vein datasets. This framework
can learn common feature representations in multiple fin-
ger vein datasets with better segmentation performance and
stronger generalizability. Our proposed multi-domain feature
knowledge transfer strategy (MDFKT) and domain migration
loss converter can effectively address the problem of poor
generalizability of the trainedmodels due to the heterogeneity
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among data, and the effectiveness of the proposed method
has been validated on four publicly available finger vein
datasets (SDU,MMCBNU, HKPU, and UTFVP).We borrow
two lightweight segmentation networks (the auxiliary branch
network and the trunk branch network), giving Lite-HDNet
better segmentation capability and higher real-time perfor-
mance. The auxiliary branch network and trunk branch
network are then tested against other lightweight segmenta-
tion networks, with the results indicating that our proposal has
a lighter and more efficient segmentation network. Among
them, the parameter of the auxiliary branch network is only
516K, and the parameter of the trunk branch network is
only 60.59K. Furthermore, the real-time performance of the
proposed method has been verified on the NVIDIA series of
embedded terminals, which are capable of extracting finger
veins in real time on the embedded terminals without quanti-
zation.
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