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ABSTRACT The existing body of research on quantum embedding techniques is not only confined in
scope but also lacks a comprehensive understanding of the intricacies of the quantum embedding process.
To address this critical issue, this article explores quantum encoding schemes, uncovering valuable insights
into their encoding algorithms from theoretical foundations to amathematical perspective, as well as practical
applications. Initially, the article briefly overviews classical computing and the limitations associated with
classical bits in representing and processing complex information. Next, the article scrutinizes a variety
of quantum embedding patterns, including basis encoding, amplitude encoding, Qsample encoding, angle
encoding, quantum associative memory encoding, quantum random access memory, superdense encoding,
Hamiltonian encoding, and others. In addition, each technique is accompanied bymathematical formulas and
examples illustrating how each strategy can be applied. Finally, the article provides a comparative analysis
of different quantum embedding/encoding methods, outlining their strengths and limitations. Overall, this
insightful article highlights the potential of quantum encoding techniques for efficient information processing
beyond classical bits, thereby facilitating scientists and design engineers in selecting the most appropriate
encoding technique to develop smart algorithms for revolutionizing the field of quantum computing.

INDEX TERMS Encoding patterns, qubits, quantum computing, quantum information processing, quantum
circuits.

I. INTRODUCTION
In today’s digital world, one of the primary aims of informa-
tion theory is to encode information for quantification, stor-
age, or transmission. In the context of classical information,
a bit has been the fundamental unit for information science for
decades. However, the advent of quantum computing (QC)
has brought about a paradigm shift in how we approach data
processing and storage [1], [2]. This is because traditional
classical computing (CC) operates on the manipulation of
binary bits, which are confined to taking on values of either
0 or 1. Each bit in CC acts independently, representing the
most basic form of data. In stark contrast, quantum computing
(QC) leverages the capabilities of quantum bits, or qubits.
Unlike classical bits, qubits possess the unique ability to exist
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not only in the states of 0 and 1 but also in a superposition
of these states. This phenomenon allows a single qubit to
represent multiple values simultaneously [3], [4]. Fig. 1
vividly illustrates this fundamental divergence.

Moreover, QC utilizes another quantum property known as
entanglement, where the state of one qubit is intrinsically con-
nected to the state of another, irrespective of distance [5], [6].
Entanglement between qubits, a profound form of quantum
correlation, enables operations to be executed on multiple
qubits simultaneously. The correlations between entangled
particles surpass any classical correlation, underpinning the
power of QC [7]. This capability facilitates an exponential
speedup in processing power for certain types of computa-
tions [8], [9]. Thereby, superposition and entanglement are
potent features of QC that make it vastly different from
CC. These unique properties enable quantum computers
to perform certain tasks or calculations much faster and
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FIGURE 1. A diagrammatic portrayal showcasing the juxtaposition of
classical and quantum bit designs.

more effectively than classical computers, a phenomenon
referred to as ‘‘Quantum Supremacy’’ [10], [11]. QC gets
empowered by exploiting the merits of superposition, quan-
tum entanglement, and interference, among others, enabling
it to solve specific problems faster than CC by applying
various quantum algorithms, such as those developed by
Shor and Grover, and proof-of-principle demonstrations of
quantum computational advantage by entities like IBM,
Google, Xanadu, etc., [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22]. Moreover, quantum communication
protocols that rely on entangled states, e.g., Quantum Key
Distribution (QKD), transfer encrypted data as classical bits
through networks, while the keys to decode the information
are transmitted and encoded in a quantum state using
qubits [23], [24]. In 2016, China launched the world’s first
quantum communication satellite-to-ground entanglement-
based QKD [25], [26]. The ‘‘Micius’’ satellite was designed
to establish a secure and unhackable communication channel
between Beijing and Vienna using QKD. Quantum Xchange
also plans to launch about 500 miles of fiber optic cable to
create ‘‘Phio’’ the first-of-its-kind commercial QKD network
in the U.S [27], [28]. Furthermore, researchers at Toshiba
have successfully transmitted quantum information using
QKD over a 600-kilometer optical fiber network [29], [30].
The juxtaposition shown in Fig. 1 between the linear, sin-

gular state of classical bits and the multifaceted, superposed
states of qubits encapsulates the transformative potential of
QC in handling more intricate and voluminous data represen-
tations. Nevertheless, quantum information theory delves into
the representation and manipulation of quantum variables
or states (qubits) and harnesses the inherent advantages
of quantum mechanics for communication, computation,
and cryptography [31], [32]. Quantum computers require
embedding or encoding techniques for the following crucial
reasons:

FIGURE 2. Schematic of classical data embedding into quantum Hilbert
space [38].

1) No-cloning theorem: In QC, quantum objects—qubits
cannot be copied because of quantum mechanics
[33], [34].

2) Quantum version of random access memory
(QRAM): The way QC handles data is fundamentally
different from CC. Current first-generation quantum
computers, for instance, Noisy Intermediate-Scale
Quantum (NISQ) devices do not have access to a
database primarily because of their hardware limita-
tions. There is no direct concept of RAM or storage in
the traditional sense for quantum computers [35], [36].
Therefore, an additional step called state preparation is
required for initializing a quantum register and preparing
the qubits in a desired initial state before performing
computations or applying quantum circuits/gates [37],
as depicted in Fig. 2 and Fig. 3. Consequently, data has to
be loaded by encoding into the state of the qubits before
it can be used by quantum computers.

3) Enhanced computational power: Quantum embed-
ding allows for representing complex information
using quantum states, leveraging the unique properties
of quantum mechanics such as superposition and
entanglement [3], [18].

4) Quantum algorithms: Quantum embedding enables
the implementation of quantum algorithms. Algorithms,
such as Shor’s algorithm [56] for integer factorization
and Grover’s algorithm for searching [57], rely on
quantum embedding to realize their potential [58].

5) Quantum communication: Quantum encoding tech-
niques are crucial for quantum communication protocols
like quantum teleportation [26], [34], quantum secure
direct communication (QSDC) [59], and QKD [60],
[61], [62]. By encoding information in quantum states,
secure and efficient communication channels can be
established, ensuring the transmission of information
with quantum-level security and fidelity [63], [64], [65].

6) Quantum simulations and data models: QC holds
the potential for polynomial or exponential speed-up in
solving specific problems compared to CC. However,
practical implementation faces several fundamental
technical challenges. Among these challenges is the
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TABLE 1. Related prominent surveys on quantum encoding techniques.

loading of data into quantum computers and the
associated encoding, given their inability to directly
access database systems. Quantum embedding allows
for the simulation of complex quantum systems and
phenomena [39], [66]. By encoding the relevant infor-
mation into quantum states—making it accessible in
a suitable format—researchers can study quantum
processes, diverse datamodels/structures, and properties
that are difficult or infeasible to simulate using CC
methods.

Thus, to fully leverage the potential of QC, it is essential
to understand input data processing for developing novel
encoding techniques that allow us to efficiently represent and
manipulate information using qubits. The reason is that the
choice of an encoding technique has a significant impact on
the accuracy and efficiency of quantum data processing.

In the corpus of extant literature, discussions pertaining
to quantum embedding techniques (referenced in Table 1)
frequently exhibit a paucity of comprehensive insights,
are scattered among various publications with divergent
objectives, or are limited to specific encoding paradigms
tailored for particular applications. Notably, the works of
Zajac et al. [39], Bhattaraprot and Smanchat [40], and
Gilliam et al. [44] elucidate foundational methodologies
in the realms of encoding and hybrid quantum encoding
strategies. These investigations, however, mainly focus on
basis and amplitude encoding, thereby omitting an expansive
survey of alternative data encoding methodologies. Similarly,
the studies delineated in [50] and [67] are centered on
the utilization of angle encoding techniques for quantum
classifiers. Furthermore, a broader review of data encoding
methods, particularly within the quantum machine learning
(QML) domain, can be found in [38], [41], [49], and
[68], whereas the research presented in [42] and [43]
delve into encoding modalities relevant to quantum error
correction and NISQ systems. Although the contributions of
Weigold et al. [45], [46] and the research collectives under

Lloyd et al. [48] have significantly enriched our under-
standing of data encoding patterns, comprehensive analyses
addressing runtime complexity or scalability of all pertinent
encoding patterns remain sparse.

Despite the substantial advancements each cited study
within Table 1 offers to the QC discourse, it invariably mani-
fests certain notable gaps alongwith its own set of limitations.
These range from a lack of providing a detailed overview of
quantum predominant encoding techniques to an incomplete
scrutiny of the mathematical frameworks, requisite qubit
allocations, computational efficiency, and potential practical
applications. In contrast, our survey addresses these gaps
by furnishing an in-depth comparative analysis of the most
prominent encoding schemes, with a particular emphasis on
their mathematical formulations, qubit requirements, runtime
complexities, and applicability in practical scenarios, which
have hitherto been inadequately explored in the prevailing
literature. Beyond mere aggregation of extant knowledge, our
work aspires to contribute critical evaluations and delineate
prospective avenues for future inquiry within the domain of
quantum encoding.

In summary, this paper provides a panoramic overview
of various quantum encoding patterns, encompassing basis
encoding, amplitude encoding, Qsample encoding, angle
encoding, quantum associative memory encoding, Hamilto-
nian encoding, quantum random access memory, superdense
encoding, and others. We delve into the potential applications
of each technique, along with numerical equations and
examples to reinforce our findings. This article’s primary
contributions are as follows:
i. Focus on how to process information in QC—data

embedding.
ii. Provide a comparative analysis of encoding schemes

to highlight their merits and demerits in terms of the
number of qubits required and runtime complexity.

iii. Facilitate scientists and design engineers in selecting the
best-suited encoding strategy for their specific needs.
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FIGURE 3. Steps to execute quantum algorithms including non-trivial initialization (state preparation) via data encoding or embedding strategies.

The remainder of this paper is organized as follows:
Section II describes the fundamentals of quantum embedding.
Section III provides an in-depth overview of key encoding
patterns for quantum algorithms, in conjunction with compar-
ative analysis. Sections IV and V present the challenges and
future research directions, and paper conclusion, respectively.

II. BACKGROUND
In classical information processing, techniques are generally
categorized into analog or digital depending on how data
is represented. Typically, a binary digital system is used in
CC, where information is represented by a bit, which can
be either 0 or 1, also known as a 2-bit system. These bits
are then processed using classical logic gates, such as AND
and OR gates, to perform arithmetic operations. For instance,
8085 and 8086-based microprocessors (1976-1979) launched
by Intel using NMOS technology store/process the data in
the form of 8-bits and 16-bits, respectively [69]. Contrary
to that, quantum information processing (QIP) relies on the
principles of quantum mechanics to encode information in
quantum states [32]. A qubit is the basic unit of information
that can be either in a state of 0, 1, or a superposition of both
states, illustrated by a linear combination of 0 and 1 (Fig. 1).
Furthermore, qubits can be entangled, meaning they are

ubiquitously non-separable in the sense that the state of one
qubit is dependent on the state of the other. These two peculiar
properties of qubits enable QC to represent complex data
sets and perform certain calculations exponentially faster
than classical computers in specific problem domains. This
capability is one of the key reasons that QIP is emerging
as a field of research that has the potential to transform
the way we perform data computing and communication
tasks [14], [70]. Nonetheless, to fully realize this significant

impact, it is imperative to recognize that the direct utilization
of classical data in QIP is not viable. This stems from the
fact that quantum computers operate under fundamentally
different principles from CC. This distinction necessitates a
specific approach to data loading or handling. Consequently,
QC demands the transformation of classical data into a
quantum-compatible format. This transformation ensures that
quantum computers are compatible with the data, adhering
to quantum principles like superposition and entanglement.
Additionally, quantum experiments, which abide by quantum
laws may still yield noisy data [71]. Therefore, embedding
techniques are required to refine the data and convert it into
a format suitable for processing by quantum algorithms.

Quantum embedding, also known as quantum encoding,
is a technique used in QIP to represent classical information
in the quantum state of qubits. More specifically, classical
data is transformed into quantum states through a process
called a quantum feature map, which is a mathematical
function that maps classical data into a Hilbert space [72],
[73]. Quantum feature map takes classical data as input and
applies a series of quantum operations to project it to a
quantum state, as depicted in Figs. 2 and 3. These operations
are typically implemented using quantum gates and are
designed to preserve certain properties of classical data.
For example, Fig. 2 illustrates a QML framework mapping
differently shaped and colored data points, each representing
unique categories or features from the classical domain into
the quantum Hilbert space. This transformation is executed
through a quantum circuit that includes two main stages:
(i) the pre-processing phase, which prepares/initializes the
quantum system in a standard state, typically |0⟩, and
applies a Hadamard gate (H) to each qubit to generate a
superposition, and (ii) an ansatz circuit that processes the
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FIGURE 4. Expected scaling in simulating a quantum system blue [74].

quantum states using data-parameterized rotations R(xi) and
entanglement (via controlled-NOT gates) to delineate distinct
regions in the Hilbert space corresponding to each data
category [38]. As the central component of the QML model,
the ansatz circuit’s weights w are tunable parameters that are
optimized during the learning process. After computation, the
qubit states are measured, and the results are post-processed
to assign a category to the new data points, effectively
performing classification.

In the context of QC, loading data is a complex and
nontrivial process. This complexity arises because there are
different ways to encode or represent data, and the choice
of data encoding depends on the specific requirements of
a quantum algorithm’s unitary transformation. Similar to
how the ansatz circuit forms the core of QML models,
the unitary transformation is the computational heart of
quantum algorithms. Key operations that constitute unitary
transformations are detailed in Fig. 3. Prior to that, the way
that data is initially represented or ‘‘loaded’’ into the quantum
system can significantly impact the efficiency and effec-
tiveness of a quantum algorithm. In measuring the general
speed of an algorithm, the computational complexity theory
primarily focuses on the asymptotic complexity (mostly
Big-O notation), which indicates the rate of growth of the
runtime with the input size n [75], [76]. Although numerous
encoding techniques can be used to represent information in
a quantum system, the development of quantum algorithms
theoretically aims to achieve polynomial or even exponential
speed-ups over their classical counterparts [77], [78]. This
potential is reflected in the quantum complexity curve
depicted in Fig. 4, which illustrates less steep growth for
linear O(n) and polynomial O(na) curves compared to the
exponential O(2n) curve associated with certain CC. For
example, Shor’s algorithm is a quantum algorithm designed
for factoring an integer P with a complexity of O

(
(logP)3

)
,

indicating polynomial time complexity. This enables it to
potentially break RSA encryption in polynomial time [12],
[79]. It is generally assumed that for algorithms offering
significant speed-ups, the data loading phase should only take
logarithmic or linear time [46], [80], [81]. Therefore, when
applying an encoding scheme, it is necessary to weigh the

trade-offs between (i) the number of qubits required, (ii) the
nature of the data itself, (iii) circuit depth (i.e., the number
of quantum gates required in state preparation), and (iv) the
runtime complexity for the loading process. Consequently,
the choice of an encoding technique has a significant impact
on the accuracy and efficiency of quantum data processing
within the decoherence time.

III. QUANTUM ENCODING TECHNIQUES
To tap into the power of QC, it is essential to transform
classical data into a quantum format using specialized
encoding methods. These advanced methods are designed to
ensure compatibility with the unique and potent capabilities
of QC, notably in efficiently handling complex calculations
through superposition and entanglement. The encoding
techniques employed in QC are diverse and complex, serving
more than mere technical requirements. They are pivotal
in bridging the gap between classical data formats and the
quantum realm, thus unlocking the full spectrum of quantum
computing’s potential. In this section, we discuss those
encoding patterns that are prominent and potentially more
attractive for quantum system applications.

A. BASIS ENCODING
Basis encoding or computational basis encoding
is the simplest quantum encoding technique as it
involves the direct mapping of classical bits to
qubits. In general, the mathematical form is:

X ≈

m∑
i=−k

bi2i → |bm . . . b−k ⟩, (1)

where numerical input data X is approximated by a binary
bit string (bm . . . b−k ) with a precision of k decimal places or
m + k significant digits [46]. In essence, an input number x
is first approximated by a binary format x := bn−1 . . . b1b0,
which is then mapped directly to the corresponding quantum
computational basis vector |x⟩ := |bn−1. . .b1b0⟩. For
example, a computational basis state of an n-qubit system
such as |3⟩ = |0011⟩) is correlated with a classical n-bit-
string (0011). In other words, the real number ‘‘3’’ in classical
bits ‘11’ is encoded to qubit |11⟩ as demonstrated below:

This entails that for input numbers approximated by n-digits,
n-qubits are required for their representation. To achieve
this encoding, the initial |0⟩ state of qubits that represent
a ‘1’ digit must be flipped into |1⟩. For a single qubit,
this transformation can be accomplished with a single
operation, allowing this encoding to be prepared in linear
time. In a sense, this represents the most direct form of
computation, where each bit is essentially replaced by a
qubit, enabling a ‘computation’ to operate in parallel on
all bit sequences in a superposition [82]. This technique
is categorized as digital encoding since it is beneficial for
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arithmetic computations [83]. However, this encoding, while
simple, may be inefficient for large datasets since each
classical bit requires a separate qubit, resulting in n = m+ k,
qubits required, as per equation (1).

B. AMPLITUDE ENCODING
Amplitude encoding is achieved by assigning
different amplitude values to each classical bit.
It encodes a classical input vector X of length
N onto the amplitudes of an n-qubit state with

n = log2 (N). Typical mathematical notations are:

|ψx⟩ =

N∑
i=1

xi|i⟩, or

X→ |ψx⟩ =

N−1∑
i=0

xi|i⟩, (2)

where |ψx⟩ denotes the n-qubit quantum state and corre-
sponds to a normalized classical N-dimensional data point,
xi is the ith item of x, and |i⟩ is the ith computational basis
state in the Hilbert space. For instance, to encode the classical
vector x = (0, 0, 2, 3), first, the input vector needs to be
normalized to a length of numeric ‘1’ [3]. That is, according
to the Born rule [5], the squared moduli of the N amplitudes
of a quantum state must sum up to 1. It is similar to the basic
concept of qubit states, where α and β are complex numbers
and represent the amplitudes for 0 and 1 states as:

|ψ⟩ = α |0⟩ + β |1⟩ , (3)

where |α|
2

+ |β|
2

= 1, i.e., the total of the squares of the
amplitudes of all possible states in a superposition equals 1.
Thus, the normalization factor:

xNF =

√
02 + 02 + 22 + 32 =

√
13, (4)

and the resulting quantum mapping will be:

|ψnorm⟩ =
1

√
13

[0|00⟩ + 0|01⟩ + 2|10⟩ + 3|11⟩)]. (5)

Using the IBM andQiskit SDK, the quantum circuit and other
statistics of encoded data are illustrated in Fig. 5.
Here, it is pertinent to note that 4-dimensional data points

are encoded into 2 qubits, i.e., multiple classical bits as input
of N features can be encoded into n = log2 N qubits. This is
indeed a more efficient and compact representation (in terms
of qubits) than basis, angle, or QRAM encodings. However,
to correlate each amplitude with a component of the input
vector, the dimension of the vector must be equal to a power
of two; otherwise, shorter vectors must be padded with zeros
to attain the dimension of 2n.
Amplitude encoding is used in some quantum teleporta-

tion, and QKD protocols, e.g., the BB84, quantum prover
authentication protocols, and many other QML algorithms,
such as the Harrow, Hassidim, and Lloyd (HHL) algorithm
for solving linear equations [84], and Quantum K-Nearest

FIGURE 5. Quantum information mapping and analysis: classical data
(0,0,2,3) mapping into qubits using amplitude encoding.

Neighbor (QKNN) algorithms [50], [85]. However, ampli-
tude encoding also has some limitations; the number of
measurement scales with the number of amplitudes as
n-qubits contain 2n amplitudes, and this is costly. Moreover,
it is also vulnerable to certain types of noise, such as
dephasing noise [3], [38].

C. QSAMPLE ENCODING
Qsample encoding is a hybrid approach as it
combines features of both amplitude and basis
encodings. This method establishes a connec-

tion between the probability distribution of a discrete
random variable and the former quantum state form.
In other words, it associates a classical discrete probability
distribution (p1, . . . , pN ) with the real amplitude vector
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v = (v1, . . . , v2n )T , where (v)T is a transpose operation
depicting the n-qubit quantum state [82], [86]. Essentially,
in Qsample embedding, basis encoding resembles an empiri-
cal distribution function, with the amplitudes serving as data
weights, akin to empirical probabilities. For example, in this
encoding, the N features are encoded in the qubits while the
information of interest is conveyed through the amplitudes.
It combines a real amplitude vector with conventional binary
probability distributions as:

|ψ⟩=

∑2n

i=1

√
pi|i⟩, (6)

where |i⟩ denotes the computational basis state, and pi
represents the discrete probability associated with each state
|i⟩, which, when squared (

√
pi = vi), gives the amplitude for

that state. This equation shows how a classical probability
distribution can be mapped onto the amplitudes of a quantum
state, with 2n being the total number of computational basis
states for an n-qubit system [87]. In this way, any discrete
random variable can be represented solely by indexing its
events. The hybrid scheme is advantageous because it allows
data to be encoded both in qubits and amplitudes; the
‘amplitudes’ represent the information we are interested in,
while the ‘qubits’ encode the N features. This dual approach
makes Qsample encoding particularly useful in probabilistic
QML models and quantum Boltzmann machines (QBMs)
[88], [89]. In these applications, state preparation for a given
probability distribution operates in the same manner, where a
qubit-efficient algorithm is polynomial in the input, whereas
an amplitude-efficient quantum algorithm is exponential in
the input dimension N [82].

D. ANGLE OR ROTATION ENCODING
Angle encoding utilizes the phase or rotation
property of a qubit to represent information. This
encoding makes use of rotation gates to encode

classical information. The general mathematical form is:

|x⟩ =

n⊗
i=1

R (xi)
∣∣0n〉 , or

|x⟩ =

n⊗
i=1

(cos (xi) |0⟩ + sin (xi) |1⟩), (7)

where
⊗

is the tensor product operation over n qubits, and R
can be any Pauli gate (Rx, Ry, Rz) for x, y, and z-axes rotation,
applied individually to each qubit to encode the feature xi into
the angle of rotation for that qubit. For example, in Fig. 6,
the data point x = (π , π , π) can be encoded as |111⟩.
In this instance, we have also introduced an Ry gate, it is a
single-qubit gate that rotates the qubit state around the y-axis
of the Bloch sphere by a given angle. Consider a rotation
operator gate Ry(θ ): then θ -angle rotation around the y-axis

FIGURE 6. Angle or rotation embedding scheme.

is expressed by:

y = cos
(
θ

2

)
, or

θ = 2 arccos(y) = 2 cos−1(0) = π radians , (8)

where the Ry gate implements exp

(
−i θ2 y

)
on the Bloch sphere,

and causes the qubit state to be rotated by the specified angle
around the y-axis, as illustrated in Fig. 6(b).

This technique encodes one data point at a time, rather
than a whole dataset like basis or amplitude encoding. Thus,
requires N qubits, i.e., 1 qubit/data point. However, another
variant called dense angle encoding requires only half of
the qubits to encode the same amount of data points. Angle
or tensor product encoding is particularly useful for image
processing (angle parameter of a qubit to store a color),
i.e., to depict the color information of a pixel in the flexible
representation for quantum images (FRQI), where the idea
is to use different levels of angles for RGB information and
the tensor product with location information (x-axis and y
or z-axis) to represent an image [90]. This encoding method
finds application in quantum neural networks (QNNs) as well
as in the realm of data classification for QML models [50],
[91]. Also, using its variant arbitrary encoding fosters the
design of parameterized quantum circuits, where circuit
parameters can be adjusted to optimize the performance or
reduce the error rates of quantum circuits [43], [92].

E. QUANTUM ASSOCIATIVE MEMORY (QuAM) ENCODING
QuAM embedding utilizes superposition to
encode a set of data points within a qubit
register, aiming to prepare an equally weighted

superposition of the basis-encoded values within that register.
Specifically, the goal is to achieve a state where each data
value, such as x0, x1, and x2, is represented in both basis
and amplitude encoding as a part of an equally weighted
superposition, as exemplified in Fig. 7. The mathematical
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FIGURE 7. QuAM embedding scheme, each data value on the left is
encoded using basis encoding with an amplitude of (1/

√
n).

expression to represent this process is:

X→

∑M−1

i=0

1
√
M

|xi⟩ . (9)

Equation (9) shows that, for an encoding of M data points,
each state |xi⟩ is included in the superposition with an equal
amplitude of 1

√
M

ensuring all states are equally likely when
the quantum state is measured [46], [82].

Consider a set ofM , N -dimensional data points. The quan-
tum algorithm for addressing and storing this data requires a
set of 2N + 1 qubits. Thereby, the algorithm requires O(MN )
steps to encode the patterns as a quantum superposition
over N qubits. Thus, with 2N + 1 qubits, the QuAM can
store up to M = 2N patterns in O(MN ) steps and requires
O(

√
M ) time to associatively recall the entire pattern [93].

Such QuAM feature facilitates exponential quantum capacity
and faster track pattern recognition in next-generation High
Energy Physics (HEP) experiments [94], [95]. Additionally,
this imperative encoding is entailed by Grover’s algorithm
for unstructured search to yield a quadratic speedup,
a quantum variant of the Fourier transform, and the famous
Shor’s algorithm for the factorization of prime numbers
[12], [15], [96].

F. QUANTUM RANDOM ACCESS MEMORY (QRAM)
ENCODING

While basis and angle encoding schemes embed
N classical features on N qubits, amplitude
encoding maps N classical features on log2 N

qubits. However, these methods are relatively basic and do
not account for the complexities of the dataset. A QRAM-
based data loading approach could potentially overcome this
shortcoming [97]. The QRAM encoding logic is based on
the classical RAM concept. It has the same three basic
components as CC-RAM: a memory array, an address
register, and an output register. A CC-RAM that receives
an address with a memory index, loads the data stored
at this address into an output register. QRAM offers the
same functionality, but the address and output registers are
composed of qubits (quantum registers) rather than CC bits
[98], [99], as depicted in Fig. 8.

The major advantage of a QRAM is that both the address
and the output register can be in a superposition of multiple
values, allowing for access to a superposition of data values
simultaneously [100]. For instance, in Fig. 7, given an input
address register that is in a superposition of addresses, |ψa⟩ =
1

√
2
(| |00⟩ + |01⟩), the QRAM creates a superposition of

addresses and their data values, i.e., |ψax⟩ =
1

√
2
(|00⟩|010⟩+

1
√
2
(|01⟩|110⟩).
In general, the mathematical form is:

X→

∑N−1

i=0

1
√
N

|i⟩ |xi⟩ , or

1
√
M

∑M−1

i=0
|a⟩i|0⟩

QRAM
−→

1
√
M

∑M−1

i=0
|a⟩i |xa⟩ , (10)

where M represents the superposition of all the addresses to
be loaded in the address register, and N is the total number of
data values. The term |a⟩i represents the particular address
of the i-th data value to be loaded, and |xa⟩ are the data
values associated with that address. Thus, QRAM encoding
requires [log2 M]+ l qubits, i.e., [log2 M] for the address
register and additional l qubits to encode data values using
basis encoding [46].

In other words, classical RAM uses N bits for the
random addressing of M = 2N unique memory cells.
Conversely, QRAM employs log2 M qubits to address any
quantum superposition of M memory cells, and crucially,
it only requires O(log M ) operations or switches/gates to
be thrown to perform a memory call [98], [101]. This
represents an exponential decrease in the power needed for
addressing, thereby resulting in a significant improvement
in efficiency and reducing the resources needed for memory
access in QC systems. The computational characteristics
of a QRAM closely resemble those of Basis and QuAM
encoding schemes. As a result, it finds utility in comparable
applications within the domain of QML and extends to other
algorithms, e.g., quantum searching on a classical database,
collision detection in cryptography, element distinctness,
quantum oracle implementation, Quantum Support Vector
Machine (QSVM), spin-photonic networks, telecommunica-
tions, etc. [97], [102], [103], [104], [105]. This is because
the QRAM mechanism allows access to classically stored
information in superposition by querying an index register,
i.e., parallel processing of data (quantum parallelism) [52].
QRAM encoding is also suitable for solving linear equa-
tions in the HHL algorithm to process eigenvalues at the
intermediate stage [106]. However, the practical limitations
of producing larger QRAM products continue to be an
open and difficult technological challenge for QC hardware
manufacturers [58].

G. SUPERDENSE ENCODING
Qubits, as quantized units of quantum informa-
tion, possess the remarkable ability to transmit
and manipulate more information than classical

bits [1], [107]. Superdense encoding addresses the pivotal
question: How much classical information can quantum
states represent? Contrary to encoding a single bit into a
qubit, superdense encoding utilizes the principles of quantum
entanglement and superposition to encode two classical bits
across two entangled qubits [108], [109]. Specifically, the
protocol uses the correlations between two qubits in a shared
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FIGURE 8. QRAM embedding functionality [46].

FIGURE 9. Superdense encoding principle.

entangled state to represent the information. In the superdense
coding protocol, an entangled pair of qubits is prepared in one
of the maximally entangled Bell states by a party, typically
named Bob, as follows:

(encoding: 00) ⇒ |00⟩ −→ |8+
⟩ =

1
√
2
(|00⟩ + |11⟩),

(encoding: 01) ⇒ |01⟩ −→ |8−
⟩ =

1
√
2
(|01⟩ + |10⟩),

(encoding: 10) ⇒ |10⟩ −→ |9+
⟩ =

1
√
2
(|00⟩ − |11⟩),

(encoding: 11) ⇒ |11⟩ −→ |9−
⟩ =

1
√
2
(|01⟩ − |10⟩),

where |8+
⟩, |8−

⟩, |9+
⟩, and |9−

⟩ are the Bell states, which
are maximally entangled states of two qubits.
For instance, Bob prepares an entangled pair of qubits and
sends one to Alice while retaining the other. Alice encodes
two classical bits, a and b, by performing specific quantum
operations (Fig. 9) on her qubit based on the value of these
bits:

If (a, b) = (0, 0), Alice does nothing (identity operation).
If (a, b) = (0, 1), Alice applies the Z gate.
If (a, b) = (1, 0), Alice applies the X gate.
If (a, b) = (1, 1), Alice applies both the X and Z gates.
After encoding, Alice sends her qubit back to Bob. Bob,

now in possession of both qubits, can decode the two classical
bits by performing a Bell state measurement [110]. While
Alice encodes information by acting on a single qubit,
it is essential to understand that both qubits are needed
to retrieve the result, illustrating that quantum superdense

coding enables a sender to encode a two-classical-bit message
using pre-shared entanglement [111]. This process allows
Bob to recover the exact state prepared by Alice, thereby
retrieving the two classical bits.

Superdense encoding, leveraging the Bell states, has
several applications in quantum secure communication and
quantum cryptography [112], [113], [114]. In a quan-
tum communication protocol, utilizing pre-shared quantum
entanglement enhances the data transmission rate via a
quantum channel, enabling the transmission of two classical
bits using two entangled qubits, as opposed to classical
transmissions [115], [116]. In other words, superdense
encoding increases the maximum information rate to two bits
per qubit, compared to one bit in classical communications,
provided that Alice and Bob have access to entangled
qubits. This means that the superdense encoding scheme
uses the entangled state of the two qubits to represent four
possible combinations (Fig. 9), thereby encoding two bits
of information across the pair. When one of the entangled
qubits is manipulated (by Alice, in the standard protocol), and
then both qubits are measured together (by Bob), the result
is the transmission of two classical bits. Furthermore, it is
important to note that this is a distinct concept from quantum
teleportation; while both rely on entanglement, superdense
encoding transmits two classical bits using entangled qubits,
whereas teleportation sends one qubit’s state using two
classical bits for communication [3], [117].

H. HAMILTONIAN EVOLUTION ANSATZ ENCODING
In previous embedding approaches, we encoded
features explicitly into quantum states, but
the Hamiltonian encoding strategy differentiates

itself by encoding data into the dynamics of a quantum
system, which is why it is also called dynamic encoding [82].
More specifically, rather than preparing a quantum state
that contains features or a distribution in its mathematical
description, the Hamiltonian scheme implicitly encodes the
feature’s information by allowing them to define the evolution
of the quantum system. The data are used to construct
a Hamiltonian (energy) operator, and then an initial state
evolves under this Hamiltonian for a given time [3].

The time evolution of a quantum mechanical system
is delineated by the Schrödinger equation: ih̄ ddt |ψ⟩ =

H |ψ⟩, which describes how the quantum state |ψ⟩ evolves
over time. Here, i is the imaginary unit, h̄ is the reduced
Planck’s constant, and H is the Hamiltonian operator [118].
The Hamiltonian represents the total energy of the system
(including kinetic and potential energies) and plays a central
role in determining the time evolution of the system. For
time-independent Hamiltonians, the Schrödinger equation’s
solutions, given an initial condition |ψ(t = 0)⟩ = |ψ0⟩ can
be expressed as:

|ψ(t)⟩ = U (t)|ψ0⟩,

where U (t) = e−i th̄H , (11)
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is the unitary time-evolution operator and corresponds to the
unitary matrix [119].

Hamiltonian encoding associates a system’s Hamiltonian
with a matrix representing the data transformation, such
as the design matrix X that holds feature vectors as rows,
or the Gram matrix XTX of the data [5], [87]. Consider the
Hamiltonian encoding that maps the Hamiltonian H of a
quantum circuit as: ∣∣ψ ′

〉
= e−iHXt |ψ⟩, (12)

illustrated through:

where a matrix X embodies a dataset, exemplified by an
M × N dimensional data matrix with rows consisting of
feature vectors. However, preprocessing tricks might be
required to transform the data matrix into a Hermitian matrix
[82]. For Hamiltonian encoding to be applied, we need to be
able to implement an evolution on a quantum computer as:∣∣ψ ′

〉
= e−iHAt |ψ⟩, (13)

where |ψ⟩ is the initial quantum state characterizing a system
composed of n qubits. The Hamiltonian HA serves to encode
a Hermitian matrix A of the same dimensions, signifying
that the matrix representation of HA is entry-wise equivalent
to A. The state |ψ ′

⟩ represents the final state or evolved
quantum state that now contains the information encoded
into the Hamiltonian, e.g., eigenvalues of H in the phase
of the amplitudes. This implies that Hamiltonian encoding
gives the algorithm the ability to extract the eigenvalues
of the feature-matrices or multiply these eigenvalues to an
amplitude vector. This functionality, involving the encoding
of matrices into the Hamiltonian for time evolution, can
be advantageous, as demonstrated by the renowned HHL
algorithm for matrix inversion [84].

Furthermore, this encoding scheme is used in quantum
annealing and adiabatic QC approaches to solve optimization
problems [120]. Therefore, this embedding technique finds
applications in various algorithms, including quantum optical
neural networks (QONNs), continuous-variable (CV-QNNs),
hybrid factoring algorithms where information is encoded
in an Ising Hamiltonian, Variational Quantum Eigensolver
(VQE) for molecular energy calculations, Quantum tomog-
raphy for Quantum Approximate Optimization Algorithm
(QAOA), and quantum error correction (QEC) [19], [121],
[122], [123]. Nonetheless, Hamiltonian encoding faces key
demerits such as the complexity of simulating complex
Hamiltonians digitally (by decomposing the time-evolution
operator into a sequence of quantum gates), accumulation
of errors over longer evolution time, significant resource

demands exceeding current quantum hardware capabilities,
and challenges in scalability and precision control [124].

In summary, Table 2 provides a comparative analysis
of quantum encoding techniques in terms of mathemat-
ical forms, number of qubits, runtime complexity, and
applications. However, note that there are several other
encoding patterns that exist, e.g., space encoding [65],
matrix or dynamic encoding [82], Schmidt decomposi-
tion [129], instantaneous quantum polynomial (IQP) style
encoding [130], Schrödinger’s cat code encoding [131],
QAOA ansatz encoding [132], time-bin encoding [133],
parity encoding [134], arbitrary continuous-variable encod-
ing [135], Fock encoding and coherent-state encoding
schemes [136], etc.
In the domain of QIP, the evaluation of the runtime for

data embedding or encoding algorithms often hinges on a
central metric: the asymptotic complexity (Big-O notation,
as referenced in Fig. 4 and Table 2). This metric reflects
the increase in the number of elementary operations required
relative to the input size, thereby indicating the runtime’s
growth rate with increasing input [75], [76]. However,
the concept of ‘input’ varies across different contexts. For
instance, in QML, an algorithm’s input is the data itself.
An efficient algorithm in this context operates in polynomial
time relative to the data input’s dimension (N ) and the
number of data points (M ). In QC, efficiency is defined
by an algorithm’s polynomial runtime in relation to the
number of qubits. Given that data can be encoded into either
qubits or amplitudes, the term ‘‘efficient’’ assumes different
implications in QML, often leading to confusion. To clarify,
we suggest categorizing algorithms as either ‘qubit-efficient’
or ‘amplitude-efficient’, based on the considered input
type [5], [82]. If the data is encoded into the amplitudes or
operators of a quantum system (e.g., in amplitude and Hamil-
tonian encoding), then amplitude-efficient state preparation
routines are also efficient in terms of dataset size. Conversely,
when data is encoded into qubits, qubit-efficient state
preparation aligns with dataset size efficiency. For example,
state preparation for basis encoding is qubit-efficient as it
requires at most n-gates [119], though this approach demands
a significant number of qubits, particularly for high-precision
data representation. It’s noteworthy that if a QML algorithm
shows polynomial behavior in n (qubit-efficient), it implies
a logarithmic runtime dependence on the dataset size [80].
The notion of exponential speedups from qubit-efficient
QML algorithms can be perplexing to machine learning
practitioners. This is because the time required to load theMN
features from memory hardware is inherently linear in MN .
Exponential speedups are only feasible if state preparation is
also achieved in a qubit-efficient manner [81], [137].

Various quantum encoding techniques, such as basis
encoding, amplitude encoding, Qsample encoding, and oth-
ers, convert classical data into quantum states with different
runtime complexity, as outlined in Table 2. For instance,
we can observe that a key advantage of amplitude encoding
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TABLE 2. Comparative analysis of popular encoding techniques.

is its efficiency, requiring only n = logMN qubits or
O(log(MN )) to encode a dataset with M inputs and N fea-
tures each [138]. Unlike basis, amplitude, and Hamiltonian
encoding, which represent an entire dataset within a quantum
system, Qsample encoding uniquely represents a probability
distribution over random variables [82]. This implies that the
amplitude vector characterizes the distribution of a classical
discrete random variable, independent of the number of
inputs M . Viewing a quantum state as a Qsample akin to a
probabilistic model offers a promising intersection between
machine learning/QML and QC, particularly with Boltz-
mann or Gibbs distributions [32]. Moreover, for arithmetic
computations, a digital encoding like basis encoding might
be preferable. Conversely, to maximize data storage within
a limited number of qubits, compact encoding such as
amplitude encoding could be optimal. Yet, it’s important
to consider that state preparation for amplitude encoding
is operationally costly. This reflects the fact that there
is no universally best encoding for quantum computation
that addresses different problems on current devices. It is,
therefore, an important and nontrivial open question to
determine which encoding or embedding scheme is best
suited for machine learning, or QC.

Overall, the objective of QML is to reduce the complexity,
whether in terms of the number of operations (time com-
plexity) or the amount of data required (sample complexity),

for tasks such as model training, test vector classification,
or concept generation. QML applications with inherently
quantum inputs can sometimes offer exponential advantages
over their classical counterparts in terms of either sample
or time complexity. For example, Shor’s quantum algorithm
can factor an integer P (product of two prime numbers)
with a complexity ofO

(
(logP)3

)
, indicating polynomial time

complexity [12], [56]. Also, classical approaches to searching
an unsorted database require O(N ) time for a linear search,
N typically represents the number of entries in the database.
On the other hand, Grover’s quantum algorithm performs
the same task in O(

√
N ) time, which represents a quadratic

speedup over the classical approach [57].

IV. CHALLENGES AND FUTURE RESEARCH PROSPECTS
Modern data systems have an ever-growing
gap between the available information storage
and the bit-per-second rates [139], quantum

information technology is expected to be applied to the
sixth generation (6G) of cellular networks to achieve
performance gains [140]. In future network communication
systems, quantum information technology will not fully
replace classical information communication technology.
In fact, classical information communication technology
and quantum information technology will complement each
other and evolve together to enable hybrid classical-quantum

46128 VOLUME 12, 2024



M. A. Khan et al.: Beyond Bits: A Review of Quantum Embedding Techniques

FIGURE 10. Applied embedding strategies and patterns for the HHL
algorithm [84].

systems with better performance in diverse sectors to solve
real-life issues [141], [142]. Nevertheless, currently, quantum
computers are facing obstacles in the field of quantum
encoding/embedding schemes; a few of them are below:

1) Selection of Encoding Technique: One of the primary
challenges in quantum encoding schemes is the intricate
task of selecting an appropriate encoding technique.
With a plethora of encoding methods available, ranging
from basis and amplitude encoding to more sophis-
ticated strategies (Table 2), determining the most
suitable approach for a given QC task becomes non-
trivial. The efficiency and performance of quantum
algorithms heavily depend on the encoding, making
the selection process a critical factor in optimizing
quantum computations. This is because the goal is
usually either greater accuracy, greater speed, or greater
opportunity for analytical insight into the system.
What distinguishes embedding techniques is usually
the proportion and frequency of interchange between
quantum and classical techniques. The lack of a one-
size-fits-all approach necessitates careful consideration
of the task requirements and the efficiency of the
encoding method [143].
To address that challenge, further research is needed to
investigate the potential of hybrid quantum algorithms
for data fitting, for instance, in [39], [40], [144], and
[128]. ‘‘Hybrid’’ encoding patterns aim to leverage
the advantages of the best appropriate approaches and
enhance the representation andmanipulation of classical
data in quantum states. For example, a combination of
varied encoding patterns has been applied in the case
of the HHL algorithm (Fig. 10), which is a well-known
quantum algorithm designed to solve systems of linear
equations exponentially faster than the best-known
classical algorithms under certain conditions [84], [145].
Fig. 10 illustrates the possible ways to pass from one
encoding pattern to another one and the data conversions
that are used throughout the algorithm. The HHL
algorithm uses a combination of amplitude encoding
and matrix encoding in conjunction with quantum
phase estimation (QPE), followed by QuAM encoding
schemes. Essentially, it can find the solution vector x for
a given linear equation Ax = b, where A is a Hermitian
matrix and b is a given vector. If A is invertible and
Hermitian, and b is known, the HHL algorithm can be

used to find the solution vector x, i.e., |x⟩ = A−1
|b⟩.

Due to the spectral theorem [146], |b⟩ can be written in
terms of the eigenvectors {ui} ofA as |b⟩ =

∑n−1
j=0 βj

∣∣uj〉,
where coefficients βj represent the amplitudes for each
eigenvector state. That equation can be reformulated for
|x⟩ using the estimated eigenvalues λj as follows: |x⟩ =∑n−1

j=0 λ−1
j bj

∣∣uj〉, which is actually the desired output
of the HHL algorithm. A more detailed description of
conversions is in [147] and [45].
To compute the |x⟩, in the first step of the HHL quantum
circuit (Fig. 10), amplitude encoding is applied where
vector |b⟩ is loaded, while the matrix A is encoded
using matrix encoding. In step 2, the QPE routine
is introduced, whose goal is to estimate the phases
that correspond to the eigenvalues of the operation.
From Fig.10’s quantum circuit, it can be observed
that the QPE pattern utilizes amplitude encoding and
matrix encoding as input and produces output in
basis encoding. After the QPE, QuAM encoding is
employed to refine the probability amplitudes of the
desired quantum states. As discussed in the QuAM
encoding section, it facilitates the preparation of an
equally weighted superposition of basis-encoded values
to enhance the probability amplitudes of the desired
quantum states. In steps 3–4, the algorithm proceeds
to process eigenvalues obtained from QPE and applies
controlled rotations to a set of qubits. These rotations
are proportional to the inverses of the eigenvalues, as the
angle of rotation is dependent on the inverse of the
estimated eigenvalues. To reverse the QPE process,
step 5 involves uncomputing to disentangle the auxiliary
qubits used during QPE from the system, leaving the
quantum state that encodes the solution. Given that the
inversion of the eigenvalues is carried out through a
probabilistic process, a post-selective measurement is
subsequently applied. Finally, the algorithm converts the
digital encoding (QuAM) of the inverted eigenvalues
into an analogous (amplitude) encoding. This encoding
will represent the solution x to the linear system;
this is also referred to as the ‘‘quantum analog-
digital conversion’’ process [106]. However, there are
certain issues with the HHL algorithm that compromise
the exponential speed-up [148], e.g., loading |b⟩ in
amplitude encoding may require an exponential number
of operations—the ‘input problem’. Also, the algorithm
produces the solution vector |x⟩ in amplitude encoding,
which possibly requires multiple repetitions to estimate
the amplitudes—the ‘output problem’ [149].
Furthermore, data compression is one of the most
fundamental questions in information theory [139]. It is
necessary to opt for the best suitable quantum com-
pression techniques (QCT) based on their compression
performance with the given dataset. For example, for a
satellite image dataset, if angle embedding is selected,
then the minimum of n qubits encodes n classical
features. Currently, NISQ technology is constrained by
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a limited number of qubits and faces challenges in
preserving the coherence of multiple qubits. Therefore,
basis and angle embedding schemes may not be
optimal for satellite images due to the substantial qubit
requirement for encoding classical data. Amplitude
embedding, on the other hand, allows the encoding
of 2n classical data features using only n qubits. This
exponential reduction in the number of required qubits
makes amplitude embedding a more suitable choice for
compressing satellite image data [125]. QML also helps
to enhance the various classical machine learning meth-
ods for better analysis and prediction using complex
measurements [150]. Additionally, novel QIP methods
need to be explored for information processing, such
as one-dimensional time series and two-dimensional
images, in either the space or frequency domain to
improve the fidelity of quantum coding [31], [151].

2) Limitation of Error-free Fully Quantum (Gate-
based) Computers: Another significant challenge
involves the accurate assessment of the hardware
resources required to implement quantum-based algo-
rithms. The reason is that quantum systems are
inherently susceptible to errors and decoherence. Imple-
menting effective error-correction mechanisms within
encoding schemes is a critical challenge to ensure the
integrity of encoded information. This includes the
precise evaluation of factors such as the execution of
utilized gates and the necessary number of qubits. These
existing limitations in fully quantum hardware, charac-
terized by noise and errors, hinder the robust imple-
mentation of quantum encoding schemes [152], [153].
Quantum encoding schemes need to dynamically adapt
to the constraints and limitations of quantum hardware.
The evolution of quantum processors (e.g., IBM Quan-
tum’s systems: 27-qubit Falcon processors, 65-qubit
Hummingbird processors, and 127-qubit Eagle R3
processors [154], [155] or higher-level), introduces new
challenges, such as varying qubit connectivity and gate
fidelities. Ensuring the adaptability of encoding schemes
to evolving hardware configurations is a key research
challenge. In this regard, research efforts are directed
toward developing robust error-correction techniques
tailored for various quantum encoding methods. For
instance, IBM scientists introduced an end-to-end quan-
tum error correction (QEC) protocol that implements
fault-tolerant memory based on a family of low-density
parity check (LDPC) codes with a high encoding
rate that achieves an error threshold of 0.8% for the
standard circuit-based noise model [156]. In addition,
some applications, such as QEC firmware and ‘‘Surface
Code’’ techniques are designed to mitigate gate errors
and improve overall accuracy [43], [157], [158]. Also,
recently, the Fluxonium-Transmon-Fluxonium (FTF)
architecture has showcased a single-qubit gate fidelity of
99.99% and a two-qubit gate fidelity of 99.90% [159].

However, for large sets, gate accuracy remains a
challenge in large-scale QC, and ongoing research and
development aim to enhance the quality of quantum
gates.
In addition, IBM’s work on error mitigation techniques,
particularly zero noise extrapolation (ZNE) and prob-
abilistic error cancellation (PEC), is a significant step
toward making quantum computations more accurate
and reliable, even with the current limitations of quan-
tum hardware [160], [161]. These approaches have been
tested on IBM’s 127-qubit quantum Eagle processors,
showing how current QC technology can be pushed to
its limits and still yield useful results for the realization
of near-term quantum applications [155].
Moreover, while NISQ technology is on the horizon,
quantum computers with 50–100 qubits may surpass
today’s classical digital computers in certain tasks [35],
[162]. However, quantum gate noise will constrain
the size of reliably executable quantum circuits [155].
NISQ devices will be valuable for exploring many-body
quantum physics and other applications, but a 100- or
127-qubit QC won’t immediately revolutionize the
world — it should be seen as a significant step
toward more potent quantum technologies in the future.
Quantum technologists should continue to strive to
enhance the accuracy of quantum gates with fully
fault-tolerant QC. Consequently, overcoming these lim-
itations, particularly realizing fault-tolerant quantum
computation, is vital for the practical implementation of
quantum encoding schemes.

3) QRAM Unavailability: QC is a proposed solution
for computationally intensive problems, particularly in
machine learning, where processing large datasets is
essential [98], [163], [164]. Currently, the absence of
a QRAM capable of efficiently encoding and reliably
storing such information as a quantum state poses
a significant hardware challenge in QC. Thereby,
researchers are tasked with devising alternative strate-
gies or anticipating advancements in quantum hardware
to fully harness the potential of QRAM.
To tackle that challenge, the practical implementation
of QRAM can be explored for real-world QC systems;
for instance, relevant approaches are presented in [99],
[156], [165], [166], and [167]. The bucket brigade
(BB) and circuit-based flip-flop (FF) models for QRAM
have been proposed in [52], [98], and [101]. These
approaches will not only streamline the process of
designing efficient NISQ-based computers but also
bring out complete/full quantum (qubits-based) systems
for solving today’s real-life practical problems [92],
[162]. Moreover, as early analog classical comput-
ers were replaced by digital electronic computers,
we expect that eventually, in the near future, all
NISQ-type algorithms will be replaced by gate-based
algorithms.
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4) Integration of Quantum Computing with Machine
Learning for Encoding:Machine learning on classical
models is well established, but it demands significant
computational resources, especially when dealing with
complex and high-volume data processing. To mitigate
that, QC can exploit the principle of quantum paral-
lelism, allowing them to process a large number of
possibilities simultaneously. This could be beneficial
in tasks like optimization problems or searching large
solution spaces [12], [164]. However, the challenge
mentioned pertains to the difficulties and complexities
introduced when trying to merge these two intricate
domains — QC principles and machine learning
methodologies.
In this context, different research groups introduced
the concepts of supervised machine learning modeling
using QC, which deals with feature selection, parameter
encoding, and parameterized circuit formation [163]
and [168]. For instance, in [38] and [169], the team
showcased the practicality of their suggested quantum
embedding method through simulations and tests on
standard datasets such as Iris and Breast Cancer. Their
findings suggest that the quantum embedding search
approach for supervised QML, i.e., the QES architec-
ture, surpasses manual methods in terms of predictive
performance. Also, they explored manipulating the
entanglement level to manage and constrain the search
space to a feasible size for practical implementations.
Additionally, [67] examines the effect of data encoding
on the expressive power of variational models in
QML.Moreover, the concept of ‘‘quantum geometric
deep learning’’ strives to establish a framework for
crafting neural network architectures capable of effi-
ciently handling quantum datasets by encoding relevant
symmetries and physical principles [170]. This involves
integrating both QC principles and geometric deep
learning techniques to tackle the distinctive challenges
and opportunities inherent in QIP.
Furthermore, the current momentum in the development
of near-term quantum devices, coupled with the pur-
suit of fault-tolerant systems, has spurred researchers
to explore the implications of substituting quantum
circuits for traditional or supervised machine learning
models [22], [154], [155], [159]. These inquiries often
pertain to constructs referred to as quantum neural
networks (QNNs) [91], [171]. Leading entities like
IBM, Rigetti, and Xanadu have applied QC to enhance
machine learning, particularly neural networks. Various
notable case studies involve mapping neural networks
to quantum processors and using quantum circuits
to accelerate the inference phase of a trained neural
network [72], [172], [173], [174], [175], [176], [177],
[178]. These efforts have demonstrated the practical
application of QC in the fields of artificial intelligence
and machine learning, showcasing the potential of

quantum processors to handle complex computational
tasks.
For instance, a noteworthy advancement in this area
is the development of continuous-variable quantum
neural networks (CV-QNNs) [179], offering a versatile
approach to designing neural networks on quantum
computers. These networks (QNNs) utilize a variational
quantum circuit within the CV framework, enabling
the encoding of quantum information in continuous
degrees of freedom, like electromagnetic field ampli-
tudes. Featuring a layered structure of continuously
parameterized gates, this quantum circuit is universal
for CV quantum computation. This model incorporates
both affine transformations and nonlinear activation
functions by utilizing Gaussian and non-Gaussian gates,
respectively [180]. The non-Gaussian gates are key
to introducing both the essential nonlinearity and
universality of the model. The architecture of the CV
model enables the QNN to perform complex, non-linear
transformations while maintaining a unitary nature.
Similarly, quantum kernel embedding utilizes qumodes
(also referred to as CV states, which offer a viable
alternative to discrete or digital qubits) to map classical
data into a quantum feature space [73], [135]. This
effectively prepares the data for quantum processing
in a manner that leverages the continuous nature
of CV systems. These experiments and case studies
demonstrated the integration of classical networks into
quantum frameworks, suggesting quantum variants for
specialized network models, including recurrent, convo-
lutional, and residual networks. In essence, qumodes are
a key component of both quantum kernel embeddings
(for data representation) and CV-QNNs (for quantum
computation and learning), reflecting their versatility
and critical role in the realm of CV quantum computing
and QML.
In addition, the emergence of NISQ computers has
opened up exciting prospects for achieving quantum
speedups in machine learning tasks. For instance,
matrix product states pre-training for QML benchmark
on the novel image dataset, i.e., the Fashion-MNIST
dataset [150], [181]. Thus, while the potential for
enhancing encoding through machine learning is signif-
icant, navigating the intricacies of combining quantum
and classical computational paradigms demands careful
consideration. Achieving a seamless integration that
maximizes encoding efficiency is an active area of
research.

5) Decoding Method (From Quantum to Classical
Data): Efficient hybrid communication between classi-
cal and quantum components poses challenges not only
in encoding but also in quantum decoding aswell. Bridg-
ing the gap between quantum and classical information
processing introduces complexities related to data
transfer, synchronization, and minimizing information

VOLUME 12, 2024 46131



M. A. Khan et al.: Beyond Bits: A Review of Quantum Embedding Techniques

loss. This is because decoding quantum-to-classical
(Q2C) data typically involves substantial overhead as the
quantum circuit must be sampled repeatedly to obtain
meaningful data readout. The decoding problem has
been studied quite a lot in communication settings, based
mostly on coherent state encodings. One of the issues is
that optimal decoding requires a collective operation on
the quantum data [182], [183].
To overcome such challenges, different strategies have
been adopted. For instance, [184] proposed optimized
quantum wavelet transform (QWT) and quantum Haar
transform (QHT) techniques. Similar to the classical
Haar transform, quantum circuits can be developed
to perform the so-called QHT. The QHT-based Q2C
method demonstrated a superior 15-fold higher space
efficiency compared to the quantum Fourier transform
(QFT)-based Q2C method. While not as space-efficient
as QHT, QFT-based decoding is invaluable for prob-
lems where the periodicity of quantum data plays
a pivotal role. The decoding method based on QFT
is particularly appealing for applications in image or
audio processing, where data attributes like spectral
bandwidth are crucial for output analysis [185]. Despite
its comparative inefficiency in space utilization, QFT
excels in applications that demand high precision and
complex data manipulation [186].
Additionally, the proposed zero-depth (i.e., quantum
circuits with minimal depth) QWT method exhibited
remarkable enhancements in execution time, showing
up to a 14% improvement over conventional Q2C and
a substantial 78% improvement over QFT-based Q2C.
Likewise, classical Slepian-Wolf coding involves quan-
tum side information, where two correlated classical
components are compressed and their quantum coun-
terparts serve as side information during the decoding
process [187]. The use of quantum side information
can significantly enhance the efficiency of classical
data compression and decoding, particularly in scenarios
where classical and quantum data are intricately linked.
This method demonstrates the potential for synergistic
integration between classical and quantum information
theories, offering novel pathways for data compression
and encryption [188].
Although the aforementioned techniques offer promis-
ing solutions to Q2C decoding, several challenges
remain. These encompass the necessity of reducing
redundant sampling to minimize overhead in total exe-
cution time and implementing error correction strategies
to counteract quantum noise and decoherence [42],
[189]. Therefore, it is also essential to consider these
decoding challenges for seamless integration into prac-
tical QC workflows. Moreover, a comparative analysis
of these techniques reveals trade-offs between space
efficiency, execution time, and applicability to different
QC. For instance, while QHT and QWT excel in

efficiency and speed, their application might be limited
by the specific requirements of the quantum algorithm in
use. Conversely, QFT-based decoding and Slepian-Wolf
coding with quantum side information offer broader
applicability at the expense of space or time efficiency.

6) Quantum State Characterization andMeasurement:
The delicate nature of quantum states makes their
precise determination challenging, introducing uncer-
tainties that impact the reliability of quantum encoding
schemes. Developing improved techniques for state
characterization and measurement is crucial for advanc-
ing quantum encoding capabilities.
In this perspective, Avagyan [190] and Notarnicola
and Olivares [191] have introduced techniques such
as the optical setup of a local oscillator on a beam
splitter and a hybrid feed-forward receiver (HFFRE) for
characterizing quantum states. These methods employ
measurement configurations inspired by homodyne
detection. Similarly, other researchers have employed
strategies for quantum measurements that involve the
calibration of coherent-state receivers [192], [193].
Specifically, they have demonstrated a quantum receiver
for coherent communication capable of unconditionally
discriminating among nonorthogonal coherent states
[194], [195], [196]. Moreover, Lin and colleagues [197]
proposed a protocol that addresses state preparation
and measurement (SPAM) errors independently. Addi-
tionally, a quantum-state tomography technique by
employing conditional generative adversarial networks
(QST-CGAN) was presented in [198], showcasing an
ability to adapt to noise and reconstruct the underlying
state with up to two orders of magnitude fewer itera-
tive steps than maximum-likelihood estimation (MLE)
methods. These innovative approaches open avenues
for applying state-of-the-art quantum state tomography
(QST) and deep learning techniques in the classification
and reconstruction of quantum states, even in the
presence of various forms of noise.

In outlook, the realization of quantum computational
supremacy through encoding schemes hinges on the imper-
ative demonstration of their efficacy. This necessitates
a comprehensive quantitative evaluation, considering key
factors such as spatial complexity (total gate count), temporal
complexity (circuit depth and execution time), and accuracy
(fidelity/similarity). The proposed techniques should be
rigorously benchmarked against existing embeddingmethods
to establish their prowess in advancing QC capabilities [14],
[199], [200].

V. CONCLUSION
This paper presented a comprehensive review of quantum
embedding techniques, offering a thorough exploration of
this intricate subject matter. It provided a framework for
representing classical data as quantum states in a Hilbert
space, which enables the use of quantum algorithms to
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perform more efficient computations on the data. We dis-
cussed quantum encoding schemes with a focus on quantum
information processing to allow more complex information
to be represented in the quantum state of a qubit. Basis,
amplitude, angle, Qsample, QuAM, QRAM, Hamiltonian,
and superdense are just a few examples of quantum
encoding techniques, each with their strengths and potential
applications. While classical bits and logic gates are limited
in their ability to represent and process complex infor-
mation, quantum encoding techniques enable exponential
speedup and secure communication in quantum networks.
Thus, data encoding strategies are critical for preprocessing
data, deciding the number of qubits, compiling/correlating
quantum data, designing quantum circuits, and efficiently
executing quantum algorithms. To summarize, this article has
strived to offer a panoramic overview of quantum embedding
techniques and their multifaceted applications across a wide
range of fields.

In conclusion, quantum computing encoding techniques
offer a powerful new tool for encoding information that
could have significant implications for a wide range of
applications. By taking advantage of the unique properties
of qubits, quantum encoding techniques can offer significant
improvements over classical encoding techniques in terms
of efficiency and information density. This research has
important implications for the development of novel practical
quantum information processing systems.
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