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ABSTRACT The Human Epidermal Growth Factor Receptor 2 (HER2) is one of the aggressive subtypes
of breast cancer. The HER2 status decides the requirement of breast cancer patients to receive HER2-
targeted therapy. The HER2 testing involves combining Immunohistochemistry (IHC) screening, followed
by fluorescence in situ hybridization (FISH) for cases where IHC results are equivocal. These tests may
involve multiple trials, are time intensive, and tend to be more expensive for certain classes of people.
Hematoxylin and Eosin (HE) staining is employed for visualizing general tissue morphology and is a routine,
cost-effective method. In this study, we introduce a novel automated class-wise weighted average ensemble
deep learning algorithm at the decision level. The proposed algorithm fuses three pre-trained deep-learning
models at the decision level by assigning a weight to each class based on their performance of the model to
classify the HE-stained breast histopathology images into multi-class HER?2 statuses as HER2-0+4-, HER2-
14, HER2-2+, and HER2-3+. The class-wise weight allocation to the base classifiers is one of the key
features of the proposed algorithm. The presented framework surpasses all the existing methods currently
employed on the Breast Cancer Immunohistochemistry (BCI) dataset, establishing itself as a dependable
approach for detecting HER?2 status from HE-stained images. This study highlights the robustness of the
proposed algorithm as well as the sufficient information encapsulated within HE-stained images for the
effective detection of the HER2 protein present in breast cancer. Therefore, the proposed method possesses

the potential to sideline the need for IHC laboratory tests, which hoard time and money.

INDEX TERMS HER?2, ensemble learning, histopathology, breast cancer, multi-class classification.

I. INTRODUCTION

Breast cancer stands as the most common cancer among
women worldwide. It is a neoplasm characterized by sig-
nificant heterogeneity, encompassing distinct subtypes. The
worldwide occurrence of breast cancer has been increasing,
and there is a projected 46% rise in cases by 2040 [1],
[2]. The improvement in survival rates can be attributed
to significant advancements in screening methods, early
diagnosis, and breakthroughs in treatment options [3].
HER2-positive breast cancer is characterized by a high
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degree of malignancy. It is a distinct subtype known
for its aggressive behavior, early recurrence, metastatic
potential, and poor prognosis. HER2 expression is present
in around 15-25% of breast cancers, and its status plays
a crucial role in determining the most suitable treatment
required [4], [5], [6]. HER2 over-expression is among the
initial events in breast carcinogenesis. The presence of
HER? protein increases the rate of metastatic and recurrent
breast cancers by 50%, and in some cases, even up to 80%
[5]. The most recent guidelines emphasize the importance
of undergoing regular HER2 testing for patients diag-
nosed with invasive breast cancer, recurrent, and metastatic
tumors [7].
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FIGURE 1. Pathologists and oncologists availability across selected
countries (density per million population).

TABLE 1. IHC scores indicating HER2 outcome by american cancer society.

IHC Score HER?2 Status Treatment Plan

0 HER2-Negative No response for
HER? targeting treatment

1 HER2-Negative Advanced research may
help in certain instances

2 Equivocal Further test is necessary
with FISH to clarify

3 HER2-Positive These cancers are usually
treated with drugs
that target HER2

Detecting breast malignancy early improves survival
rates significantly. Pathologists typically use conventional
methods like HE staining to examine crucial morphological
features such as shapes, patterns, and structures of cells
and tissue essential for cancer diagnosis. IHC is another
staining method employed to validate the existence of various
breast cancer subtypes. This technique utilizes antibodies
to identify different antigens, including HER2, Progesterone
Receptor (PR), and Estrogen Receptor (ER) [8]. Outcomes of
IHC staining are classified into various HER2 status scores
ranging from 0 to 3+-. A score of 0 or 1+ signifies HER2-
negative, and 3+ is HER2-positive. However, a score of 2+
requires further testing through FISH to determine the HER2
gene status [9]. The precise evaluation of the HER?2 receptor
is crucial in identifying the types of breast cancer patients
requiring therapy targeting the HER?2 antigen [10]. However,
the shortage of pathologists, oncologists as well as diagnostic
facilities worldwide deprives many needy people of the
opportunity to consult them in time [11], [12]. The Fig. 1
illustrates the distribution of pathologists and oncologists
density (per million population) across various countries.

In recent times, deep convolution neural networks (CNN)
have gained widespread recognition as highly potent tools
for image classification. They possess distinct advantages
over conventional machine learning methods by offering
an end-to-end framework for feature extraction and classi-
fication. This framework eliminates the need for users to
engage in laborious handcrafted feature extraction, enhancing
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efficiency and effectiveness [13], [14]. The accomplishments
of deep CNNs have led numerous researchers to adopt
these methods for classifying histopathological microscopic
images. Despite its widespread use, the single deep CNN
model has constraints in extracting discriminate features,
potentially leading to sub-optimal classification performance.
As a solution, an ensemble of deep CNN architectures has
been developed to capture the representation of histopatho-
logical microscopic images from diverse perspectives, aiming
to achieve more accurate classification results [15], [16].

Cutting-edge and enhanced deep learning methodolo-
gies, currently under development, to identify -early-
stage breast malignancies with HER2 status are precisely
using histopathological HE-stained images [17], [18].
These methodologies are designed to support pathologist’s
decision-making process. A substantial dataset is essential for
training a deep learning model, however, adequate number
of medical images in the public domain are not easily
available. Therefore, working with available smaller dataset
for research purposes, transfer learning techniques can reduce
the training time and enhance model performance. Any of the
following three approaches can be used for transfer learning.
In the first approach, a pre-trained CNN model can serve as
a feature extractor in the architecture. The second approach
involves the fine-tuning of hyperparameters as well as, the
weights of the final layer only, in a pre-trained CNN are
modified. The third technique makes similar modifications
to the entire architecture [8].

Most of the earlier investigations have revolved around
the binary classification of the HER2 subtype. In this
case, the straightforward binary classification task for HER2
breast histopathology images can be misleading for cancer
professionals and might not provide adequate information
for determining the treatment plan. Also, limited attention
has been given to predicting HER2 breast carcinoma from
HE-stained images, particularly in multi-stage classification.
Addressing this challenge can bypass the IHC staining
laboratory test and also reduce the diagnostic time as well
as the cost involved in the test. The American Cancer
Society recommends HER?2 testing, either through biopsy
specimens or the surgical removal of the tumor for all invasive
breast cancers. The outcome of the HER?2 test is shown in
Table 1, which provides extra information to professionals for
treatment.

This motivation prompts us to focus on and tackle the
challenges associated with the multi-class classification of
HER?2 breast cancer using HE-stained images. In this paper,
we have proposed a decision-level class-wise weighted
average ensemble learning algorithm by fusing the three
chosen base classifiers GoogleNet [19], WideResNet-50
[20], and DenseNet-201 [21]. The framework of the proposed
work is as follows. First, we extract multiple-scale patches
of size 256 x 256,512 x 512, and 1024 x 1024 from the
HE-stained images. Then, the extracted patches of different
scales are fed into the base classifiers separately, out of
which the best-performing scale is selected for further study.
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The selected patches are used to fine-tune the chosen base
classifiers. Finally, the fine-tuned three base classifiers are
fused through the proposed algorithm. We emphasize that the
fine-tuning of multiple base classifiers has the potential to
extract diverse and complementary visual features, enabling a
more comprehensive representation of images from different
perspectives.

The rest of the paper is organized as follows. In Section II,
we discuss about the works related to our context. The
acquisition of the dataset and the proposed method are
presented in Section IIl. The performance of the proposed
model is evaluated, analyzed, and listed in Section IV.
Section V discusses some future scopes of the present paper
along with a conclusion.

Il. RELATED WORKS

The rise and evolution of deep learning have been assisting
in numerous breakthroughs across various computer vision
applications, encompassing the classification of natural and
medical images [22]. Several highly effective CNN architec-
tures, including AlexNet [23], VGG [24], GoogLeNet [19],
WideResNet-50 [20], and DenseNet-201 [21], were devel-
oped specifically for the ILSVRC ImageNet classification
task [25]. Notably, ResNet, DenseNet and GooglLeNet stand
out as the most widely adopted network backbone structures,
exhibiting superior performance compared to alternative
machine learning approaches.

In [26], Oliveira et al. introduced a CNN model that
integrated multiple instance learning techniques to ascertain
HER?2 status from HE images. The CNN model was initially
pre-trained using ITHC images from the HER2SC dataset.
Subsequently, fine-tuning was performed using HE images
from the same dataset. The model was then tested on HE-
stained slides from the CIA-TCGA-BRCA (BRCA) dataset,
achieving test accuracies of 83.3% and 53.8% for the
respective datasets.

In [27], Maleki et al. introduced a method to improve the
speed and precision of histopathology image classification
as Benign and Malignant. The process involved feature
extraction utilizing transfer learning models, with subsequent
classification performed using Extreme Gradient Boosting
(XGBoost). The obtained accuracy rates were 93.6% at 40X
magnification, 91.3% at 100X magnification, 93.8% at 200X
magnification, and 89.1% at 400X magnification.

In another study, Shamai et al. [28] conducted the
prediction of three biomarkers, namely, ER, PR, and HER2
utilizing the ResNet architecture. The outcomes of this
investigation revealed AUC values of 80%, 75%, and 74%
for the respective three biomarkers.

Shovon et al. [29] introduced a deep transfer learning
model based on a modified Xception network for the
multistage classification of HER2 from HE images, utilizing
the BCI dataset. The model achieved an accuracy of 87.01%.
In a different approach, DenseNet-201 and Xception were
combined as a single classifier in an ensemble, utilizing
feature confidence scores to establish the decision boundary
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and achieving an impressive accuracy of 97.12% [30].
Mridha et al. presented a unique CNN model in [31] to
classify multistage HER2 from HE images, achieving an
accuracy of 85.10%.

A comprehensive ensemble model was proposed in [32],
leveraging image-level annotations for binary classification
of breast histopathology images, distinguishing benign and
malignant lesions. The ensemble network, which included
VGG-16, Xception, ResNet-50, and DenseNet-201, used
accuracy only, as the weighting factor, resulting in a binary
image-level classification accuracy of 98.90%.

Ill. MATERIALS AND METHODS

In this section, we discuss the dataset used for this work
as well as the proposed method, which consists of three
steps: (1) Patch extraction and scale selection, (2) Training
deep CNN models, and (3) Class-wise ensemble method. The
diagram that describes the proposed workflow is shown in
Fig. 5.

A. DATASET

This study utilizes a recently released benchmark dataset for
breast cancer (BC) immunohistochemical analysis, known
as the BCI dataset [33]. The dataset was created using the
Hamamatsu NanoZommer S60 scanner with a resolution of
0.46 um per pixel. 600 whole-slide imaging (WSI) slides
were scanned, each consisting of 20,000 pixels. These slides
were split into 16 blocks, each size 1024 x 1024 pixels per
patch. The resulting dataset comprises 4870 pairs of HE and
IHC images, each with dimension 1024 x 1024. This dataset
is labeled by medical experts into four distinct classes denoted
as O+, 1+, 2+, and 3+, as illustrated in Fig. 2. The multi-
stage HER?2 status labeling of HE images was performed
using the corresponding IHC image scores. To the best of
our knowledge, the BCI dataset is the only publicly available
dataset with four-class HER2 status as per the CAP/ASCO
guidelines [9].

B. PATCH EXTRACTION AND SCALE SELECTION

BCI HE images of size 1024 x 1024 are considered as scale-
1. The non-overlapping patches of sizes 512 x 512 and 256 x
256 extracted separately from the scale-1 are considered
scale-2 and scale-3 respectively. The extracted image patches
with a grey limit of more than 0.8 are discarded as they do
not contain any tissue information. Each scale images are
separately fed to the chosen three base classifiers as shown
in Fig. 3. Among the three different scale images, scale-2
gives better accuracy and is selected for further study, which
we term as the ‘scale selection procedure’. Then, the selected
scale-2 images are split into training, validation, and testing
sets as shown in Table 2.

C. TRAINING DEEP CNN MODELS

Considering their exceptional performance in image clas-
sification, GoogLeNet [19], WideResNet-50 [20], and
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FIGURE 2. HE image samples of BCI dataset (a) HER2-0+; (b) HER2-1+; (c) HER2-2+; (d) HER2-3+.

-
Wide ResNet-50

Resize Image ]
(] e [ Denenis20n |

GoogleNet
| DoogleNet |
=/

*‘P{ Wide ResNet-50 }»}

Extract patches Resize Image
(256 x 256) (224 x 224)

P DenseNet-201
»{ GoogleNet }»

Scale selection

Input Image

(1024 x1024) | Wide ResNet-50 |

Extract patches Resize Image
(512x512) (224 x 224)

~f>{ DenseNet-201
»{ GoogleNet |

FIGURE 3. Scale selection process.

Filter
concantenation

3X3 Conv 5X5 Conv

1X1 Conv T f

1X1 Conv 1X1 Conv

1X1 Conv

3X3
Max Pooling

Previous
Layer
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DenseNet-201 [21] have been chosen as the backbone
networks for this study.

GoogleNet, also known as Inception-vl, was developed
to address the challenges associated with training extremely
deep neural networks. One of the notable features of
GoogleNet is the integration of ‘“Inception” modules,
deploying multiple parallel convolution filters of varying
sizes within a layer, as illustrated in Fig. 4. This inno-
vative approach allows the network to capture features
across diverse scales and resolutions simultaneously. The
strategic design of GoogleNet empowers it to achieve
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TABLE 2. BCI HE image distributions after preprocessing.

HER2-0+ HER2-1+ HER2-2+ HER2-3+ Total

Train 609 3011 5385 3333 12338
Validate 624 405 777 472 2278
Test 121 804 1562 899 3386
18002

remarkable accuracy while maintaining computational
efficiency.

The DenseNet architecture was developed to address spe-
cific limitations inherent in traditional deep neural networks,
including issues like vanishing gradients and constraints
on efficiently reusing features. In the design of DenseNet,
each layer not only depends on the input from the previous
layer but also establishes direct connections with all other
preceding layers. This interconnected structure within the
dense block facilitates the network to enhance information
dissemination and proactively encourages the re-utilization
of features.

The Wide-ResNet-50 architecture was developed to
address the issue of training deep residual networks, which
posed a challenge of diminishing feature reuse, leading
to a significant slowdown in the training process. The
decrease in depth and increase in the width of residual
networks demonstrate superior performance compared to
their commonly used very deep and thin counterparts.

In the process of customizing each pre-trained deep CNN
model for a four-category HER2 image classification task,
we retain four neurons in the last fully connected layer,
excluding the remaining output neurons along with their
associated weights. Consequently, during the fine-tuning
of pre-trained deep CNN models, the scale-2 images that
are selected in the scale selection process discussed in
Subsection III-B are given as input. The outputs generated
are four-dimensional vectors, indicating the probabilities of
input images belonging to each of the HER2-0+, HER2-1+,
HER2-2+, and HER2-34- status.

Due to the limited number of training histopathology HE
images, each deep CNN model underwent pre-training and
convergence on the ImageNet challenge dataset. We utilized
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FIGURE 5. Architecture of the proposed method; x represents evaluation metrics score; p',,,,, and wmp respectively represent the probability score
of jth test image and weight assigned to the nth class of mth base classifier.

pre-trained models available from PyTorch. For the fine-
tuning of each deep CNN model, we employed the SGD
optimizer to minimize the cross-entropy loss, setting the
number of epochs and batch size to 100 and 20 respectively,
and the learning rate to 0.001 with a decay of 10% in every
20 training epochs.

D. PROPOSED CLASS-WISE ENSEMBLE METHOD
Ensemble learning entails the integration of multiple learning
algorithms, resulting in a robust and dependable model with
improved generalisability. These methods use the strength
of multiple models, effectively address the limitations of
individual models, and provide predictions with higher
accuracy. Different ensemble techniques used by numerous
authors have proven their efficacy for various deep learning
tasks. Out of these, the weighted average ensemble method
turns out to be a powerful technique for combining different
classifiers. The effectiveness of this method relies on
the careful assignment of weights to the individual base
classifiers.

In the conventional weighted average ensemble method for
multi-class classification tasks, the fusion of multiple base
classifiers involves multiplying all the class probabilities with
the calculated weight assigned to each individual base clas-
sifier. However, this approach assumes equal performance
of the base classifier across all classes. In reality, the base
classifier may not perform equally on all classes, leading
to misclassification. To address this issue, we propose a
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FIGURE 6. Graph of the weight allocation function w(x) used in the
proposed work.

decision-level, class-wise, weighted average ensemble deep
learning algorithm. Here, the contribution of each class of
all the base classifiers to the final classification is weighted
based on the base classifier’s performance in each class.
This weight allocation procedure is discussed below and is
outlined in Algorithm 1.

1) TRAINING AND WEIGHT CALCULATION

First, the probability scores of both the training and validation
set obtained during the training phase are utilized to calculate
the evaluation metrics, which form a vector as follows

Evl = [Acc™, F1™, Rec™, Pre™]”

ey
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Algorithm 1 Class-wise ensemble algorithm

Input:
D < Dataset
a < learning rate
optimizer < SGD
e < Number of epochs
Models <
[DenseNet-201, GoogLeNet, WideResNet-50]
Output:
Wpn < m'™ base learner n' class weight
p]mn <~
7™ test image probability of m™ base learner n”” class
Predicted Class of test image
Training Phase:
for model < Models do
Initialize the training and validation set for model
Initialize the hyper-parameters of the model while
epochs < e do
| fine-tune the pre-trained model
end
store the probability scores
of both training and validation set

end
Compute the class-wise accuracy, Precision,
Recall,F1-score, and form a vector
Evl
Function ClaculateWeights (EvI):
wx) =0,W =T]
for m < Models do
for n < Evl do
for x <—parameters of Evl vector do
| W) =w) + o= — B

end
Winn = w(x)/4
W= [W, Wmn]
end
end
return W
Test Phase:

for images < testset do
compute and store the
test probability scores

end

p{ﬂﬂ .
Function En;embleProb (W,pfnn) :
E=0E, =[]
for n < W do

for m < model do

E = E + Wpn X Phun)

end
E=E/3
E), = [E}, E]
end
return (Ef,, 1<n<4
Prediction: )
Pre; = arg max(E), 1 <n<4)

where, T denotes transpose, | < m < 3 represents
the number of base classifiers and 1 < n < 4
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represents the number of classes of base classifiers. And,
Acc)!, F17', Recl),and Pre}! are respectively the accuracy,
Fl-score, recall, and precision of n' class for the m™ base
classifiers.

As the range of evaluation metrics parameters is [0, 1],
we choose a suitable weight function as follows

o
1+e %
where the shifting and the scaling parameters « = 5 and
B = 2.5, respectively, are selected experimentally for
effective allocation of weight to the classes of the base
classifier.

The calculated evaluation metrics are utilized to assign the
weight for each class of the base classifiers using the weight
function w(x), which is plotted in Fig. 6.

One can observe from Fig. 6 that, w(x) € [0, 1.9] for
x € [0, 1], where x is one of the components of the vector Evl,
based on which the weights are assigned to the classes of base
classifiers. A smaller value of x results in the weight function
generating a smaller weight, thereby giving low priority to
the corresponding class of the base classifiers. Conversely,
when the value of x is high, the weight function generates a
more significant weight, thereby giving high priority to the
corresponding class of the base classifiers.

Therefore, the weight wy,, of n™ class and m™ base
classifiers is formulated as,

w(Acc)!) +w(F 1) + w(Rec)t) + w(Pre)))

Wimn = 4 (€)

and all such weights form a matrix W = [wy,;lmxn. Here,
w(Acc))), w(F 17", w(Rec), and w(Pre}}) are the weights
computed by passing the values of accuracy, F1-score, recall,
and precision of n” class of m”* base classifier through the
weight function w(x) in Eq. 2, for 1l <m <3 1 <n <4.

w(x) = B, x=0 @)

2) WEIGHT ALLOCATION AND TESTING

In the subsequent test phase, the test images are provided
as input to the trained base classifiers to acquire the test
probability scores. The calculated class-wise weights are then
multiplied by the test probability scores to yield the weighted
average ensemble probability scores, expressed as follows

3 .
Eiz — w l<n<4 4)
where, p},, represents the probability score of the ;7 test
image for the and n” class and m” base classifiers, EJ,
represents weighted average ensemble probability score for
n' class of j™ test image.
Finally, the prediction of the class is computed from the
weighted average ensemble probability score obtained above
using the following expression

Prej = argmax(E) 1 <n <4) 3)
n

where, Pre; represents predicted class of the 7™ test image.
In this way, the class with the highest probability is computed
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FIGURE 7. Accuracy curve of base classifiers: (a) GoogleNet (b) DensNet-201 (c) WideResNet-50.

TABLE 3. Classification results generated by base classifiers and
proposed class-wise ensemble method.

TABLE 4. Comparison of proposed class-wise ensemble method with the
other traditionally employed ensemble methods in the literature.

Model Acc Pre Rec F1 AUC Ensemble Method Acc Pre Rec F1

GoogleNet 95.32 9412 9446  94.06  99.00 Average probability 9498 93.09 9532 94.11
DenseNet201 94.04 9153 92,63 92.07 98.00 Weighted Avg Probability =~ 9640  93.62  96.39  95.27
WideResNet50 9277 90.89 9335 9197  98.00 Majority Voting 9445 9039 9473  92.20
Proposed Method 97.84 96.62 97.87 97.22 100 Proposed Method 97.84 96.62 97.87 97.22

as the predicted class of the test image. This predicted class
is then compared to the actual label to generate the confusion
matrix. Subsequently, accuracy, Fl-score, precision, and
recall values are calculated based on the confusion matrix.

IV. RESULTS AND DISCUSSION
This section presents the discussion and analysis of the
proposed method. Additionally, we compare the presented
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model with existing models in the literature to validate the
effectiveness of the proposed model.

A. EVALUATION MEASURES

In order to evaluate the performance of the proposed
method some measures need to be devised. In this study,
we have utilized the confusion matrix to investigate a range
of evaluation metrics. The accuracy, precision, recall, and
Fl-score are the popularly used performance measures,
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FIGURE 8. Confusion matrix of base classifiers and proposed method: (a) GoogleNet (b) DenseNet-201 (c) WideResNet-50

(d) Proposed method.

formulated as follows

TP + TN
accuracy =
TP+ FP+ TN + FN
. TP
precision =
TP + FP
TP
recall = ———
TP + FN
2 x Precision x Recall
F1 — score =

Precision + Recall

Here, True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) are the entries of the confusion
matrix.

B. EXPERIMENTAL SETUP

The proposed method was implemented using PyTorch,
an open-source framework based on Python. The training
and testing were conducted on a system with access to the
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workstation operated at CentOS Linux release 8.4.2105 sys-
tem. The workstation is equipped with Intel(R) Xeon(R) Gold
6240R CPU @ 2.40Ghz, 32GB RAM, with a clock speed of
1000.730Mh.

C. ANALYSES OF BASE CLASSIFIERS

This section analyses the performance of the chosen three
base classifiers GoogleNet, DenseNet-201, and WideResNet-
50. Initially, these classifiers are fine-tuned and trained for
100 epochs using the HE-stained images from the BCI
dataset. The hyper-parameters employed for training the
models are discussed in Subsection III-C. The performances
in terms of training and validation accuracy during the
training phase of chosen base classifiers are plotted in Fig. 7,
which demonstrate the progress of accuracy across each
epoch. GoogleNet achieves a training and validation accuracy
0f 99.0% and 93.8%, respectively. It can be clearly noticed in
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FIGURE 9. ROC curve and AUC values of: (a) GoogleNet (b) DenseNet-201 (c) WideResNet-50 (d) Proposed method.

Fig. 7 that the difference in the training and validation profile
of GoogleNet indicates the issue of over-fitting whereas,
in the case of the other two base classifiers, DenseNet-201
and WideResNet-50, although the issue of over-fitting is not
observed, the accuracies achieved are not encouraging too.
Both issues were addressed and resolved in the proposed
method by introducing a novel weighted average ensemble
algorithm.

D. ANALYSIS OF PROPOSED ENSEMBLE METHOD

We have proposed a novel and efficient ensemble algorithm to
fuse the base classifiers at the decision level. Each base clas-
sifier can extract diverse and complementary visual features,
enabling a more comprehensive representation of images
from different perspectives. To enhance the generalisability
as well as the prediction accuracy of the model, the three fine-
tuned base classifiers are fused using a class-wise weighted
average ensemble algorithm. As a result, an improved
accuracy of 97.84% is obtained. The comparisons of all the
performance measures of the proposed model with the base
classifiers on the test set are given Table 3. Notably, the
GoogleNet model exhibits better performance in accuracy,
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precision, recall, and F1 score compared to the DenseNet-
201 and WideResNet-50. However, the proposed class-wise
ensemble algorithm utilizing an ensemble transfer learning
strategy outperforms all individual base classifiers. This
suggests the proposed approach exhibits promising potential
for generalization compared to a standalone CNN classifier.
The performance of the proposed model is evaluated using
a confusion matrix, which provides more insight into model
performance, errors, and weaknesses. The confusion matrices
presented in Fig. 8§ demonstrate the preeminent performance
of the proposed algorithm on the test dataset. Subsequently,
the comparison is carried out on the performance of the
proposed class-wise ensemble method with the ensemble
methodologies routinely explored in the literature, includ-
ing average probability, weighted average probability, and
majority voting. It is evident from Table 4 that, the proposed
method outperforms all the traditionally employed ensemble
methodologies. Finally, the receiver operating characteristic
(ROC) comparison analysis and the AUC values are presented
in Fig. 9. The proposed ensemble model has achieved an
AUC value of 100% which illustrates the model’s superior
performance.
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TABLE 5. Comparison of proposed class-wise ensemble method with the other existing methods in the literature.

Model Dataset accuracy (%) precision (%) recall (%) F1-Score (%) AUC
HE-HER2Net BCI (HE) 87.01 87.73 87.00 87.11 91.00
DenseNet-201-Xception-SIE BCI (HE) 97.12 97.15 97.68 - -
DenseNet-201-Xception-SIE BCI (IHC) 97.56 97.57 98.00 - -
HAHNet BCI (HE) 93.65 93.67 92.46 93.66 99.00
ConvoHER2 BCI (HE) 85.10 - - - -
ConvoHER?2 BCI (IHC) 87.79 - - - -
Her2Net Warwick (IHC) 98.33 96.64 96.79 96.71

Proposed Method BCI (HE) 97.84 96.62 97.87 97.22 100

E. COMPARISON WITH THE OTHER EXISTING METHODS
The proposed class-wise ensemble method is compared
with the existing deep transfer learning models in the
literature. The outcome of this comparison analysis is
presented in the Table 5. Among all the listed models with
the BCI HE-stained image dataset, DenseNet-201-Xception-
SIE [30] achieves the best result with an accuracy of 97.12%.
Nevertheless, the performance lags by 0.82% compared to the
proposed class-wise ensemble approach.

V. CONCLUSION AND FUTURE WORK

Breast cancer is a very lethal and dangerous disease among
women. Early diagnosis of HER2 breast cancer with the
help of deep learning methods can help patients and also
medical experts make decisions and start an effective
treatment. The conventional method for determining HER2
status in the medical domain typically involves the THC
test, followed by a detailed examination of IHC images
by medical experts. However, this approach is both time-
consuming and financially demanding for certain demo-
graphics. In contrast, the proposed automated framework
leverages the HE images, bypassing the need for the IHC test
to identify the four statuses (HER2-0+, HER2-1+-, HER2-
24, HER2-34-) of HER2 over-expression effectively. This
alternative methodology not only enhances classification
accuracy but also expedites the entire diagnostic process
significantly. Consequently, integrating the proposed algo-
rithm into relevant hardware is simple and may lead to
more efficient and streamlined early identification of HER2
over-expression.

Our future ventures will concentrate on the design and
analysis of scanner-independent classification models. Also,
one of our future works would focus on the spectral
decomposition in terms of different color channels of
histopathology images that may yield promising results for
the effective classification of breast cancer histopathology
microscopy images. Ultimately, conducting rigorous studies
is imperative for advancing the early diagnosis of breast
cancer and its subtypes. This can empower patients to mit-
igate their risks and make appropriate decisions about their
health.
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