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ABSTRACT Implementing the model-based control strategies for Series Elastic Actuators (SEAs) is not
an easy task due to the unknown system dynamics in their force models such as modeling uncertainties
and external disturbances. In this paper, an enhanced unknown system dynamics estimator (EUSDE)
is presented for the SEAs to online estimate the lumped unknown system dynamics in real time with
guaranteed convergence and noise rejection response. The proposed approach is an extension of our
previously developed unknown system dynamics estimator (USDE). The key idea is to further address the
sensitivity of the USDE to measurement noise to further enhance the estimation performance. In this line,
a high-order filter is introduced to the design and analysis of USDE. Moreover, this study also provides a
comparative analysis of USDE and EUSDE from both the time-domain and frequency-domain perspectives.
Finally, comparative simulation and experimental results are provided to demonstrate the effectiveness of
the proposed methods.

INDEX TERMS Series elastic actuator, unknown system dynamics estimator, measurement noise rejection,
frequency-domain analysis.

I. INTRODUCTION
As the human-computer interaction is more widely used
in the robotic operation, conventional position control
technologies are inadequate to satisfy the ever-increasing
high-performance control requirements of robots. In this
sense, the design of actuators with precise force feedback
is emerging. In addition, considering the issue of safety,
biomechanical flexibility/compliance should be suggested
in the actuators, which contributes to providing effec-
tive buffering when robots encounter unexpected impacts.
To accomplish these objectives, series elastic actuators
(SEAs) were initially proposed by Pratt et al. [1], in which
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the elastic elements between the load and the actuat-
ing motor are integrated. Recently, the SEAs have been
widely implemented in numerous robotic products such
as rehabilitation robots, humanoid robots and mechanical
exoskeletons, e.g., [2], [3], [4].
To achieve a satisfactory operation performance, various

control strategies have been developed for SEAs. For
instance, Vantilt et al. [5] proposed a model-based control
method, which utilizes a dynamic model of SEAs to
compensate for its inherent dynamics. However, considering
the inherent complexity of force control, how to derive
a high precision model of SEAs has been an emerging
topic. In fact, it has been well recognized that the model-
based approaches all presume an accurate description of
SEA dynamics. Nevertheless, due to the extensive operations
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of SEA in robotic products, there are inevitably modeling
uncertainties in the existing mathematical models of practical
SEA systems. Hence, the consideration of internal/external
disturbances, modeling uncertainty and even measurement
noise (note that in this study we uniformly call those
factors as the unknown system dynamics) is essential for
precise motion control of such equipments, which has
attracted great attentions from both academic and industrial
communities.

To address the aforementioned issue of the unknown
system dynamics, an intuitive way is to estimate and then
compensate the lumped system uncertainties via feedforward
control schemes. In this line, the disturbance-observer-
based control [6] was well recognized. In [7], an original
disturbance observer (DOB) was reported for linear systems
in the early 1980s by Ohishi et al., the core idea of which is
to design a low-pass filter based observer in the frequency-
domain to estimate the unknown dynamics. The extension
of DOB to nonlinear systems was subsequently proposed
(please refer to [6] for more detailed references). Apart from
this idea, Han [8] also proposed the well-known extended
state observer (ESO), which takes the lumped dynamics
as a new system state and then reconstructs them via an
observer [9]. These two approaches were also integrated
into the control of SEAs. Paine et al. [10] addressed the
uncertainties in a generic SEA model, and then presented a
model-based control with a DOB. Yu et al. [11] also proposed
an ESO-based optimal control with friction compensation
and disturbance rejection to improve tracking precision for
force control of SEAs. Nevertheless, to simplify the tedious
parameter tuning, the authors of [12] further developed
an enhanced ESO strategy, where the control parameters
can be tuned with the eigenvalue assignment technique
and bandwidth. Although the above methods have achieved
satisfactory estimation results, the design and implementation
of such estimators are still somehow tedious, where the
parameter tuning was not fully solved yet. To address this
problem, a simple, fast and robust estimator named unknown
system dynamics estimator (USDE) was proposed in our
previous work [13], [14]. In this framework, a filter operator
is first introduced to reconstruct the derivative information of
system state, and then the estimator is designed based on an
invariant manifold, such that only a scalar needs to be set by
the designers with an intuitive guideline. This USDE provides
an alternative approach to handle the system uncertainties,
whose convergence proprieties are comparable to DOB and
ESO [13]. Thus, the USDE has recently been used in various
control designs [15], [16], [17], where the estimator is
adopted as a feedforward control action. However, the USDE
may suffer from the sensitivity to measurement noise in
practical applications with sufficiently small filter constants
and it may even trigger the instability of the closed-loop
system [14]. Note that similar issues were also concerned in
the design of other observers. In [18], Sariyildiz and Ohnishi
pointed out that the rejection of noise can be improved
by increasing the order of DOB. For high-gain observers,

Astolfi et al. [19] proposed a pre-filtering method to handle
the effect of measurement noise. Recently, Han et al. [12]
reported a modified ESO to achieve rejection of noise in a
low-stiffness SEA. However, it remains as an open problem to
design an alternative USDEwith enhanced robustness against
measurement noise.

Based on the above discussions, an enhanced unknown
system dynamics estimator (EUSDE) is developed to esti-
mate the lumped unknown system uncertainties of SEAs,
where the effects of the high-frequency measurement noise
can be suppressed. Specifically, a SEA model described as
a second-ordered system is considered, and the sensitivity
of the USDE initially given in [13] and [14] concerning
on the measurement noise is analyzed. Then a higher-order
filter is introduced to tailor the USDE as the EUSDE.
To show the effectiveness and superiority of the suggested
EUSDE, a comparative analysis from both the time-domain
and frequency-domain perspectives is carried out. Finally,
comparative simulations and experiments are conducted
based on a SEA test-rig to demonstrate the superiority of the
proposed methods.

FIGURE 1. Simplified modeling of linear SEAs.

II. PROBLEM FORMULATION
In this paper, the studied SEA consists of a servomotor, a ball
crew and a translational spring which is connected between
the ball screw nut and the external load. The schematic of
the SEA is depicted in Fig. 1 and its dynamic model can be
obtained based on the Newton’s second law as [11]:

F̈ = −
k
m
F −

b1 + b2
m

Ḟ +
µk
m
u+ h, (1)

where F is the actuator output force,m = m1+m2 is the total
equivalent mass of the motor m1 and the ball screw m2 in
terms of translational motion, u is the motor input current,
b1 and b2 denote the damping coefficients, µ is the motor
torque coefficient between the current and the force, k is the
spring elastic coefficient, and h denotes the lumped unknown
system dynamics including the modeling uncertainties and
external disturbances.

For the ease of the subsequent analysis, we choose the state
variables as x1 = F, x2 = ẋ1, such that the state-space form
of system (1) can be written as:{

ẋ1 = x2,
ẋ2 = φ(x, u) + h,

(2)

where φ(x, u) = −
k
mx1 −

b1+b2
m x2 +

µk
m u.
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The problem to be addressed is to estimate the lumped
unknown system dynamics h including the modeling uncer-
tainties and external disturbances by using the input u and
measurable/observed output x = [x1, x2].
Without loss of generality, the following assumptions on

system (2) are given to guarantee that there exists a unique
solution to the studied problem.
Assumption 1: The states x and the lumped unknown

dynamics h of system (2) are bounded. Moreover, the
derivative of h is also bounded, i.e., supt≥0 |ḣ| ≤ ℏ1 holds
for a positive constant ℏ1 > 0.
Remark 1: The above assumption on system (2) is practi-

cally feasible for SEAs as claimed in [11] and [12] and thus
it has been widely used in the design of estimators [6], [8],
[13]. Specifically, a proper control u can be adopted to ensure
the boundedness of system states and unknown dynamics.
Moreover, although the well-known DOB [6] and ESO [8]
can be used to solve the studied problem, the parameter
tuning of such estimators is slightly complex. Nevertheless,
the recently proposed USDE [13], [14] whose convergence
response is comparable to DOB and ESO can also be
used herein, while its robustness against high-frequency
measurement noise remains as an interesting topic to be
further addressed in this paper.

III. FURTHER ANALYSIS ON USDE AND MOTIVATIONS
In this section, we will recall the design of USDE, which
was initially reported in our previous work [13], [14], and
particularly analyze the robustness against the measurement
noise.

A. UNKNOWN SYSTEM DYNAMICS ESTIMATOR
Different to the design of ESO, which takes the unknown
dynamics as an augmented system state, we first apply a first-
order low-pass filter on the output x2 and known dynamics φ
as:

κ ẋ2f + x2f = x2, κυ̇f + υf = φ, (3)

where κ > 0 is a manually set constant. Note that the initial
values of filters, i.e., x2f (0), υf (0) are set to zero.
According to the constructed invariantmanifold in [20], the

estimator, namely USDE, is designed as follows:

ĥ =
x2 − x2f
κ

− υf , (4)

where ĥ denotes the estimate of the unknown system
dynamics h.
To show the key merit of the proposed USDE (4),

the frequency-domain analysis is performed (ignoring the
vanishing effects of the initial values x2(0)). Hence, this
estimator (4) can be reformulated with the Laplace transform

L{·} and (2) as:

Ĥ =
s

κs+ 1
X2 −

1
κs+ 1

V

=
1

κs+ 1
H , (5)

where Ĥ ,H ,X2,V are the Laplace transformed variables of
L{ĥ},L{h},L{x2},L{υ}, respectively.

Define the estimation errors as h̃ = h − ĥ and H̃ = L{h̃},
then one can derive that:

H̃ =
κs

κs+ 1
H . (6)

As shown in (5), the estimate ĥ equals to ĥ = hf with κ ḣf +
hf = h. Hence, as shown in (6), there exists an arbitrarily
small compact set�1 = {|h̃| ≤ δ, δ ≥ 0} including the origin
h̃ = 0, such that for any κ > 0, one can claim that h̃ ∈ � for
t > T for a finite time T > 0. Specifically, if ℏ1 → 0 (i.e., the
unknown dynamics h is constant) and κ → 0 is sufficiently
small, the estimation error h̃ converges to zero, i.e., δ → 0.
The convergence property of the estimator (4) is summarized
as the following theorem [13], [14]:
Theorem 1: Considering system (2) with Assumption 1,

the USDE (4) is used, then the estimation error h̃ converges
to a small compact set, whose size depends on ℏ1, κ .

Proof: By applying the inverse Laplace transform
on (6), we can derive the error dynamics in the
time-domain as:

˙̃h = −
1
κ
h̃+ ḣ. (7)

Choosing a Lyapunov function as V1 =
1
2 h̃

2, then its time
derivative can be calculated as:

V̇1 = −
1
κ
h̃2 + h̃ḣ. (8)

Based on the Young’s inequality h̃ḣ ≤ h̃2/(2κ) + κ ḣ2/2,
we can further derive:

V̇1 ≤ −
1
κ
V1 +

κ

2
ℏ21. (9)

Then recalling the Comparison Lemma [21] with respect
to (9), we can obtain that

V1(t) ≤ e−
t
κ V1(0) +

κ2ℏ21
2
. (10)

Therefore, it can be concluded that

�1 =

{
h̃ | |h̃|2 ≤ 2e−

t
κ |h̃(0)|2 + κ2ℏ21

}
, (11)

From the above analysis, we can claim that the estimation
error h̃ is bounded and will converge to a small compact set,
whose size depends on the filter constant κ and the variation
rate of unknown dynamics ℏ1 defined in Assumption 1.
Specifically, it can be further deduced that the condition
lim
t→∞

�1 = 0 can be fulfilled provided that κ → 0 and/or
ℏ1 → 0.
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Remark 2: As shown in Theorem 1, one can find that the
convergence properties in terms of both convergent rate and
ultimate error bound are comparable to those of DOB [6] and
ESO [8], which are better than the sliding mode estimator and
dirty differentiation estimator given in [20]. Moreover, only a
constant κ needs to be set for the developed USDE, whose
parameter tuning is a more trivial task than that of DOB
and ESO. Nevertheless, following the proof of Theorem 1,
we have a conclusion that choosing a small κ can contribute to
guaranteeing the fast convergence rate and better estimation
accuracy. However, when the system measurement x2 is
perturbed by high-frequency measurement noise, its effect
may be amplified and thus the estimation performance may
be deteriorated, which has been preliminarily studied in [20].
To further investigate this issue, the robustness analysis of the
USDE will be revisited in the next subsection.

B. ROBUSTNESS ANALYSIS OF USDE
Now the robustness of the USDE (4) against the measurement
noise is studied. In this line, we assume that the system state
x2 suffers from a bounded measurement noise ϵ1, such that
the available variable used for the design of USDE is given
by:

x̄2 = x2 + ϵ1. (12)

Besides, to better elaborate the influence of measurement
noise on system (2), we denote ϵ2 as a composite error arising
from the noise perturbed in the states x1, x2 in φ(x, u) and the
control input u, such that the other variable used for the design
of USDE is given as follows:

ῡ = φ + ϵ2. (13)

In this case, the filter operation (3) can be rewritten as:

κ ˙̄x2f + x̄2f = x̄2, κ ˙̄υf + ῡf = ῡ. (14)

and the USDE can be reformulated as:

ĥ =
x̄2 − x̄2f
κ

− ῡf . (15)

Now, we examine the influence of measurement noise on
the USDE (15) using the frequency-domain analysis. Let
E1 = L{ϵ1} and E2 = L{ϵ2}, and consider the estimation
error of (15) in the frequency-domain as:

H̃ = P1H − P2E1 + P3E2, (16)

where the transfer functions P1,P2,P3 are given as:

P1 =
κs

κs+ 1
, P2 =

s
κs+ 1

, P3 =
1

κs+ 1
. (17)

Compared with (6), it is found that in addition to the term
with P1 determining the estimation error associated with H ,
there are other two residual terms with P2 and P3 denoting the
effect of ϵ1 and ϵ2, respectively. From (16), the measurement
noise ϵ1 and ϵ2 affects the estimation error in a non-uniform
manner. Since P3 =

1
κs+1 is indeed a low-pass filter, the

influence of ϵ2 on the estimation error can be diminished with

a small κ . Hence, we will examine the influence of ϵ1 on the
estimation error by plotting the frequency response of P2 as
given in Fig. 2. It can be found that amplitude of P2 increases
along with the decrease of filter constant κ , hence the effects
of noise ϵ1 in x2 can be amplified in the estimation error h̃,
which limits the performance of (15). Therefore, the constant
κ cannot be set too small, which in turn can increase the
ultimate bound of error h̃.

FIGURE 2. The frequency response of P2 with EUSDE (15).

In the presence of measurement noise, the convergence
property of USDE (15) can be concluded as follows.
Theorem 2: Considering system (2) with measurement

noise in (12) and (13), the estimation error h̃ of USDE (15)
converges to a compact set, whose size is determined by the
amplitude of noise.
Proof: According to (16), the estimation error h̃ can be

described in the time-domain as:

˙̃h = −
1
κ
h̃+ ḣ−

1
κ
ϵ̇1 +

1
κ
ϵ2. (18)

Choosing a Lyapunov function as V2 =
1
2 h̃

2, then the
derivative of V2 with respect to time t can be derived along
with (18) as:

V̇2 = −
1
κ
h̃2 + h̃(ḣ−

1
κ
ϵ̇1 +

1
κ
ϵ2). (19)

By applying the Young’s inequality, one can obtain:

V̇2 ≤ −
1
2κ
h̃2 +

κ

2
(ḣ−

1
κ
ϵ̇1 +

1
κ
ϵ2)2

≤ −
1
κ
V2 +

κ

2
(ℏ +41)2, (20)

with 41 = κ−1(|ϵ̇1| + |ϵ2|) being the upper bounds of the
noise ϵ̇1, ϵ2, such that

V2(t) ≤ e−
t
κ V2(0) +

κ2

2
(ℏ +41)2. (21)

To this end, we can conclude that the estimation error h̃ is
bounded and will converge to a compact set defined by

�2 =

{
h̃ | |h̃|2 ≤ 2e−

t
κ |h̃(0)|2 + κ2(ℏ +41)2

}
. (22)

Clearly, as shown in (22), the ultimate bound of estimation
error depends on the variation rate of ϵ1 and amplitude of
ϵ2, apart from the variation rate of unknown dynamics. More
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specifically, as given in the definition of41, one can find that
the filter constant κ cannot be set too small in order to retain
certain value of 41 to ensure fair estimation performance.
This also supports the claim in Remark 1 and the observations
given in Fig.2 derived from the frequency-domain analysis.

To support the above analysis, a typical example is
further studied. It is noted that the noise to be attenuated
in the operation of SEAs mainly stem from the hardware
measurement of system states, where the main components
are located in the high-frequency band. Then based on the
discussions in [19], the measurement noise can usually be
modeled as a finite sum of sinusoids, which can be described
as:

ϵj =

Nj∑
i=1

aji sin (ωjit + ϕji), j = 1, 2, (23)

where Nj > 0 and ωij denotes the basic frequencies,
aji > 0 and ϕij denote the amplitude and the phase of
each component, respectively. In this case, we have 41 =

κ−1(
∑N1

i=1 a1iω1i +
∑N2

i=1 a2i). Hence, give some ωi ≥ ωκ =

κ−1, it is found that the estimation error associated with
P2 will be significantly increased when a small κ is selected,
in particular for high-frequency noise. This observation
motivates the current study on further modification of USDE
to enhance its robustness against high-requency noise.

IV. ENHANCED UNKNOWN SYSTEM DYNAMICS
ESTIMATOR
In this section, we will develop an enhanced unknown system
dynamics estimator (EUSDE) to suppress the effects of
measurement noise encountered in the practice. For this
purpose, Assumpiton 1 can be reformulated as:
Assumption 2: The unknown dynamics h satisfies r -th

order local Lipschitz condition, thus there exists positive
constant ℏi > 0 such that supt≥0 |h(i)| ≤ ℏi is fulfilled.

The key idea is to introduce cascaded high-order filter
operations in the design of USDE. By defining z =

[z1, · · · , zr ]⊤ and ψ = [ψ1, · · · , ψr ]⊤. Then the filter (14)
can be repeated and reformulated as a higher-order form as:

ż =
1
κ
Az+

1
κ
Bx̄2, ψ̇ =

1
κ
Aψ +

1
κ
Bῡ, (24)

with

A =


−1 0 0 · · · 0 0
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...
. . .

...
...

0 · · · · · · · · · 1 −1

 ∈ Rr×r ,

B =
[
1 0 · · · 0

]⊤
∈ Rr , (25)

where r ≥ 2 is a manually set constant denoting the order
of filters. Clearly, a cascaded high-order filter operation is
applied on the measurements x̄2, ῡ as defined in (24) to
eliminate the influence of the perturbed measurement noise.

FIGURE 3. The frequency response of P5 with EUSDE (26).

Then, the EUSDE can be designed as:

ĥ =
zr−1 − zr

κ
− ψr . (26)

Now, the performance of EUSDE (26) is first investigated
via the frequency-domain analysis. Similar to those deriva-
tions given in (16), we can obtain the estimation error of
EUSDE (26) in the frequency-domain as:

H̃ = P4H − P5E1 + P6E2,

P4 = 1 −
1

(κs+ 1)r
, P5 =

s
(κs+ 1)r

, P6 =
1

(κs+ 1)r
.

(27)

As shown in (27), we know that the effects of E1,E2 on
the estimation error H̃ can be suppressed by setting r ≥ 2.
To better show this fact, the frequency response of P5 with
r = 2, 3 is shown in Fig. 3. Compared with P2 shown
in Fig. 2, one can find that when ωi ≥ ωκ = κ−1, the
magnitude of error transfer functions P5 associated with
the measurement noise E1 could be eliminated with this
configuration, since there is an asymptotic line with the slope
of -20 dB/decade for r = 2 (or -40 dB/decade for r = 3).
Similar observation can also be found for P6 associated with
the noise E2.

On the other hand, the convergence of EUSDE (26) in the
time-domain can be summarized as follows:
Theorem 3: Considering system (2) with measurement

noise (12) and (13) with (23), then the estimation error h̃ of
EUSDE (26) will ultimately converge to a compact set, whose
size can be set small with proper r, κ .

Proof: Consider the change of coordinates:

er = h̃, er−1 = ėr , . . . , e1 = ė2, (28)

with e = [e1, e2, . . . , er ].
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Based on (27), the estimation error h̃ can be represented in
the time-domain as:

ė = Λe+ Bγ, h̃ = Ce, (29)

γ = α−1
r (

r−1∑
i=0

αr−ih(i+1)
− ϵ̇1 + ϵ2), (30)

where αr is given by (κs+ 1)r = αrsr + . . .+ α1s+ 1 and

Λ =


−
αr−1
αr

−
αr−2
αr

· · · −
α1
αr

−
1
αr

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ,
C =

[
0 0 · · · 1

]
. (31)

Given the fact that Λ is Hurwitz, there exist positive
definite matrices P > 0, Q > 0, such that Q = PΛ+Λ⊤P >
0 is true.

Choosing a Lyapunov function as:

V3 =
1
2
h̃2 = e⊤C⊤PCe. (32)

Then the time derivative of V3 can be calculated along
with (29) as:

V̇3 = −
1
2
e⊤C⊤(PΛ+Λ⊤P)Ce+ e⊤C⊤PCBγ

= −
1
2
e⊤C⊤QCe+ e⊤C⊤PCBγ, (33)

By using the Young’s inequality, one can get:

e⊤C⊤PCBγ ≤
e⊤C⊤P2Ce

2η
+
ηC⊤B⊤BCγ 2

2
(34)

for a positive constant η > 0. Then, V̇3 can be derived as:

V̇3 ≤ −σV3 +
η

2
C⊤B⊤BC42

2, (35)

with

σ =
λmin(Q)
λmax(P)

−
λmax(P)

2η
,

42 = α−1
r (

r−1∑
i=0

αr−iℏi+1 +

N1∑
i=1

a1iω1i +

N2∑
i=1

a2i). (36)

Then we can claim that the estimation error h̃ converges to
a compact set defined by:

�3 =

{
h̃ | |h̃|2 ≤ 2e−σ t |h̃(0)|2 + σ−1ηC⊤B⊤BC42

2

}
.

(37)

Thus, for the proposed EUSDE (26), the estimation error
h̃ is uniformly ultimately bounded, and the ultimate bound
depends on the selection of κ and r . Compared with (20),
as shown in (37), proper coefficient αr−i depending on r, κ
can be set, such that upper bound of �3 can be tuned.
Remark 3: As shown in Theorem 3, the performance of the

modified EUSDE can be improved by using a higher-order

low-pass filter (24), where noise rejection is more apparent
for higher order r . However, as the order of filter increases,
the computational cost for implementing the EUSDE also
increases. Moreover, the filter coefficient κ determining the
bandwidth of filter should be taken as a tradeoff between the
estimation accuracy and the robustness. As shown in [18],
the bandwidth constraints become more strict as r increases.
Nevertheless, the increase of r and κ may lead to a phase-lag
in the estimator.
Remark 4: In our previous work [14], although a similar

idea of using two-layer low-pass filters has been reported
to address the problem of noise attenuation, the multiple
filter coefficients may lead to a difficulty in implementation,
which may also limit the application in SEAs. Besides,
the introduced two-layer filter increases the complexity of
convergence analysis. In this paper, a higher-order filter is
applied where only two parameters κ and r are considered.
Meanwhile, a comparative analysis from both the time-
domain and frequency-domain perspectives is provided to
illustrate the effectiveness of the proposed approach.

V. SIMULATIONS AND EXPERIMENTS
A. SIMULATIONS
In the simulations, the SEA model (2) is used with the
following parameters and two different inputs:

φ = −0.1x1 − 0.01x2 + 100u,

h = 0.01x1 − 0.005x2 + 0.005x21 ,

u1 = −0.001x1 − 0.001x2 + 0.1 sin 2t,

u2 = −x1 + 10 sin 2t. (38)

To exemplify the robustness against measurement noise,
the measurement noise perturbing both x1 and x2 are
produced by using ‘‘Uniform Random Number’’ block in
the MATLAB with the power 10−6. Following the above
theoretical analysis, a fair κ = 0.05 is used for all case studies
for the purpose of fair comparison.

Both the USDE (15) and the EUSDE (26) are all tested
under u1 and u2. Fig. 4-7 provide the profiles of system
states with/without measurement noise and the corresponding
estimation performances of unknown system dynamics.
Fig. 4 provides the system state under input u1. Fig. 5 gives
the estimation results of USDE and EUSDE, respectively. It is
found that similar estimation performance are obtained for
both the USDE and EUSDE in the absence of measurement
noise. However, when there exists measurement noise, the
modified EUSDE with the cascaded filter operation can
suppress the effects of measurement noise effectively and
thus achieve a better estimation performance than the original
USDE. More specifically, the EUSDE with r = 3 can
obtained even further improved response than the case with
r = 2. Similar observations can also be found for the
case with u2 as shown in Fig.6-Fig.7. In conclusion, the
proposed EUSDE has less fluctuations in the estimation, but
superior capability of rejecting the measurement noise over
the traditional USDE.Moreover, with the increase of the filter
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order r , the rejection of measurement noise is enhanced to
obtain a smoother ĥ.

FIGURE 4. Profiles of state trajectories with u1.

FIGURE 5. Estimation of unknown dynamics h(t) with u1.

B. EXPERIMENTS
In practical experiments, the prototype SEA manufactured
in our lab is utilized as the test-rig, the diagram of which
is given in Fig. 8. In this test-rig, a brushless DC motor
(QDD Pro-NE30-50-70) embedded with a driver is applied

FIGURE 6. Profiles of state trajectories with u2.

FIGURE 7. Estimation of unknown dynamics h(t) with u2.

as the actuator, which can provide 6600 mNm rated torque.
The control algorithm is implemented in real-time based
on an integrated controller with STM32F407ZGT6 and the
sampling time is set as 50 ms. The output force of SEA is
measured by an S-shaped force sensor with a sensor error of
0.2 N.

For the adopted SEA test-rig, a preliminary system
identification phase has been carried out with input current
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FIGURE 8. Experimental SEA Test-rig.

FIGURE 9. Input current u of SEA.

u = 0.4 sin 2π
3 t to obtain a baseline model described by:{

ẋ1 = x2,
ẋ2 = −0.801x1 − 0.415x2 + 599.6u,

(39)

where the unknown system dynamics h is not considered.
This model can be obtained by using the measured input
u and output x2 (gray solid line in Fig. 10), which can be
reformulated as a linearized form given by:

ẋ2 = φ(x, u) = θϕ, (40)

where ϕ = [−x1,−x2, u]⊤ is the known regressor and
θ = [0.801, 0.415, 599.6] is the parameter vector determined
by the system identification via available input-output
data.

The measured system output (gray solid line) and the
output of baseline model (40) (blue dotted line) are depicted
in Fig. 10, which indicates that there are clear difference
between the ideal system output and the baseline model
output, such that the baseline model (40) has significant
modeling uncertainties, which should be further considered
with the proposed estimators. Note that in this practice there
is unavoidable measurement noise, and thus we test the
performance of EUSDE (26). For this purpose, the EUSDE
is implemented with parameters κ = 0.02 and r =

6 to reconstruct h, where the profile of estimated unknown
dynamics is given in Fig. 11.

FIGURE 10. Responses of SEA (The gray solid line depicts the ideal
measured system output; the blue dotted line depicts the system output
derived from the baseline model; the red solid line depicts the system
output with estimated unknown dynamics).

FIGURE 11. Estimated trajectory of unknown dynamics.

This estimated dynamics ĥ is further incorporated to the
baseline model to obtain a further improved model given by:

ẋ2 = φ(x, u) + ĥ, (41)

where the output ĥ of EUSDE is adopted as an extra
compensation to the baseline model, i.e., u = 0.4 sin 2π

3 t +

1
θ3
ĥ as shown in Fig. 9, so as to exemplify the efficacy of the

proposed UESDE by comparing the discrepancy between the
measured system output, the output of baseline model (40)
and modified model (41) (red solid line in Fig. 10).
From the experimental results given in Figs. 10-11, one

can find that a reduced error is obtained between the
measured SEA output and the modified model output (41)
by incorporating the estimated dynamics ĥ into the baseline
model (40) in real-time. It should be noted that the peak
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phenomenon occurring at t = 3s may be caused by the
stiction friction and damping during the initiation operation
phase. In this sense, it is found that the proposed EUSDEmay
also have the capability of achieving smooth and accurate
estimations of piecewise continuous unknown dynamics,
such as friction and damping.

VI. CONCLUSION
In this study, an EUSDE is designed by constructing a
cascaded higher-order filter to online estimate the unknown
system dynamics of the SEA systems. Different to our
previous work on the design of USDE, the further modified
EUSDE can suppress the sensitivity to measurement noise so
as to achieve a better estimation performance. Comparative
analysis concerning with the convergence performance and
robustness to measurement noise of the USDE and EUSDE
are rigorously studied in both the time-domain and frequency-
domain. Comparative simulation results are given, which
indicate that the developed EUSDE can maintain better
estimation response than the USDE in the presence of
measurement noise. Moreover, practical experiment results
further reveal that the EUSDE can effectively compensate
the unknown system dynamics involved in the adopted SEA
test-rig and the discrepancy between the model output and
the actual system output is further reduced by inserting the
estimated dynamics into the baseline model. The proposed
EUSDE can also enable the implementation of model-based
controllers to achieve better control responses due to its
simple structure and the estimation ability for unknown
system dynamics.
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