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ABSTRACT Nowadays, along with the rise of digital human system, 3D animation, intelligent medical and
other industries, 3D face reconstruction technology has become a popular research direction in computer
vision and computer graphics. Traditional 3D face reconstruction techniques are affected by face expression,
occlusion, and ambient light, resulting in poor accuracy and robustness of the reconstructed model, etc.
With the rise of deep learning, all of the above problems have been greatly improved. Focusing on 3D face
reconstruction techniques based on deep learning, this paper categorizes the existing research works into 3D
face reconstruction based on hybrid learning and explicit regression. The first category of research work fits
2D faces to 3D models, which is a pathological process that requires solving the basis vector coefficients of
the 3D face statistical model. The second type of research work, instead of Model Fitting, represents 3D faces
with multiple data types in the display space and directly regresses 2D faces through deep networks. This
review provides the latest advances in single-image-based 3D face reconstruction techniques in recent years,
summarizing some commonly used face datasets, evaluation metrics, and applications. Finally, we discuss

the main challenges and future trends of the single-image 3D face reconstruction task.

INDEX TERMS 3D face reconstruction, deep learning, 3DMM, model fitting, Nerf.

I. INTRODUCTION

In recent years, with the development of face-related
technologies, 2D face-related technologies such as face
expression classification, face detection, face recognition,
face attribute editing, etc. have become more and more
mature, however, due to the difficulty of 2D face images to
support the application of 3D faces and the increased require-
ments of accuracy and precision in acquiring face-related
information, compared to 2D face images, 3D faces are able
to present more abundant information such as the shape,
gesture, texture, and so on, and problems such as perspective
conversion and angular occlusion will not affect their char-
acterization in 3D space. The information such as the shape,
posture and texture of the face can be more richly displayed
in space, and the problems such as perspective conversion
and angular occlusion will not affect its characterization in
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3D space [1], [2]. Therefore, the technique of reconstructing
high-fidelity 3D face models from 2D images has received
a lot of attention from researchers. Compared with recon-
structing a 3D face from multiple 2D images acquired from
different viewpoints, it is more challenging to recover a 3D
face using only a single unrestricted 2D image, so this paper
focuses on the problem of reconstructing a 3D face based on
a single 2D image.

The essence of 3D face reconstruction based on a single
image is the process of recovering the 3D coordinates and
RGB values of each pixel point on a 2D face image at its
corresponding position in a 3D face under the condition that
it describes some a priori information [3]. We retrieve the
methods commonly used in 3D face reconstruction tasks in
recent years, divide them into traditional methods and deep
learning-based methods in time scale, and mainly elaborate
some typical algorithms for 3D face reconstruction based
on deep learning. The framework of the divided methods is
shown in Fig. 1. From the perspective of regression process,
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FIGURE 1. Classification of 3D face reconstruction methods.

3D face reconstruction based on deep learning can be sub-
divided into hybrid learning-based and end-to-end regression
based on display space, in which hybrid learning-based meth-
ods first encode the 2D image into a series of vectors mapped
into the hidden space through feature extraction and other
operations, and decode and reconstruct the 3D face with the
help of 3D deformable a priori information, while end-to-end
regression based on display space can directly regress the 3D
representation corresponding to each pixel position from a
single 2D image.

This paper is organized as follows: section II gives a brief
introduction to the relevant physical models involved in the
3D face reconstruction process. Section III introduces some
3D face reconstruction based on traditional methods and
discusses the advantages and disadvantages between each
method. In Section IV, the typical algorithms of 3D face
reconstruction based on hybrid learning in recent years are
sorted out and divided into four categories according to
the different neural network architectures: based on Convo-
lutional Neural Networks (CNN), based on Auto-Encoder,
based on Graph Convolutional Networks (GCN), and based
on Generative Adversarial Networks (GAN), and the ideas,
steps, and features of each algorithm are elaborated in
detail. Section V combs through the typical algorithms for
3D face reconstruction based on end-to-end regression in
recent years and divides them into four categories includ-
ing: voxel, UV position map, RGB-depth, neural radiation
field, and elaborates the ideas and features of each algorithm.
Section VI introduces some popular datasets and evaluation
metrics used to evaluate the quality of 3D face reconstruction.
Section VII shows the application scenarios of 3D face recon-
struction techniques. Section VIII summarizes some current
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FIGURE 3. Weak perspective projection process: 3D objects are flattened
to the same depth and their projections on the 2D image are scaled
according to their proximity to the camera.

challenges in the field of 3D face reconstruction and gives
some suggestions.

Il. BACKGROUND KNOWLEDGE
A. CAMERA MODEL
The camera model describes the projection process of face
vertices from a 3D world coordinate system to a 2D picture
[4], which is shown in Fig. 2.

Given a point p in a world coordinate system, its cor-
responding point g on the 2D picture is calculated by the
following equation:

q = II(Rp +1) ey

where R and  are camera external references, which represent
the rotation matrix and translation vector, respectively, and
which transform the point p to p under the camera coordi-
nate system by rigid-body transformations such as scaling,
rotation translation, etc. Il denotes the projection process
associated with the camera internal reference, which trans-
forms p to the image coordinate system to obtain the point
g. In 3D face reconstruction algorithms, the most commonly
used projection model is the weak perspective projection. Its
imaging process is shown in Fig. 3.

The weak perspective projection is widely used in 2D key
tracking algorithms and dense tracking algorithms due to
its computational efficiency [5]. Its projection matrix is as

follows:
1 0 0

where s = 1/d denotes the similarity factor of the transfor-
mation, d is the depth of the object, and the size of the object
in its plane varies with the distance from the camera. In 3D
face reconstruction, the camera model can be used to project
the 3D face model onto a 2D image and compare it with the
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ground-truth of the input 2D image, and establish a loss to
constrain the model reconstruction.

B. ILLUMINATION MODEL

In computer graphics, illumination model is to set a constant
direction and intensity light source in a simulated 3D environ-
ment to interact with the surface of an object so as to generate
images with real emotions. In the 3D face reconstruction task,
the illumination information plays an indispensable role in
rendering the face picture, but it is usually difficult to recover
the illumination in the real scene, so researchers generally use
a simplified illumination model such as: spherical harmonic
function illumination model [6]. The internal calculation is as
follows:

V2H! - cos(n - $) - Pl(cos(®))  ifn <0
k k
H}! - Pk (cos(9)) ifn=20
V2H! - sin(—n - ¢) - P (cos(9)) ifn > 0
k k

3
where k is the index order, H,Z’ denotes the normalization
factor, and P}, denotes the accompanying Legendre polyno-

mial of order k. Based on the spherical harmonic function,
a function T'(w) defined on a sphere can be approximated as:

B—1 &k
T~ Y > g¥iw) )

k=0 n=—k

Vi, ¢) =

where B is the order of the basis function and g} is the
coefficient of the basis function. For ease of understanding
the basis function is expressed using a one-dimensional sub-
seript: Y1 = Y0, Vo = Y7 v3 = ¥0, o Y = YEO
Based on the above expression of the basis function, the light
can be approximated by a ball-harmonic basis function:

BZ
Citi | y)=ti- > yp®p (m) (5)

b=1
where @, (n;) dote the ball-harmonic basis function com-
puted from the normal vectors of the vertices of the 3D face
model, while y = [y1, ..., yz] denotes the control of the
illumination transformation with ball-harmonic coefficients.

C. RENDER
Rendering is the process of computationally sampling a 3D
model to obtain a 2D image through different viewing condi-
tions (e.g., orientation, distance), which is determined by the
representation and storage form of the 3D model (e.g., point
cloud, mesh, voxel). Among the rendering methods often
used in 3D face reconstruction tasks can be categorized into
traditional graphics rendering and neural network rendering.
Among the rendering methods often used in 3D face recon-
struction tasks can be categorized into traditional graphics
rendering, neural network rendering.

In traditional graphics rendering, the surface of the face
is usually regarded as a Lambertian reflection model [7],
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which assumes that the surface of the face is an ideal diffuse
reflector and only produces diffuse reflection phenomena.
As shown in Fig. 4, the luminance received by the observer
does not change with the viewing angle, and the diffuse
reflection follows the cosine law, i.e., the intensity of diffuse
reflection depends on the angle of the normal vector of the
intersection point of the incident light line and its surface,
which is calculated as follows:

[ =lpcosf (6)

where [ is the incident light intensity, /o is the reflected light
intensity, 6 is the angle between the light vector and the
normal vector. In the rendering process, the pixel values cor-
responding to each point of the imaging plane are calculated
according to the lighting conditions of the environment where
the face model is located:

P(x) = AT S(x) 7

where x denotes the pixel coordinate position, P(x) denotes
the pixel color, A(x) denotes the original color of the image,
and S(x) denotes the normal vector of the image pixels. In the
actual rendering, in order to simulate the reflection effect of
the smooth skin surface on the light source, an additional
highlight component will be introduced as a supplement [7].

Illumination model

Camera model

Lambertian reflectance model

FIGURE 4. Rendering based on Lambertian reflection, the left side shows
the imaging process of a given light source reflecting on a face model,
and the right side is a zoomed-in illustration of the process, with light
diffusely reflecting on the surface.

Neural network rendering is an emerging rendering method
combined with deep neural networks in recent years, in which
given parameters are input to the deep network for infer-
ence, implicit 3D information stored in the neural network is
obtained and synthesized in combination with the rendering
principles of graphics, and the rendered image is finally
obtained. Neural Radiation Fields as the most representative
neural network rendering, is widely used in the field of 3D
reconstruction and high-fidelity perspective synthesis [8], its
rendering flow is shown in Fig. 5.

Neural network

Volume rendering

Rendered image

FIGURE 5. Neural radiation fields based on volume render.
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FIGURE 6. The development lineage of 3D reconstruction of faces from a single image.

Specifically, the deep network first learns the
five-dimensional continuous field used to represent the 3D
model through the multi-view image with its corresponding
camera parameters:

Fg:(p.f) = (0.0) ®)

where Fy is a learnable deep neural network, p = (x,y, z)
is a point in 3D coordinates, f = (6, £) is the direction of
the light path emitted from the observation viewpoint, c is
the pixel information learned by the network, and o is the
attenuation effect produced by the light during propagation,
and the attenuation process is satisfied:

dl = o(t)dt )

where dt is the integral differential of the propagation path,
and o (¢) is the attenuation coefficient at time. Centered at the
camera coordinates o, for a point p in the pixel coordinate
system of the target image, its corresponding imaged ray is:

rt)=o+f -t (10)

In summary, w(z) is the transmission ratio of light propa-
gating in the target volume, and the imaging color C(p) of
pixel p point is satisfied:

C(p) = / - w(t) - o(f, r(t))dt
0

f (1D
w(t) = exp —/o((r(s))ds -o(r())

0

Traditional graphics rendering is mainly applied to display
represented 3D face models, and the models and techniques
involved in its rendering process have a long history of devel-
opment, while neural network rendering is applied to implicit
3D face models, where integral computation is carried out
in the target volume through the light path and inference is
performed in the neural network, and the rendering accuracy
and realism are greater than the former, due to the fact that the
implicit information stored inside is obtained from the images
within the continuous scene and is the real result of the action
of objects and light, its rendering accuracy and realism are
greater than the former. Table 1 shows the advantages and
disadvantages of the two rendering methods.
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TABLE 1. Comparison of advantages and disadvantages.

Traditional graphics Neural network

Methods

rendering rendering
(1) Faster rendering (1). ngh.
. generalizability to
(2) Support for dynamic .
. complex scenarios
scene rendering (2) High renderin
(3) There is more mature & ne
Advantage . . accuracy and realism
research on improving .
renderin dand (3) Deep learning
€ speed an supportin;
optimizing rendering pporting
alit technologies are fast
quatty. iterative and promising
(1) Rendering requires (1) Inability to render
additional materials face models in real
and textures to display time
Disadvantage the 3D model. (2) Rendering is time-

(2) High demands on consuming and has
computer storage a high demand on
space GPU performance

D. DEVELOPMENT OF 3D FACE RECONSTRUCTION BASED
ON A SINGLE IMAGE

With Parke et al [9]. in 1974 using a computer to generate
the first three-dimensional model of the face to this point,
based on a single image of the 3D face reconstruction has
been 50 years of development, the rise of deep learning in the
field of image reconstruction for the 3D face reconstruction
provides a new way of thinking, Fig. 6 shows the emergence
of representative 3D face reconstruction algorithms at various
points in time.

Ill. TRADITIONAL METHODS

A. PROACTIVE MODELING

Proactive modeling, also known as active ranging 3D face
modeling, generally immobilizes a person in a specific
scene and uses 3D data acquisition equipment to capture
geometric information about the face. Common proactive
modeling methods are mainly laser ranging technology [10]
and structured light technology [11]. The working principle
of laser-based scanning ranging is to use a scanning system
to emit laser light into the target face, and its light wave will
be reflected back to the sensor by the surface of the face,
the longer the time required for this process represents the
deeper the depth of the surface of the face, and this process
is known as time-of-flight, Another method is a structured
light-based modeling system, whose system is composed of
one or more cameras and projectors. The working principle
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of structured light scanning is to use light waves in a finely
calibrated pattern to be projected onto the scanned object, and
the light rays generally fall on the surface of the face in the
form of regular and isometric stripes, and the depth value and
texture information of the face is calculated from the light
information of the surface of the face, so as to obtain a high-
precision 3D face Point cloud data. The form factor of the
3D laser scanner and 3D structured light scanner is shown in
Fig. 7.

3D full face camera

'

full face acquisition device

P

3D Scanner

FIGURE 7. Laser scanner (left) and structured light scanner (right) used to
capture 3D face data.

B. PASSIVE MODELING

Passive modeling does not require specialized physical scan-
ning equipment, but only multiple 2D face images or a series
of 2D image sequences containing visual information for
modeling. The passive modeling approaches include: mul-
timetric stereo vision matching, photometric based method.
Among them, the method based on multimetric stereo visual
matching is to recover the shape from multiple face images
taken from different viewpoints, taking binocular visual
matching as an example to illustrate the principle: it utilizes
the polar geometry to transform the problem into Euclidean
geometric conditions, and then utilizes the triangulation
to compute the depth information of stereo-matched face
images, so as to obtain the dense three-dimensional spatial
point cloud. The method can be divided into five steps, which
are image acquisition, camera calibration [12], image correc-
tion [13], stereo matching [14], and 3D reconstruction. The
binocular vision 3D face reconstruction system is shown in
Fig. 8.

Image Camera Image Stereo 3D
acquisition calibration correction matching reconstruction

FIGURE 8. Binocular vision 3D face reconstruction system.

The most typical photometric-based face reconstruction
is shape from shading [15], which uses the light and dark
information in the two-dimensional grayscale image and the
luminance generation principle to simulate the light changes
of the environment, so as to obtain the normal vector of
each pixel point in the three-dimensional space, and then
the depth value is obtained by calculating according to the
normal vector to obtain the reconstruction model. Smith and
Hancock [16] proposed a statistical method to recover the
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surface normal field from a single-intensity image by embed-
ding surface normals into the SFS framework by embedding
surface normals in place of surface depth, the correlation
between surface orientation and image intensity is utilized
to recover the surface normal field from single image. This
method assumes a Lambertian model and a single point light
source with known orientation, and therefore cannot handle
the lighting conditions in complex cases. Hu et al. [17] used
a sufficiently large number of images to generate a reliable
source template face, and input a single face image to estimate
the target face’s light by a sparse transmission model to
estimate information such as illumination and albedo of the
target face to generate a 3D face model. SFS is suitable for
objects with uniformly concave and convex surfaces, how-
ever, the reconstructed model tends to be less robust for more
complex face regions due to the fact that small changes in
the surface normals lead to significant changes in the cor-
responding composite surfaces. Castelan and Hancock [18]
integrated a localized shape-based method integrated into the
SES framework to enhance the concavity of the integrated
surfaces, where they utilize local descriptors of shape indices
and curvature to constrain regions and make the necessary
corrections to the surface normal vectors to enhance the con-
vexity of the surfaces and ensure that the integrated surfaces
have a global height maximum. However, SFS-based 3D face
reconstruction has three main limitations: (1) it cannot handle
3D reconstruction under complex illumination, and most of
the methods make simple assumptions about the illumination
conditions; (2) it is only applicable to a single frontal photo
of the face, and is unable to recover large-pose facial images.
(3) Cannot reconstruct a realistic feeling 3D face model.

C. 3D MORPHABLE MODEL

The 3D Morphable Model (3ADMM) was proposed by
Blanz et al. [19] in 1999. The principle is that 3DMM
treats faces as distributions in a linear subspace of a high-
dimensional space, and any face can be represented by a
linear combination of the average face and other faces con-
structed from a database. Specifically: they constructed a 3D
face database using laser scanning, reduced the collected face
data to a linear basis using Principal Component Analysis
(PCA), computed the face geometry and texture parameters
by matching with the target image, and combined the linear
basis of the principal components and the average face param-
eters to obtain the target 3D face model, the formula for its
calculation is as follows:

N
Stod = ZaiSi
i=1
N
Tmod = »_ biT; (12)
i=1

N N
Zai = Zb,‘ =1
i=1

i=1
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where S; and T; are the shape vector and texture vector of
the ith face in the database. Since they are not orthogonally
correlated, S; and 7; cannot be used directly as basis vectors
in the actual model construction, and we need to use PCA
to perform dimensionality reduction decomposition: firstly,
we compute the average face shape vector S and the average
texture vector 7, and secondly, we center the face data to
obtain AS = S; — S and AT = T; — T. Then, we com-
pute their covariance matrices C; and Cy, respectively, and
finally, we obtain the eigenvalues «;, §;, and eigenvectors and
the eigenvalues and eigenvectors for the shape and texture
covariance matrices. and eigenvectors s; and #;. In summary,
the shape and texture of a 3D face can be represented by
equation (13):

( N—1
Smodel = S + Z a;s;

i=1

N-1
Tmodel = T + Z lgiti

i=1

N—1 N-1
D= pi=1
i=1

i=1

(13)

L

The N —1 eigenvectors are chosen based on the descending
order of the eigenvalues, and taking the first few components
of s; and #; at the same time gives a good approximation of the
original samples, and therefore better reduces the number of
parameters that need to be estimated without loss of accuracy.

The flow of 3D face reconstruction algorithm based on
3DMM is shown in Fig. 9. The essence of how to fit a 2D
image to a 3D model is to solve the base vector coefficients
of shape and texture. The solution idea is as follows: input
the 2D face image, and then combine it with the existing
3D face database to solve the base vector coefficients ¢ =
(a1, 00, - ,an—1), B = (B1, P2, , Bn—1) of shape and
texture, as well as the external rendering parameters including
the camera position, the rotation angle of the image plane, the
ambient light component, the image contrast and so on, a total
of more than 20 dimensional parameters. Under the control
of these initial parameters, the reconstructed 3D face model
can be rendered onto a 2D image, the error is calculated with
the input initial image, and then the relevant parameters and
3D model are adjusted by back propagation of the error, and
iterated until reaching the optimization.

LALS

Automated 3D

Initializing the
Morphable : shape and texture
Model < reconstruction
2D input

Renderering
Calculate external
—
parameters

o) ]
[ J

FIGURE 9. 3DMM-based 3D face reconstruction process.
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TABLE 2. Comparison of advantages and disadvantages of traditional

based 3D face reconstruction methods.

Methods Advantage Disadvantage
(1) Capable of obtaining (1) The obtained 3D
Laser high-precision face data  point cloud data is large
rangin (2) Reconstructed 3D face  and needs to be matched
ging models are more (2) Capture equipment is
realistic expensive
(1) Only one image of a
face is needed to
Structured Obtain 3D shape; (1) Slow reconstruction
Light (2) Reconstruction (2) Face capture for
Scanning structure with high indoors only
precision and strong
anti-interference ability
(1) High cost, high
(1) 3D point cloud capable computing power,
. L susceptibility to light
Multi-Eye of providing dense conditions
Stereo parallax information for o
. (2) Inability to solve
Vision recovery the problem of self-
Matching (2) Reconstructed 3D face P .
. . obscuring face
model is more detailed .
images
(1) Susceptible to light
(1) Reconstruction results sources, Depep dent
Mathematical
are more accurate and operations
have a wide range of P y
SFS applications Robustness Poor
(2) Reconstruction with (2) Inability to solve
. . . the problem of large-
just a single image .
pose face pictures
(1) The 3D topology is (1) The creation of a 3D
known and the face database requires
reconstruction results high levels of acquisition
are complete equipment and
3DMM (2) Its face is composed of processing.
linear superposition, (2) Constrained by

and a new face model
can be generated by
changing any
parameter.

linear space, the
reconstructed face
model is more
average

3DMM-based face reconstruction algorithms were widely
used at that time, but they usually suffer from the follow-
ing drawbacks: (1) the reconstructed face model is poorly
personalized, and the accuracy is highly dependent on the
diversity of the data in the 3DMM database; (2) the model
fitting is a pathological problem, which does not have a
globally optimal solution per se and is prone to fall into
a localized solution; and (3) due to discontinuities in the
error function itself, the face image background noise and
self-occlusion can seriously affect the reconstruction accu-
racy. (4) The linear space formed by principal component
analysis is a low-dimensional space, which contains coarse
shapes and textures. Table 2 shows the advantages and dis-
advantages of 3D face reconstruction based on traditional
methods.
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IV. HYBRID LEARNING

A. CONVOLUTIONAL NEURAL NETWORK BASED
RECONSTRUCTION

While the classical 3D morphable model is able to recover the
global geometric information well for 3D face reconstruction,
the model is difficult to capture the deep detailed features of
the face, resulting in a lack of detailed representation in the
reconstructed 3D model. In recent years, due to the excellent
performance of deep learning in image feature extraction,
researchers have combined 3DMM with convolutional neural
networks in 3D face reconstruction tasks and designed a
more effective loss function to constrain the learning process,
which enables the model to better learn and characterize the
3D details of the face. This hybrid learning-based approach
has attracted academic attention and become a research
hotspot in the field of 3D face reconstruction. Its algorithm
flowchart is shown in Fig. 10.

FC

Coarse reconstruction

Detailed reconstruction

J

FIGURE 10. CNN-based 3D face reconstruction algorithm process.

In Fig. 10, {S, P, T} denote the predicted three-part feature
encoding for shape, pose, and texture, respectively. The first
convolutional neural network extracts the global features of
the face image, and predicts the 3DMM basis vector coef-
ficients through the fully connected layer (FC), after which
the basis coefficients are combined with the 3D morphable
model in the 3D dataset to obtain a rough 3D face model.
The second fully connected layer predicts the shape and
texture parameters, and decodes the 3D face geometry and
texture mapping through a decoder, and then combines the
pose parameters to get the face model with detailed features,
and finally calculates the loss function between the rendered
2D image and the input 2D image, and then optimizes the
network.

Compared with the traditional 3D morphable model, con-
volutional neural network has the shortcomings of high
algorithm complexity and lack of a priori information.
How to combine convolutional neural networks and 3DMM
to reconstruct 3D face models with detailed features has
become a greater concern for researchers. In 2016, Richard-
son et al. [20] applied convolutional neural networks to
3D face reconstruction for the first time, and the authors
proposed a coarse-to-fine training method. Specifically, the
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algorithm consists of two networks, respectively CoarseNet
and FineNet. Among them, CoarseNet computes the base
vector coefficients of 3D face by 3DMM, which serves to ini-
tially reconstruct the coarse 3D face geometry, while FineNet
further refines the face features by means of SFS, which can
reconstruct the 3D face model with details very well, but
for the reconstruction of self-obscuring images that is less
robust. Similarly, Dou et al. [21] used identity and expression
fusion to express face shapes, Luo et al. [22] proposed a
SCNN algorithm to compute more robust and personalized
3DMM coefficients, and Fan et al. [23] proposed a dual neural
network-based face reconstruction algorithm based on both,
which maximally combines the advantages of convolutional
neural networks and 3DMM, and further improves the accu-
racy of face reconstruction. In 2020, Zhu et al. [24] proposed
an image fitting algorithm (ReDA), which, with the help of
the idea of soft rasterization, splits the mesh into a number of
blocks along one direction, each of which is rasterized in a
traditional way, using the operations of a number of different
convolutional kernels to aggregate along the space and across
layers. Experiments show that the ReDA algorithm is able
to establish dense correspondences and reconstruct 3D faces
with high quality.

In order to get higher accuracy in the reconstructed model,
most researchers use face landmarks alignment to calculate
the error, and face alignment has become the key in the
reconstruction task. In 2016, Zhu et al. [25] proposed 3D
Dense Face Alignment algorithm (3DDFA). The algorithm
encodes the orientation information between the key points
of the image into the pose adaptive convolution (PAF) to
facilitate the fusion of the pose information in the training
phase and improve the robustness and accuracy of the model
to pose changes. The authors also innovatively propose the
normalized projected coordinate coding PNCC, which nor-
malizes the position information of each pixel point on the
face and encodes it into a vector for representing the features
of the face shape. The fitting process can be expressed as
follows:

P! — pky Netk (Fea (1, Pk)) (14)

where Net‘ denotes the parameters used for the regres-
sion network, and Fea(/, Pk ) denotes the coefficients of the

3DMM basis vectors iterated in the 2D image. 3D reconstruc-
tion is performed based on Pk = f k Rk tg‘d, a,].‘d, aifxp and
3DMM models to obtain the face shape Sy in the K +1st

generation, which is normalized to obtain NCC.

Sk+1 — min (Sg41)

max (S, 1) — min Sk+1) (15)
d = (x,y,7), NCC € R®

vect,, -

Then a Z-Buffer renderer is invoked to get the 2D image
PNCC based on NCC:

PNCC = Z — Buzzfer(V(p), NCC) 16)
V(P) = R*S + [ta, 01"
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The transformation process of NCC and PNCC of a face is
shown in Fig. 11.

PNCC

Projected
3D Face

FIGURE 11. Face normalized coordinate code (left) and face normalized
projected coordinate code (right) [25].

The advantage of 3DDFA is that it skillfully transforms the
problem of annotating the key landmarks into the problem
of fitting the image to the model, and is able to accurately
capture the shape and structure of the face even in the
presence of large variations in facial expressions or head
postures. Accurate 3D face reconstruction often requires
an iterative algorithm for continuous optimization, which
leads to a long model training time and is not conducive to
real-time and fast applications. MobileFace is an algorithm
that performs 3D face reconstruction in real-time on mobile
devices [26], which is based on a lightweight network,
such as MobileNet CNN, to regress the shape of the 3D
face, and introduces the face texture into the energy func-
tion to improve the detailed representation of the model.
Similarly, Wang et al. [27] used MobileNet to regress the
3DMM basis vector coefficients. 3DDFA_V?2 is based on
the improvement of the 3DDFA algorithm [28], and its
improvement strategy is to replace the traditional dilb with
a fast face detector Face-Boxes and introduce a lightweight
network MobileNet_V2. Compared to the original version,
3DDFA_V2 can achieve higher detection accuracy and faster
operation speed.

In 3D face reconstruction based on hybrid methods, the
ideal situation is to have a large number of accurate 3D
scanned faces as label data, but in most cases, a large number
of 3D scanned faces are not available due to cost, privacy and
other reasons, and usually only a small number of 3D scanned
faces can be utilized to train the model, and the reconstructed
model is often poorly robust in this way. To compensate for
the lack of 3D face data, Sela et al. [29] proposed an image
transformation network that can be used to synthesize 3D face
datasets, Liu et al [30]. designed a method to fit a 3D Mor-
phable model to multiple 2D images and then reconstructed a
3D face, and used this kind of generated data as labeled data
to train the model, but this method of training the network
by synthesizing 3D data It is usually difficult to reconstruct a
face model with high accuracy. Jackson et al. [31] proposed
a method to reconstruct a 3D model by direct volume of con-
volutional neural network. This method uses a multi-feature
fitting approach to generate a training model by fitting a
3DMM combining the BFM model [32] and the FaceWare-
house model [33] to a 300W dataset [34]. This method does
not need to use the 3DMM directly to generate faces that fit
arbitrary poses and expressions. In order not to rely too much
on 3D face data, researchers have focused on unsupervised
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or self-supervised methods. When the dataset is only 2D
images, the reconstructed 3D face model is rendered back
to the 2D image and loss calculation is established with the
input 2D face image to supervise the training, this method is
called unsupervised training. Similarly, on the basis of unsu-
pervised, after the reconstructed 3D face model is rendered
back to the 2D image, the image is reconstructed to a 3D face
model and loss calculation is established with the previous 3D
face model to supervise, this method is called self-supervised.
Weakly supervised learning method is to add some weakly
supervised information such as facial landmark, skin masks,
etc. during the training process. The 4 methods of supervision
are shown in Fig. 12.

In 2017, Tewari et al. [35] designed a novel deep con-
volutional self-encoder that achieves face reconstruction
in a self-supervised manner without any 3D face data,
the encoder first extracts semantic information such as
pose, shape, expression, texture, illumination, etc. from the
input image and encodes them, followed by decoding the
semantic features into 3DMM basis vector coefficients and
external parameters for reconstructing the face via a model-
based decoder. Finally self-supervised training is achieved
by reconstructing the rendered 2D image again. It has
been pointed out that using only pixel loss and percep-
tual loss to constrain the model training is insufficient, and
more loss functions need to be combined to achieve bet-
ter results, so Deng et al. [36] proposed a method that
allows unsupervised monocular reconstruction on a single
image or dataset, which designs a set of complex hybrid
loss functions that can take into account the supervision
of both low-level and perceptual levels, and utilizes the
complementary information between different images for
aggregation, and uses an attention mask for some regions
of the face to reduce the effect of occlusions on the recon-
struction quality. In 2020, Tu et al. [37] proposed the 2DASL
(2D-assisted self-supervised learning) algorithm, they based
on the self-supervised training approach by regressing the
convolutional neural networks on the base vector coeftfi-
cients of 3DMM to solve the shortage of 3D face data. The
algorithm is trained using two sets of images. The first set
of images contains the ground-truth of 3DMM coefficients,
which is supervised by minimizing the error of 3DMM
coefficients. The second set of images has the ground-truth
of facial landmarks, which is supervised by minimizing
the facial landmarks errors to supervise, the method allows
reconstruction in ground-truth conditions without 3D faces,
but the model is poorer in terms of detail representation.
Wau et al. [38] proposed an unsupervised training approach
based on multilevel loss function. Combining the traditional
3D Morphable model, a convolutional neural network is uti-
lized to learn 3D face features directly from a large number
of 2D face images. In addition, in order to solve the self-
obscuration problem, they use a facial parsing segmentation
algorithm based on the CelebAMask-HQ [39] dataset to
preprocess the image to remove the occluded region. Exper-
iments show that the reconstructed face model has a large
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FIGURE 12. Schematic diagram of supervision methods.

quality and accuracy improvement. In 2021, Zhang et al. [40]
designed a self-supervised framework (WM3DR), that uses a
single convolutional neural network to predict multiple face
parameters simultaneously, the framework not only greatly
reduces redundant computations in feature extraction, but the
architecture of a single network makes the model easier to
deploy, and more importantly uses a global camera model for
the reconstructed face in each image, allowing the method
to be applied without detection or pre-processing such as
cropping. Zielonka et al. [41] proposed MICA algorithm,
in order to address the effect of perspective projection on
the reconstructed face dimensions in self-supervised training,
the authors proposed a training scheme based on hybrid
supervision. Due to the lack of large-scale 3D databases,
the authors synthetically labeled small and medium-sized
databases to generate a model that contains 2300 identities
and corresponding image labels of the 3D database, a pre-
trained face recognition network arcface is introduced, which
provides different features for different faces and is robust
to scenes with different expressions and lighting variations,
and these features are utilized to train a face shape estimator,
which inherits the robustness and generalization of the face
recognition network. Most existing 3D face reconstruction
algorithms are sensitive to severe facial occlusion and large
perspective transformations. For this reason, Li et al. [42]
proposed a dual-space fusion network (DSFNet) in 2023 to
solve the facial occlusion problem, which firstly performs
image feature regression in the visible region of the face,
predicts the model coefficients based on the regression fea-
tures of the visible region, and utilizes the 3DMM’s a priori
information to reconstruct the occluded region, the network
combines the advantages of image space and model space
prediction, which is robust and accurate for reconstruction of
input images in the presence of facial occlusion. Lei et al. [43]
proposed a novel hierarchical representation network (HRN),
specifically, the method decouples facial geometry into
low-frequency geometric structures, mid-frequency details,
and high-frequency details. In the low-frequency part, a rough
geometric appearance reconstruction is performed, while in
the mid-frequency part, a deformation map in UV space
is used to characterize the facial details, and finally a dis-
placement map is used in the high-frequency part for texture
modeling on a pixel scale. The algorithm can reconstruct
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high frequency details such as wrinkles and dimples very
well.

B. AUTOENCODER BASED RECONSTRUCTION

The traditional 3D Morphable model constitutes a linear
space by means of principal constituents, which reconstructs
a face model with poor diversity and fails to portray individ-
ualized details, in order to enhance the expressive ability of
3DMM, Tran et al. [44] proposed a nonlinear 3DMM model,
whose algorithmic flow is shown in Fig. 13. The principle
is to use a mesh encoder to estimate the projection, shape
and texture parameters, and then use two decoders to decode
the generated 3DMM parameters into shape and texture maps
respectively. In addition, the authors fit the 3DMM through
a 300W dataset to obtain the new projection parameter m,
face shape Si, and face texture 71, and compute their losses
L,, with respect to the projection parameters estimated by
the encoder. L;, Ly, Lg, and L., are the losses between the
generated model and the real 3D facial landmarks, shapes,
and textures, as well as the loss between rendered image and
the real image, respectively.

Model learning

Model fitting m

e

Rendering Layer

FIGURE 13. Nonlinear 3DMM algorithm flow [44].

In 3D face reconstruction based on autoencoder, most of
the algorithms use a single encoder to estimate the face
attributes, but the feature extraction processes of different
attributes of the face are independent, and the use of a single
encoder affects the discriminative power of each attribute.
To solve this problem, Li et al. [45] proposed a dual-pathway
encoder-decoder network structure, which encodes the fea-
tures by two different encoders to obtain the identity and
expression parameters respectively, and then applies the local
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decoder and global decoder to regress the expression and
identity of the 3D face model respectively. The algorithm
utilizes two encoders to distinguish the expression and iden-
tity features of the face, and the reconstructed face model
has high accuracy. In order to be able to learn the parame-
ter information of 3DMM from the image, Tran et al. [46]
used encoder network to regress the 3DMM parameters on
the basis of nonlinear 3DMM, and then reconstructed the
3D model by shape and albedo decoder, the difference is
that the output of this algorithm consists of two branches,
in addition to the shape and albedo parameters, there are also
the results of the fitted shape and albedo, and the four sets of
parameters are two by two The combination of the four sets of
parameters is input to the rendering layer to reconstruct a face
model with high fidelity. Feng et al. [47] designed a novel
face reconstruction model (DECA), which takes advantage
of the consistency of some of the details of the same face
under different environments and expressions, and designed
a detail consistent loss to separate the face-specific details
from the expression-related details, and realized the face with
personalized wrinkles by controlling the expression param-
eters. animation, specifically the authors also designed two
autoencoders to extract the low-dimensional face parameters
and detail parameters respectively, after two decoders to get
the albedo mapping, 3D face geometry, expression displace-
ment maps, and finally fitting to get the 3D face model.
Experiments show that the reconstructed 3D face can be fitted
to other human face expressions to generate face animation.

In addition, when the convolutional neural network is
regressing the 3DMM parameters, most cases use fully
connected layers or 2D convolutional layers to model the
parameterized space, which can lead to the generation of
large networks with many parameters, which take up a large
amount of computer storage space and reduce the efficiency
of the algorithm. For this reason, Zhou et al. [48] proposed
a method that combines DCNNS and Auto-Encode, which
can learn the texture and shape of the face directly through
the mesh convolution, which can be more intuitive to the
definition of the nonlinear 3DMM, and also has a high
computational efficiency because the mesh convolution is
defined by a network with fewer parameters, which makes
the algorithm have a faster computational speed.

C. GRAPH CONVOLUTION BASED RECONSTRUCTION

Convolutional neural network shows its powerful learning
ability in face 3D reconstruction task, which can effectively
extract the features in the image, but in convolutional neural
network, a picture can be regarded as a Euclidean structure
that consists of every pixel neatly arranged, and the number
of neighboring nodes around each pixel point is equal and has
a certain degree of correlation, so the use of convolutional
computation on a picture is reasonable, and the face feature
point Sorting is presenting a non-regular network structure,
for this reason some researchers have proposed to introduce
graph convolution networks that deal with the topology of
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the network to reconstruct the 3D face. In graph convolution,
the number of neighboring nodes of each node is likely to be
different, as shown in Fig. 14.

8 () /Q c
jot

Qﬁ o,

In Fig.14, the black E node connected to ABCD has under-
gone convolutional computation to extract the features of the
surrounding nodes, and the features of the new yellow node E
have been generated. The formula for its convolution operator
is as follows:

FIGURE 14. Graph convolution process.

1
Hi(l+])=a ZC_HJIVVJI (17)
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where Hl.l‘Irl is the feature of node i in layer [/ + 1, H] l'is the
feature of node j in layer /, cl is the normalization factor, W

is the weight at node j in layler [, and N is the number of all
the surrounding neighboring nodes including its own node.
o (+) is the activation function. The Chebyshev interpolation
of order K is usually chosen as the graph convolution kernel

go. The equation is as follows:
K—1

g =Y OTi(L)
k=0

L =2L/Amax — 1

(18)

where L is the Laplace matrix, Apax is the maximum eigen-
value of the matrix, Ty € R™*" is the Chebyshev polynomial,
and Ok is the Chebyshev polynomial factor of order K.
In summary, each graph convolution layer after extracting
features can be represented as y = o(ggH), H are the input
features.

Due to the fact that existing linear 3DMM methods are
unable to reconstruct high-quality 3D faces with details,
while the spectral decomposition of nonlinear 3DMM rep-
resentations is unstable in different graphs, Yuan et al. [49]
designed a multi-scale graph convolutional self-encoder net-
work in 2019, where the authors processed the face as a
graph structure, and utilized graph convolution for feature
extraction on the face mesh, and in face reconstruction
accuracy is improved. Based on the former, Lin et al. [50]
proposed an algorithm for graph convolutional networks in
2020. The framework of the algorithm is shown in Fig.15.
which consists of three modules: a pre-trained face recog-
nition module and a feature extraction module, as well as
a texture-finishing graph convolution module. First of all,
a “wild” face image is input, and the feature encoding is
generated by the face recognition network, and the regressor
regresses the base vector coefficients of 3dmm, including a
total of 257 dimensional vectors of pose, illumination, etc.
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The graph convolution module consists of three parts, the
GCN decoder is responsible for decoding the features of face
recognition and generating the detailed mesh vertex colors,
and the graph convolution module is composed of three parts.
GCN decoder is responsible for decoding the features of face
recognition and generating detailed mesh vertex colors, GCN
Refiner refines the mesh vertex colors generated by Regressor
module, Combine Net is responsible for integrating the mesh
vertex colors of GCN Decoder and GCN Refiner to output the
final mesh vertex colors, and the discriminator combines the
reconstructed face model in 3dmm and the reconstructed face
model after graph convolution module refining. The discrim-
inator compares the reconstructed face model of 3dmm with
the face model refined by the convolution module to realize

supervised training.
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FIGURE 15. GCN based 3D face reconstruction algorithm [50].

In 2021, Qiu et al [51] reconstructed 3D cartoon faces with
exaggerated expressions using graph convolutional networks
for the first time in the field of cartooning. In order to solve
the problem of insufficient datasets, the authors constructed
a 3D cartoon dataset containing 2000 high-quality 3D car-
toons handmade by professional artists, 3DCaricShop, which
also provides rich annotations including 2D cartoon images,
camera parameters, and 3D facial features. For the accuracy
of the facial shape in the reconstruction task, the authors
propose a method to transfer the high-fidelity geometric face
reconstructed by the implicit function generator into a mesh
with topological structure. To achieve mesh alignment, a new
view cooperative graph convolutional network VCGCN is
designed for extracting keypoints from the implicit mesh for
accurate alignment. The method generates high-fidelity 3D
exaggerated facial models in a predefined mesh topology,
which can be directly used in animation creation.

D. GENERATIVE ADVERSARIAL NETWORK BASED
RECONSTRUCTION

Generative Adversarial Networks [52] is a generative struc-
tural model based on deep learning, the idea of which is
derived from the two-player zero-sum game in game theory.
It is generally composed of a generator and a discriminator,
which generates similar data with the characteristics of the
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training set by learning the data characteristics of the training
set, and fitting the distribution of random noise to the real
distribution of the training data as much as possible under
the guidance of the discriminator. The discriminator, on the
other hand, is responsible for distinguishing whether the input
data is real or not and feeding back to the generator. The
two networks are trained alternately until the generated data
of the generative network can be faked as real. The 3D face
reconstruction based on generative adversarial network aims
to generate high-precision texture maps and then fit them
into the 3D face geometry, and to achieve the purpose of
reconstructing a high-quality texture by rendering the newly
generated 3D face back to the 2D image through the discrim-
inator to distinguish the authenticity. The algorithm flow is
shown in Fig. 16.
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FIGURE 16. GAN-based 3D face reconstruction algorithm.
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In hybrid learn based face reconstruction work, the
texture features are composed of linear basis vectors of
3DMM, which can lead to low accuracy of the reconstructed
face model. Whereas generative adversarial networks have
shown excellent performance in generating image data,
So Gecer et al. [53] proposed the GANFIT algorithm,
in which the authors used GAN to train a face texture gener-
ator in UV space, which generates different and fine texture
maps by inputting arbitrary noises, which are used as a priori
information to be fitted to the face geometry generated by
the 3DMM to reconstruct a 3D face model with texture
details. Moreover, the authors design four loss functions to
constrain the model: (1) Pixel loss of the reconstructed 3D
model after rendering it back to a 2D face with an input
2D image through a differential renderer (2) Comparison of
the 68 landmarks loss of the rendered image with the input
image through a Landmark Detector (3) Inputting the recon-
structed 3D face model together with the rendered 2D image
as well as the input 2D image into a face recognition network,
the identity loss and content loss are established separately.
respectively. The advantage of this algorithm is that it can
improve the realism of the texture, but the disadvantage is that
it requires a large amount of face UV data for training and the
texture reconstructed from the “wild” image lacks realism.
Lattas et al. [54] proposed a method to reconstruct a 3D face
model with high fidelity texture from a single ““in the wild”
image using a generative adversarial network (AvatarMe).
Firstly, the UV texture of the input image is up-sampled to
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obtain plausible face details, and the diffuse reflections of the
high-frequency details are obtained by removing the texture
information on the UV map, which is combined with the
normals of the 3DMM to obtain pixel diffuse reflections and
specular diffuse reflections required for the mapping. The
two reflections are mapped back onto the UV image, and
then the UV map is fitted to the 3D face geometry in order
to reconstruct a 3D face model with high-frequency texture
details.

In generative adversarial networks, 3D face shapes are
often composed of discrete voxels, which can lead to the
generation of rough, low-quality face shapes. COMA [55]is a
method for optimizing and improving the 3DMM coefficients
on a non-Euclidean space, and the authors innovate the use
of meshes as a nonlinear representation of 3D faces. And
the proposed MeshGAN [56] algorithm effectively improves
the above situation, the algorithm can directly perform the
convolution operation on the 3D mesh to generate 3D face
meshes with different expressions and different identities, and
this method of using mesh representations can simulate the
distribution of faces well. However, the algorithm is more
complicated in network training. Lee et al. [57] proposed
a method that combines graph convolution with generative
adversarial networks. Specifically, firstly, the face distribu-
tion is encoded using an unqualified perceptual encoder, and
the average face mesh is used as the graph structure in the
decoder part, the mesh vertices are convolved with graph
convolution, and then the high resolution of the generative
adversarial network is utilized to generate a high-quality tex-
ture mapping, which not only guarantees the authenticity of
the texture of the reconstructed model but also guarantees the
accuracy of the face shape. In 2023, Sun et al. [58] devised a
new 3D GAN framework (Next3D) for unsupervised learning
to generate high-quality and 3D-consistent facial images from
unstructured 2D images. In order to improve the accuracy
and topological flexibility of the 3DMM model, the authors
proposed a 3D representation called generating texture ras-
terized triangular faces. The proposed representation learns
to generate neural textures on top of parameterized network
templates, and then by rasterization to project them onto three
orthogonal viewpoint feature planes to form a triangulated
volume rendering. This approach combines the fine-grained
representation control of mesh-guided explicit deformation
with the flexibility of implicit volume representation. Exper-
iments show that the reconstructed 3D face model not only
has high accuracy but also can be directly used for animation.

Nowadays, reconstruction algorithms that introduce
3DMM prior information are based on rendering techniques
in computer graphics to render the reconstructed 3D model
back to a 2D image, but most of these algorithms use
older differentiable renderers, and using newer renderers
complicates the model solution. Piao et al. [59] proposed a
generative adversarial network-based neural renderer(GAR),
specifically, this renderer is no longer limited to the rules
of graphics, and ensures the accuracy of the reconstructed
model by taking the face normal vector map and other feature
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encodings as inputs, and by performing a minimization oper-
ation between the real rendered face image and the input
image.

V. RECONSTRUCTION BASED ON EXPLICIT REGRESSION
In the field of computer vision, 3D faces are mainly charac-
terized by four types of explicit data: point cloud, mesh, voxel
and depth, and the various types of data can be transformed
into each other as shown in Fig. 17.
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FIGURE 17. Different types of 3d face data.

In terms of detail performance, 3D face reconstruction
based on 3DMM a priori information leads to a reconstructed
face that is too average and lacks personality details such as
wrinkles due to its linear space limitation. Some researchers
have proposed to bypass the 3DMM using an end-to-end
approach to reconstruct 3D face models from 2D face images.
In this chapter, explicit regression-based reconstruction is
categorized into four types: voxel, UV position map, depth,
and neural radiation field based.

A. VOXEL REGRESSION BASED RECONSTRUCTION

In 2D space, each 2D image is composed of a single pixel,
and if the smallest unit in 3D space is abstractly represented
according to the 2D method, each 3D model can be composed
of a single volume element, referred to as voxel. If the reso-
lution of the voxels composing the 3D model is higher, the
more concrete the 3D model is. Jackson et al. [31] proposed
an end-to-end 3D face reconstruction network (VRNet) in
2017, which converts each accurately scanned 3D face into
a voxel binary, where the portion of pixels containing the
face takes the value of 1, and the value of O otherwise,
as shown in Fig. 18. The algorithm innovatively transforms
3D face reconstruction into a 2D to 3D segmentation task.
The network framework consists of two hourglass networks,
the first one reconstructs the rough 3D face and the second
one gets the fine 3D face by correcting the error.

FIGURE 18. 3D face structure based on voxel representation.

The voxel-based regression method has not been widely
used for the following reasons: (1) 3D face data acquisition
is costly and difficult. (2) In terms of resolution, 3D faces
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represented by voxels will be lower than those represented
by meshes. (3) The voxels are too sparse and discrete in 3D
space, and some details of the face cannot be well expressed.

B. UV POSITION REGRESSION BASED RECONSTRUCTION
High-quality 3D point cloud data contains more positional
information and details, which can be of great help when
performing 3D face regression. However, the acquisition
process of 3D point cloud is very tedious and complicated,
which requires the use of laser scanning equipment to acquire
face information and save it in the form of points. Each
point contains coordinate information (x, y, z) in 3D space.
If both shape and texture information are saved while scan-
ning the face, a point cloud of information (x,y,z, p, q)
containing sparse coordinates is formed. The disadvantages
of using point clouds to represent 3D face information are
obvious; the point cloud data needs to be traversed when
performing the fitting and the point cloud data is saved in an
unorganized manner, which not only increases the time and
difficulty of the fitting process. Inspired by Aaron et al. [31],
Feng et al. [60] proposed a method to represent 3D face
point cloud coordinates using a 2D UV position map in 2018,
which is based on the principle of mapping the 3D point cloud
coordinates according to the three channels of RGB to the UV
position map as shown in Fig. 19. The UV position map can
record the geometric information of the 3D face in its entirety,
which cleverly transforms the reconstruction problem into a
UV position image prime value prediction problem.

FIGURE 19. The illustration of UV position map. Left: is the input face
image and its corresponding 3D point cloud, right: the first row
represents the 2D face image, UV texture mapping map, and UV position
map, respectively. The second row represents the x, y, and z channels of
the UV position map, respectively [60].

PRNet [60] is a network capable of reconstructing a face
model without the aid of 3DMM while still achieving dense
alignment, which uses a simple residual convolutional neural
as an encoder to encode the features of the input image,
regresses the UV position map of the face through back-
convolution, integrates a weight mask into the loss function
during training, and also improves the performance of the
network by adding the Attention Mechanism [61] to the
UV position map. Chen et al. [62] encoded a 2D face into
implicit vectors by a 3DMM encoder and input it into the UV
space along with the reconstructed rough model to estimate
the displacement depth map of the face. This method fused
3DMM parameters with the UV position map, which not
only preserves the face detail information but also obtains the
depth information of the face. Kao et al. [63] designed a deep
neural network (PerspNet) to solve the problem of perspective
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projection distortion caused by a person’s close proximity to
the camera or moving perpendicularly to the camera axis. The
face UV position map is extracted by an encoder-decoder
network, and the 3D face shape is reconstructed in the
canonical space, and the perspective projection is accurately
represented by learning the correspondence between the 2D
pixels and the 3D point cloud, and then estimating the face
pose. Lin et al. [64] proposed an affine convolutional network,
which not only preserves the face details but also obtains the
depth information. an affine convolutional network that aims
to solve the problem that the spatial misalignment between
the input face image and the output UV position map causes
the network to be ineffective in the feature encoding and
decoding process. The authors considered that the affine
transformation matrix of each spatial location in the fea-
ture map is learned by the affine convolutional layer, which
regresses part of the parameter vectors of the diffuse map-
ping, UV position map, illumination map, and head pose,
respectively, through four sub-networks, and fuses them to
reconstruct a 3D face. Bai et al. [65] constructed a large-scale
facial UV-texture dataset (FFHQ-UV), and designed a UV
generator and texture decoder based on StyleGAN, which
is capable of generating multi-view normalized UV position
maps and texture parameters for fitting from a single face
image. Experiments show that the method is able to gener-
ate high-quality texture maps to enhance the details of the
model.

The advantage of 3D face reconstruction based on UV
position map regression is that it gets rid of the linear space of
3DMM, and the high-dimensional UV space has better oper-
ability, and the reconstructed 3D face model is more realistic,
and at the same time, the structure of the encoder-decoder
makes the network lighter, and the operation efficiency has
been greatly improved, but the mapping between the input
2D face image and the UV position map is more complicated
to solve. However, the mapping between the input 2D face
image and the UV position map is more complicated, which
is easy to cause problems such as accuracy degradation.

C. DEPTH REGRESSION BASED RECONSTRUCTION

Depth map is different from mesh and point cloud in that
they do not preserve all the 3D information, but use the form
of a 2D image to represent the information in 3D space.
The deeper the location in 3D space, the higher the color
contrast in the depth map, and vice versa, the lower the color
contrast, as a way of representing the depth information in
the 3D information. Sela et al. [29] concluded that although
the method based on 3DMM prior information simplifies the
face reconstruction process, its low-dimensional linear space
leads to the limitations of the model in the expression of
the details, and they utilized an image translation network
to map the input face image pixels into the depth values for
regression, and the method has better real-time performance
and robustness. Their reconstruction results are shown in
Fig. 20.
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FIGURE 20. Depth based 3D face reconstruction results [29].

Unsup3D [66] is an unsupervised 3D face reconstruction
method, specifically, the method designs multiple encoder
decoders to decompose 2D face images into Depth map,
light map, albedo mapping, camera parameters, and confi-
dence, and reconstructs a 3D face model by synthesizing
these factors, and experiments show that the algorithm is
not only capable of reconstructing high-precision faces,
but also reconstructing faces with approximately symmetric
nature. Zeng et al. [67] proposed a reconstruction method
based on unsupervised training (DF2Net), whose network
framework is shown in Fig. 21. The network consists of
three different sub-networks, the first network D-Net maps
the input image into a dense depth map, the second net-
work F-Net improves the output of D-Net by integrating
the features in the depth map and RGB domains, and
the third network Fr-Net serves to enhance the resolution
of the RGB-Depth, and the individual networks establish
jump connections between multi-layer features. Experiments
show that the reconstructed 3D face model has realistic
shape and texture details, but the reconstruction speed is
slow.

FIGURE 21. DF2Net network architecture [67].

The advantage of 3D face reconstruction based on
RGB-Depth regression is that it can facilitate the data pro-
cessing for generating 3D faces, and the geometry of its
reconstructed model is more realistic, but it suffers from
the problems of slow reconstruction rate and difficulty
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in obtaining the depth information used for supervised
training.

D. NEURAL RADIATION FIELD REGRESSION BASED
RECONSTRUCTION

In recent years, Mildenhall et al. [8] applied neural radia-
tion fields (Nerf) to the task of new viewpoint synthesis,
and achieved very stunning rendering synthesis results. Nerf
is actually based on neural network rendering that implic-
itly encodes spatial geometric information about the target
through the predicted Density attribute, which in turn allows
for the rendering results from different viewpoints to main-
tain quite excellent rendering consistency. Gafni et al. [68]
introduced a dynamic neural radiation field in order to deal
with the material properties and complex geometries of 4D
face avatars using stereoscopic rendering, which can capture
arbitrary geometries and topologies such as hair, eyepatch,
etc., of the input image, and which, in contrast to other
volumetric methods that require expensively calibrated mul-
tiview devices, requires only a stationary camera to obtain a
single view to render a reconstructed 3D face model. recon-
structed 3D face model rendered onto the image. In order
to solve the problem of view inconsistency in neural radi-
ation fields, Chan et al. [69] proposed a generative model
based on the combination of Nerf and GAN called Periodic
Implicit Generative Adversarial Network (Pi-GAN), which
utilizes a periodic activation function and volumetric ren-
dering to represent the scene as a view-consistent radiation
field, improving the quality of the 3D model of the face.
Hong et al. [70] proposed a rendering method based on
Nerf fusion face parametric model, where the authors used
3DMM to initialize the implicit coding of each image, and
the low-dimensional base vectors of identity, expression, and
reflectance were rendered together with the camera parame-
ters to obtain the generated face image. The advantage of this
method is the real time and the ability to control the camera,
pose and other parameters separately. FENerf [71] is a neural
radial field based face reconstruction method, the structure of
its network model is similar to that of Pi-GAN, a single map-
ping network is used to generate the corresponding shapes
and textures in a spatially aligned 3D voxel with a shared
geometry to serve as the input to the network, the network’s
The output of the network is rendered by the voxel to get a 2D
face image and a semantic mask, and the two discriminators
of the GAN are used to determine whether the image is true or
false, and a loss is established to constrain the network, which
is conducive to the generation of more detailed face geome-
tries. The results based on the Nerf reconstruction are shown
in Fig. 22.

Nerf is able to reconstruct higher definition and more
realistic 3D faces due to its neural volume based render,
and its texture accuracy is higher than other face reconstruc-
tion methods, but due to its own limitations, it has obvious
drawbacks: (1) it is not possible to reconstruct faces in
real time it needs to be optimized scene-by-scene (2) it is
time-consuming (3) it requires a high-performance GPU.
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Pi-GAN
FIGURE 22. Results based on Nerf reconstruction [70].

Input HeadNeRF

V1. FACE DATASETS, EVALUATION METRICS AND
COMPARISON OF METHODS

A. FACE DATASETS

Face databases are the basis for 3D face reconstruction and
evaluation. Currently, there are a large number of 2D face
datasets containing a variety of difficult samples (occlusion,
large poses, etc.) that can be used to improve the reconstruc-
tion performance. Table 3 shows the current popular 2D face
datasets.

To reconstruct a 3D face using 3DMM theory, a 3D face
dataset is first needed. Blanz and Vetter [19] proposed an
acquisition method to scan out 3D face data through a 3D
scanner in their 1999 paper, but did not open source their
database. Paysan et al [32]. in 2009 acquired 3D face data
from 200 young people by an advanced ABW-3D struc-
tured light scanning system, and used an improved alignment
algorithm to reduce shape artifacts, as well as an optical flow
algorithm to densely align the data, keeping the vertices of the
faces in one-to-one correspondence, to constitute the Basel
Face Model (BFM), which made it possible to utilize the
library of models The quality of 3D faces reconstructed using
this model library as a priori information has been greatly
improved. In order to solve the shortage of 3D face datasets,
Booth et al [72]. established the Large Scale Morphable
Model (LSFM), which collects 9663 faces with different
identities and uses a 3D face with a fixed topology as a tem-
plate for non-rigid matching of different 3D face data. face
model, it can also build personalized face models according to
different groups. However, none of the above models contains
expression coefficients, so some researchers proposed to add
a pair of expression bases in order to better portray the
expression details. Chen et al [33]. added expression principal
components to the BFM by capturing the expressions of
150 faces aged between 7 and 80 years old, which can be used
to fit 3D faces with different expressions by controlling the
change of the expression parameter. The authors of the BFM
also provided the expression coefficients in the subsequent
The author of BFM also provided expression coefficients in
the subsequent release of BFM2017 [73], which contributed
to the development of 3D face reconstruction. In 2017, MAPI
open-sourced the FLAME dataset [74], which contains 5,023
vertices and four joints for each 3D face model. Specifically,
FLAME splits the head into four parts: the left eyeball, the
right eyeball, the chin, and the neck, which can be wrapped
around customized “‘joints”. These four parts can be rotated
around the customized ‘“‘joints” to form a new 3D repre-
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sentation. Three heterogeneous datasets are used to train the
model, which not only contain rich expressions and postures,
but also include the 3D geometry of the head, and represent
the texture details of the face by aligning with the mesh of
the BFM. The face models of BFM and FLAME are shown
in Fig. 23. Table 4 shows the currently available 3D face
datasets.

B. EVALUATION METRIC
The main metrics typically used to measure the effectiveness
of 3D face reconstruction are:

1) The normalized mean error (NME) is commonly used
in 3D face reconstruction work to measure the accuracy of
facial landmarks detection. Its formula is as follows:

M o — /\.
NME(P. P) = 1% > ”’”d—p’”2 (19)
i=1

where p; and p; denote the facial landmarks of the recon-
structed face and the real face, respectively, d is the nor-
malization factor, usually the distance between the pupils
of both eyes or the distance between the corners of the
eyes of the outer corners of the two eyes, and N is the number
of landmarks. This metric evaluates the facial landmarks error
between the reconstructed 3D face rendered back to the 2D
image and the input 2D image.

2) Root Mean Square Error (RMSE): when comparing the
similarity between the reconstructed face and the original face
image, the RMSE between the reconstructed face image and
the original image identity feature vectors is usually extracted
by a face recognition network and the RMSE between them

is calculated.
N—1 7 12
A . =1
RMSE = \/ 2iz0 ”N’ i Iz (20)

where N is the number of output images, /; and [/ denote
the face feature vectors extracted by the face recognition
network from the original face image and the reconstructed
face image.

3) peak signal-to-noise ratio (PSNR): Typically used to
evaluate the reconstruction quality of the textured part of a
3D face, For an m x n face image I, which is reconstructed
and rendered, the mean square error (MSE) of the resulting
synthesized image Ir can be expressed as:

S T
MSE = — 3 > 1G.) — kG.)F @D
i=0 j=0
Then its PSNR can be expressed as:

PSNR =10 -1 MAX] _20.1g ( MAX: (22)
=8\ mse )T 7 B\ ansE

where MAX represent the maximum pixel value of an image,
usually expressed in binary form.

4) Scale Invariant Depth Error (SIDE) and Mean Angular
Error (MAD) are commonly used to evaluate 3D face recon-
struction based on RGB-Depth regression, given a 2D face
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TABLE 3. Commonly used 2D face datasets.

Dataset Subjects Images Landmarks ~ Male% Attributes Year  Access
Multi-PIE[75] 337 750K 68 — Pose, Expression, lighting 2010  Required to apply
Helen[76] — 20330 194 — Pose, Lighting, Expression, Occlusion, and 2012  downloadable
Individual Differences
300-W[34] 300 600 68 — Expression, occlusion, head pose 2013 downloadable
MTFL[77] — 12995 68 — Expression, occlusion, head pose 2014  downloadable
CelebA[78] 10177 202K 5 50% Occlusion, pose, expression, lighting 2015  downloadable
VGG-Face[79] 2,622 2.6M — 47% Occlusion, pose, expression, makeup 2015  Required to apply
LFWI[80] 5749 13K — 77% Occlusion, pose, expression 2018  downloadable
WFLF[81] — 10K 98 — Occlusion, pose, makeup, lighting, blur, 2018 downloadable
expression
FFHQ[82] — — 70K — Occlusion, pose, expression 2020  Required to apply
FFHQ-UV[65] — — 50K — High-quality, evenly illuminated facial texture 2023  Required to apply
uv
TABLE 4. Commonly used 3D datasets and 3DMMs.
Dataset Subjects Expression  Source Male%  Age Year  Access
BU-3DFE[83] 100 25 Structured Light System 44% Allages 2006  Mentors or institutes only
BU-4DFE[84] 101 6 Structured Light System 43% — 2008  Mentors or institutes only
BJUT-3D[85] 1200 3 Laser Scanners 50% — 2009  Required to apply
FRGC Ver2.0[86] 465 — Laser Scanners — Allages 2014  Mentors or institutes only
BP4D+[87] 140 7 Multi-view stereo matching 41% Allages 2016  Required to apply
300W-3D[25] — — Fitting with 3DMM — — 2016  downloadable
AFLW-3D[25] — — Fitting with 3DMM — — 2016  downloadable
UHDB31[88] 77 1 Multi-view stereo matching 69% — 2017  Required to apply
Facescape[89] 938 20 Multi-view stereo matching — Allages 2020  Mentors or institutes only
BFM2009[32] 200 No Structured Light System 50% All ages 2009  Required to apply
FacewareHouse[33] 150 Yes Kinect RGBD — All ages 2014  Mentors or institutes only
Multilinear Wavelet [90] 99 Yes — — — 2014  downloadable
LSFM[72] 9663 — — 48% All ages 2016  Mentors or institutes only
BFM2017[73] 200 Yes Structured Light System 50% Allages 2017  Required to apply
LYHM[91] 1212 Yes — 50% Allages 2017  Required to apply
FLAME[74] 3800 Yes — 48% Allages 2017  Required to apply
COMAJ55] 12 Yes — — — 2018  downloadable
MICA[41] 2315 Yes Trained from 8 sub-datasets — — 2022  Required to apply

image, predict the depth map d in the canonical view, and
then combine with the viewpoints to obtain the actual depth
map d. The depth map in the actual view is compared with
the real depth map d* to calculate the corresponding scale
invariant depth error:

Nl—=

1 1
ﬁZAiV_ ﬁZAuv

uy uy

Esipe (d, d*)= (23)

where A, = logd,, — logd*,, Rendering artifacts at object

boundaries are usually ignored in the calculation process,
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comparing only valid depth pixels. MAD is used as an eval-
uation metric to measure the quality of the obtained surfaces,
and the correlation value is obtained by calculating the nor-
mal angular deflection error corresponding to the predicted
depth map and the true depth map. The correlation value
is obtained by calculating the normal angle deflection error
corresponding to the predicted depth map and the true depth
map.

5) densely aligned chamfer error (DACE): Itis usually used
to calculate the distance between the aligned 3D face model
and the neighboring vertices between the ground-truth in the
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FIGURE 23. Model bases for BFM and FLAME.

dataset with the following formula:

_ 1 v = viin|
DACE_N(C)Z y (24)

where N (C) denote the number of vertices, vy denotes a point
on the reconstructed face, v}, denotes the nearest neighboring
point of the point on the ground-truth provided by the 3D
dataset, and d is the outer eye distance of the 3D face.

6) Frechet inception distance (FID): Usually used in 3D
face reconstruction based on generative adversarial networks,
it can be used to calculate the statistical similarity between
the reconstructed face image and the input image in terms
of visual features, with a lower score representing a higher
similarity. the formula is as follows:

FID = |luy — w2 +T, [cl +C— 2(C1C2)1/2] (25)

where u; and up are the characteristic means of the input
image and the synthesized image, T,[-] is the trace of the
matrix and C is the covariance matrix of the image features.

C. COMPARISON OF TYPICAL METHODS

With the advancement of 3D face reconstruction techniques,
it is seen that the reconstruction accuracy and speed are
improving, and the algorithms are more robust and general-
izable. Whether it is 3D face reconstruction based on hybrid
learning or display-based regression, both types of methods
have their own advantages and disadvantages. Table 5 shows
the advantages and disadvantages of representative methods
in recent years.

VII. APPLICATION OF 3D FACE RECONSTRUCTION

A. 3D FACE RECOGNITION

Face recognition is a technology that uses the face as a bio-
metric trait for identification, and compared with fingerprints,
iris and other biometrics, face recognition has a broader
application prospect. Although 2D face recognition has made
significant progress in recent years, its accuracy is limited
by factors such as posture, illumination and occlusion, and
3D face recognition can make full use of the reliable facial
geometry of the face to overcome the shortcomings, and
based on the reconstruction of the results for recognition, the
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principle of this class of methods is simple, the solution speed
is fast, and the topology is known [92]. The flow of 3D face
recognition is shown in Fig. 24.
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3D feature
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Data preprocess [——>{ Feature extraction ——»]

Face alignment
Face segmentation
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3D Features
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~ Testing process
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| Face detection Data preprocess [——| Feature extraction [——| Feature matching :

FIGURE 24. 3D face recognition process.

B. DIGITAL ENTERTAINMENT

The field of computer graphics and vision has been devel-
oping various tools and digital images of real human faces
reproduced in computers for a long time, and these digitized
face models are often used in movies, 3D games [93], digital
stand-ins, Augmented Reality (AR), Virtual Reality (VR),
and so on. An example of generating a game character based
on a single image is shown in Fig. 25.

FIGURE 25. Generate game characters from a single image [93].

C. FACE VIDEO EDITING

Synthesizing high-definition face video sequences matching
speech has a wide range of applications in chatbots, virtual
video conferencing, etc. The problem can be regarded as a
cross-modal mapping problem from speech to face.
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TABLE 5. Comparison of typical algorithms for 3D face reconstruction based on a single image.

Network L
Year Methods ¢ Pros Cons Dataset Performance Principle
ype
The change in brightness of the
imaged surface is used to reso-
Wide range of Susceptible to Ive vector information about
1993 SFS [15] —_— L . . —_— —_— . .
application scenarios light sources the surface of the object, which
is converted to surface depth
information.
Representation of 3D . .
i . . A linear subspace is formed by
faces using linear Linear space . . .
. . . PCA and combined with basis
1999 3DMM [19] — basis vector without detailed 3DMM — .
. vector coefficients to form a
coefficients (shape, features .
specific 3D face
texture, etc.)
Training on coarse
and detail .. .
. . Combining CNN with 3D face
Richardson et al. respectively, the Poor FRGC SIDE:3.22m i .
2016 CNN . reconstruction for the first time
[20] reconstructed model generalizability V2.0 m L
. based on model optimization
is able to represent
the detail better
First proposed . .
Requires large Converting the common 2D
PNCC, robust to AFLW i K
2016 3DDFA[25] CNN . amounts of NME:5.42% face feature point labeling
occlusion and large . 2000-3D .
. training data problem to a 3D fitting task
attitudes
Only a single "in the
. wild 2D image" is .
Nonlinear 3DMM Encoder . Regression of 3DMM
2017 needed to get the Poor detail 300W-LP  NME:4.70% .
[44] Decoder . coefficients by auto-encoder
nonlinear 3DMM
coefficients.
An End-to-End AFLW
Accurate voxel .
Approach to . o 2000-3D, NME:6.37%, Representation of 3D faces by
Encoder X information is L.
2017 Jackson et al. [31] Regressing Voxel . BU- 5.55%, CNN prediction of 3D
Decoder . difficult to . .
Representations of biai 4DFE, 5.09% binomials
obtain
3D Faces MICC
) Mapping 3D faces into UV
2D representation of
. Topology of 3D Now, NME: space converts the
Encoder 3D faces using UV . . .
2018 PRNet [60] . faces is AFLW20 1.98%, reconstruction problem into a
Decoder positional maps, . L
unknown 00-3D 3.62% 2D UV position prediction
end-to-end
problem
Mean error
Combining GAN using point- .
GAN . . Using GAN to generate texture
2019 GANFIT [52] with 3D face Poor realism MICC to- plane .
DCNN . . details
reconstruction distance:
0.95
Depth map based
regression of 3D .
Encoder o Slower BU- SIDE:3.37m Regressing 3D faces by
2020 DF2Net [67] faces with high . .
Decoder . . reconstruction 3DFE m predicting depth maps
detail and realism,
end-to-end
High-fidelity Poor
Encoder . .
. textures, no need for reconstruction Refining the color of mesh
2020 Lin et al. [50] Decoder CelebA PSNR: 29.69 ; .
GCN large-scale face of occluded vertices with GCN
texture databases faces
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TABLE 5. Comparison of typical algorithms for 3D face reconstruction based on a single image.

Supervised training

Predicting 3DMM coefficients

Encoder using consistency Slower by encoder and enhancing face
2021 DECA [47] ) NoW NME:1.38% o i
Decoder loss, robust to reconstruction details using coarse and detail
occlusion and noise training
The reconstructed Slow Generating face semantic
DCNN 3D face is highly reconstruction, masks and textures in 3D
2022 FENerf [71] MLP accurate and has a requires high FFHQ FID:28.2 voxels using decoupled latent
GAN strong sense of performance encodings to supervise the
realism GPUs training of Nerf generators
The reconstructed
X Slow .
3D face is . Based on the a priori
. i reconstruction, . .
DCNN sufficiently detailed . . information of the face, the
2022 HeadNerf [70] O requires high FFHQ PSNR:24.9 i K i
MLP and realistic, and feature map is predicted using
. performance ) . .
hair can be Nerf for differential rendering
GPUs
reconstructed.
Facial Geometry Decoupling
via Hierarchical
Representation Learning while
Reconstructs Produces Incorporating a Detailed 3D
Encoder  detailed face models inaccurate NMSE:0.065 Prior to Improve
2023 HRN [43] X . FaceScape .
Decoder in both single and results for rad Reconstruction Accuracy and

multiple views

occluded faces

Visualization, and Proposing
De-Retouching Module to
Mitigate Ambiguity between
Geometry and Appearance

1) FACE PUPPET

Face puppetry refers to the technology of driving a vir-
tual image through real face video input, which aims to
migrate the expressions and emotions of a real user to
a virtual facial puppet. An example of a face puppet is
shown in Fig. 26. which is implemented in two main ways:
expression coefficients with semantics or a dense motion
field between the user and the virtual puppet. The first
approach directly learns a linear mapping from the user’s
expression base to the target’s expression base [94], while
the dense motion field-based approach extracts the 2D
dense motion field of the face from the original video and
maps it to the 3D geometric motion field of the puppet
image [95].

—

FIGURE 26. Real-time face puppets [94].

2) SPEAKER VIDEO GENERATION

Mapping the speech signal input to the corresponding
speaker video sequence through neural networks, this type of
method requires the help of 3D models or facial landmarks
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as intermediate modalities to establish the link between
the speech signal and the final video, Thies et al. [96]
establish the mapping between speech input and face gen-
eration with the help of expression coefficient-controlled
3D face models, and render realistic speaker video results
through delayed rendering techniques. The algorithmic
framework for cross-modal video generation is illustrated
in Fig. 27. Chen et al. [97] mapped speech input to
facial 2D landmarks and generated network sequences
using Generative Adversarial Networks, but the method
was unable to control the facial poses in the generated
video.

Video Output

generalized specialized

FIGURE 27. The algorithm of Thies et al. input a speech signal and
synthesize the corresponding video sequence of the speaker with the
help of 3D model [96].

D. FACE ATTRIBUTE EDITING

A 3D face model with new features is generated by changing
some attributes of the face (pose, age, shape, texture, etc.)
and it is used in some specific scenarios: face replacement,
expression migration, virtual make-up, etc.
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1) FACE REPLACEMENT

Face replacement is a technique for replacing a face in a target
video with another face based on parameters such as identity
trajectory, facial features and facial expression, where the
difficulty lies in synthesizing a realistic video sequence while
maintaining temporal continuity. Depending on the tech-
nique used, these methods can be categorized into 3D face
reconstruction based algorithms and image based algorithms.
Among them, model-based algorithms need to reconstruct
the pose, expression, etc. of the source and target faces, and
render the source face according to the characteristics of the
target attributes [98], such as in Fast and Furious 7, where
the face of the deceased protagonist is swapped to the face of
the stand-in actor to complete the subsequent shooting of the
movie. The image-based algorithm combines image retrieval
and face migration techniques by selecting a key frame from
the source face video and morphing that frame to the target
face [99].

2) EXPRESSION TRANSFER

Face expression transfer means an editing technique to
migrate the expression of a source face to a target face.
Researchers generally need to reconstruct the identity,
expression, posture, illumination and albedo parameters of
the source and target faces, and then render the expres-
sion parameters of the source face to the target face.
Thies et al. [96] proposed the first algorithm for real-time
expression substitution based on an RGB-D camera, which
utilizes a parametric the algorithm utilizes a parametric model
to extract the pose, illumination, and other parameters of
the face and uses them as a priori information to recon-
struct the facial movements of the source and target faces
to achieve the result of expression transfer. Wu et al. [100]
accomplished the transfer of source to target face expressions
using a self-encoder-based model, and the results are shown
in Fig. 28.

Source
(input)

Target 1
(Proposed)

Target 2
(Proposed)

FIGURE 28. Expression transfer using ReenactGAN [100].

3) VIRTUAL MAKE-UP

Face virtual makeup refers to the technique of altering
the texture features of certain regions of a 3D face model
and then re-rendering them to achieve makeup changes.
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Garrido et al. [101] reconstructed a 3D face model from
monocular RGB data, and then added virtual makeup to the
face image based on texture mapping. Li et al. [102] simulated
the effect of makeup on the face by physically based face
texture editing. The face make-up technique is shown in
Fig. 29.

FIGURE 29. Synthesised virtual tattoos technology [101].

VIIl. FUTURE PROSPECTS

In recent years, with the development of deep learning,
a variety of representative algorithms have emerged, which
have pushed forward the progress of 3D face reconstruction
technology, but still face many challenges:

1) Data sets are scarce and difficult to obtain: deep learning
based 3D face reconstruction requires the use of a large num-
ber of samples as training data, and these samples also need
to have 2D images and their corresponding 3D geometries,
although it is possible to take the fitting of 3DMMs to real
images to generate the training samples, but this method
of augmenting the data with synthetic samples reduces the
accuracy of the reconstruction model.

2) The reconstructed face model has poor individualized
details: the reconstruction method that introduces 3DMM as
a priori information has linear limitations, and the recon-
structed model tends to lose some personalized features of
the face (e.g. wrinkles, moles, etc.).

3) Poor network generalization and poor robustness:
when the test image contains faces with large poses or
self-obscuring, it leads to reconstruction failure.

4) High algorithm complexity and low reconstruction effi-
ciency: 3D face reconstruction based on hybrid learning and
based on neural radiation field has the problem of more
complex algorithms, and the neural radiation field needs to be
optimized scene by scene, and the reconstruction efficiency
is low.

5) Inability to reconstruct areas other than the face: most
algorithms today only focus on reconstructing details of
the face, and are unable to reconstruct areas such as hair,
mustache, and teeth.

6) Lack of standardized evaluation metrics: In the com-
parison of 3D face reconstruction accuracy, AvatarMe and
2DASL have a normalized mean error of 3.53, both of which
show good alignment accuracy, but the former aims to recon-
struct 3D faces with high-frequency details, while the latter
aims to improve the shortage of data annotations between
the image and the model, and most of the existing evaluation
metrics compare the input image with the rendered synthetic
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image and it is difficult to evaluate the reconstructed 3D face
model.

7) Models are difficult to run on mobile devices: Most of
the 3D face reconstruction methods rely on high-performance
GPUs for training and testing and cannot be used for
entertainment applications on mobile devices.

To address the above problems, the following points can be
improved or solved:

1) To address the problem of insufficient 3D datasets,
unsupervised or self-supervised training can be adopted in
the algorithm design, and a more efficient loss function can
be designed to constrain the model. In the future, we should
explore more efficient data collection methods, produce and
open source more datasets, which should contain changing
face images (occlusion, lighting, scene, etc.) and different
ethnic attributes (yellow, black, white, etc.).

2) To address the problem of poor personality details,
we can refer to Lin et al. [50] to introduce GCN to deal
with non-Euclidean structures such as faces, or we can refer
to the method of GANFIT [53], which combines with GAN
to generate realistic textures, and we can use face semantic
masks and attention mechanisms to improve the network’s
attention to the details of the face parts, e.g., FOCUS [103],
SADRNet [104], and so on.

3) To address the problem of poor network generalization
and robustness, some attribute changes (lighting, skin color
transformations, etc.) can be made to the face samples in the
data to achieve the effect of enhancing the data, e.g., Style-
GAN [82], Adv-MakeUP [105], and at the same time, some
special samples (large pose, self-obscuration, weak lighting,
etc.) can be added to the training data to train the model.

4) To address the problems of high algorithm complex-
ity, low efficiency, and inability to be deployed on mobile
devices, we can consider introducing some scenario a pri-
ori information to improve the optimization efficiency, e.g.,
Plenoxles [106], mip-Nerf [107], and adopting some common
means of lightweighting (distillation, model pruning, and
low-rank decomposition, etc.) in the network structure, e.g.,
3DDFA_V2 [28].

IX. CONCLUSION

In this paper, we provide a detailed review of 3D face recon-
struction based on a single image. In the beginning of the
paper, the relevant physical knowledge in 3D face recon-
struction is introduced, followed by a review of the relevant
methods for 3D face reconstruction in the past time, and three
main approaches are delineated: traditional reconstruction
methods, hybrid learning-based methods, and face recon-
struction based on explicit regression. Some representative
algorithms are highlighted and the advantages and disad-
vantages between each algorithm are compared. After that,
some commonly used face datasets, and some metrics used to
measure 3D face reconstruction are introduced, in addition,
applications of 3D face reconstruction, including 3D face
recognition, digital entertainment, face video editing, and
face attribute editing, are also introduced. Finally, some prob-
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lems in the current 3D face reconstruction task are discussed,
and some ideas for solving and improving them are given.
In summary, 3D face reconstruction based on a single image
is an open research area.
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