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ABSTRACT The adoption of electric vehicles (EVs) promises a reduction of carbon emissions and a crucial
step towards a cleaner environment. While more EVs are expected to replace internal combustion engine
vehicles to operate on the road worldwide, their adoption is inhibited by factors such as high power demand.
Unregulated or poorly regulated charging of EVs can cause grid instability, especially in grids that were
not initially designed to handle the charging of EVs. This calls for leveraging the available grid resources
to control the charging of EVs in a manner that ensures optimal grid operation. This work proposes a
distribution network-level dynamic pricing strategy for charging EVs to optimally utilize the distribution
network and balance the load between residential and commercial/industrial distribution networks. Different
EV charging probabilities that cause the EV load to differ from the optimal state with a mean average
percentage error (MAPE) as high as 30% are explored. Simulation results show that with the dynamic pricing
strategy as an incentive to the EVs users, EVs charging load will contribute to the optimal grid resources
utilization.

INDEX TERMS Distribution networks, electric vehicles, optimization, smart grids.

I. INTRODUCTION
The global market of electric vehicles (EVs) has been
growing exponentially in the last decade [1]. In 2018,
the International Energy Agency (IEA) made predictions
that 130 million EVs are expected to be operating on the
road worldwide in 2030 [2]. Regardless of the observed
progress in the adoption of EVs, there are factors that inhibit
the adoption to reach its full potential. High costs and a
shortage of charging stations are some of those factors [3].
Many distribution networks were not initially designed to
accommodate the EVs, therefore incorporating charging of
EVs in such networks will create an additional load that
will cause grid instability [4]. This calls for coordinated EV
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charging mechanisms that will help to reduce their negative
impact on the grid and increase its efficiency [3].

The EVs can be classified into two major categories
namely: plug-in hybrid EVs (PHEVs) and battery EVs
(BEVs). The PHEVs use both fossil fuels and battery energy
for propulsion, while BEVs run solely on the energy from
the batteries [3]. PHEVs’ driving range and fuel economy are
competitive compared to that of internal combustion engine
vehicles (ICEVs) [4]. On top of that, compared to ICEVs,
EVs are cheaper to operate and maintain because they have
fewer moving parts and use little or no fossil fuels [4]. Since
EVs can be powered with electricity generated from renew-
able sources, shifting from ICEVs to EVs is also seen as one
of the most effective methods to reduce carbon emission [5].

On the other hand, an increasing number of EVs poses
a challenge when it comes to data processing issues in a
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smart grid, such as charging information collection [6]. The
penetration of EVs into the market brings many advantages
that include less usage of natural gas, leading to the
reduction of carbon emissions. However, as the number of
EVs increases, the power utilities are likely to encounter
the challenge of keeping up with the grid load demand.
In addition to more power generation being needed, the old
distribution networks may have a limited capacity to handle
the load since they were not designed to cater for EV load.
While increasing the capacity of the distribution networkmay
be a good solution, it is an expensive and time-consuming
process.

Most of the research in the literature models the likelihood
of EVs to charge based on the state of charge [7], [8],
[9]. Assumptions about the EVs’ power consumption in a
given mileage, trips made per day, etc., have to be made.
If the state of charge reaches the minimum allowed value,
the EV is charged. Besides the state of charge, the other
factors that influence the area of charging for the user
include the distance to the charging station, and the time
available for charging. This work proposes optimal EVs’
charging and load-balancing framework between residential
and commercial/industrial areas. We propose a dynamic
charging price mechanism to attract EV users to charge
their EVs in optimal locations at optimal times, to better
utilize the distribution network. The main contributions are
as follows:

• Motivated by the load profile of the distribution
networks in residential and commercial/industrial areas,
we introduce the first method that seeks to optimally
distribute the load between the distribution networks
through the EV charging price incentive-controlled
charging mechanism.

• We design an EV charging price algorithm that utilizes
the discrete smart grid time of use (TOU) prices to set
the dynamically changing EV charging prices based on
the distribution network’s load to attract the EV load that
complements the conventional load to better utilize the
distribution networks.

• We test our method using the realistic TOU pricing
structure and the possible EVs charging probabilities
to determine its impact on optimizing the network
load. The proposed EV charging pricing strategy proves
to optimize the distribution network by filling the
valleys and shaving the peaks in both residential and
commercial loads.

The remainder of this paper is organized as follows.
Section II covers the related work done in literature to
optimally integrate the EVs into the smart grid. In Section III,
the procedure for balancing the load between the residential
and commercial areas through charging information sharing
and dynamic pricing method is outlined. Section IV presents
the results obtained by testing the proposed method and the
discussion of the results. The paper is finally concluded in
Section V.

II. RELATED WORK
With the increasing penetration of EVs into the market,
optimal integration of EVs into smart grids has gained the
attention of many researchers worldwide. Sohail et al. [10]
investigated the effect of uncoordinated EV charging on
the residential distribution network load, with different EV
penetration levels. They modelled the EV load by using a
modified polynomial ZIP load (a load that has a combination
of constant impedance (Z), constant current (I), and constant
power (P) components) model. They found that increased
EV penetration will result in under-voltage and over-current
during peak hours if the EV charging is not coordinated.
They made further investigation in [11] with TOU pricing
in place. The results show that most of the EVs would be
charged when the price is lowest, thereby giving rise to the
new peak.

Authors in [12] analysed the energy load profiles in
residential areas for TOU users, based on the data taken
from the energy meters. They were able to establish that
EV owners prefer to charge their electric vehicles when the
TOU price is at its lowest (at midnight). This gives rise to
the two electricity demand peaks in the residential area with
the presence of EVs. The first peak which is between 18:00
and 20:00 results from the usual household load, while the
midnight peak comes from the charging of electric vehicles.
Users can charge the EVs at midnight by setting the charging
time using the smartphone applications. Authors in [13]
analysed the retail buildings’ load in the presence of EV
charging stations. They predict the EV load to peak between
12:00 and 18:00 when the load of the building is also highest,
since the EV users prefer to charge their EVs while doing the
shopping. The charging demand is lowest between 20:00 and
06:00. This also has the potential to destabilize the grid as the
number of EVs increases.

Many optimization strategies with the main objectives that
include stabilizing the grid and lowering the EVs charging
cost are proposed. Some methods target to influence the
EVs charging behaviour by introducing new charging pricing
strategies, while other methods formulate and optimize
different objective functions. Qureshi et al. [14], [15] present
a menu-based EVs charging pricing using mobile charging
stations (MCS). They divide the area covered with EVs
into smaller zones. When an EV user in a given zone
requests to charge an EV, the charging station operator solves
an optimization problem to determine the menu of prices
for the user to choose from, by minimizing the cost of
charging and the number of MCS required. Compared to a
flat pricing strategy, this method proved to lower the cost of
charging.

Saha et al. [16] present a game theory-based optimal
charging and discharging of EVs to set the charging and
discharging prices that encourage EVs to charge during off-
peak hours and to discharge during peak hours. Simulated
over a 24-hour period data, the method was found to reduce
the total cost of charging for the users while boosting
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the revenue of the grid operator. In [17], authors use
Non-dominated Sorting Genetic Algorithm 2 (NSGA2) to
reduce the customers’ charging costs, increase charging
stations’ profits and reduce peak-to-valley differences in the
commercial grid load. They introduce dynamic charging
service fees that are set depending on the grid load for each
hour.

Authors in [18] propose a centralized coordinated model
to schedule the charging of electric vehicles in a smart grid.
The whale optimization algorithm is used to optimize the
multi-objective problem with an aim to minimize charging
cost, load variance, and power loss. The model is tested on
an IEEE-33 bus distribution network with a total power of
3.72MW. The assumed number of electric vehicles is 500,
each with a maximum power of 8.90KW. The performance
of their optimization strategy surpasses that one of Grey
Wolf Optimization (GWO), Binary Artificial Transmutation
(BAT), Particle Swarm Optimization with Grey Wolf Opti-
mizer (PSOGWO) and Grey Wolf Optimizer with Chaotic
Search (GWOCS). In [19], they consider the integration of
electric vehicles into industrial and residential regions with
the presence of photo-voltaic distributed generations. They
use a whale optimization algorithm in conjunction with a
Gravitational Search Algorithm (GSA) with an objective to
minimize power loss, voltage stability and carbon emission.
The model is tested on the IEEE-33 bus distribution test
network. They assumed the presence of 1,000 electric vehi-
cles. Their model’s performance supersedes uncoordinated
charging, whale optimization algorithm used alone, genetic
algorithm used alone and particle swarm algorithm used
alone.

In addition to aiming to stabilize the grid by mini-
mizing power loss and improving voltage stability, [20]
also considers installation cost, operational cost and carbon
emission objectives. The authors propose a framework based
on multi-objective optimization in different categories to
integrate Distribution Generation (DG) units, Battery Energy
Storage Systems (BESS), and Electric Vehicle Charging
Station (EVCS) into the smart grid. They use Genetic
Algorithm (GA) and Whale Optimization Algorithm (WOA)
to determine the DG and BESS optimal locations and sizes,
and reinforcement learning to determine the optimal EV
charging stations locations. based on optimal Photo-voltaic
(PV)-DGs and BESS locations and sizes. The proposed
algorithm is tested on IEEE 33- and 118-bus distribution
networks.

In [21], a charging and discharging control strategy based
on particle swarm optimization and user decision to charge
is proposed. Real electricity prices during peak and off-peak
times are taken into consideration. The objective is to have
the best discharging cost and charging cost for each electric
vehicle. The authors run experiments on an IEEE-33 bus with
a single charging station. This may not be closer tomimicking
the real power grid.

Shang et al. [22] propose a consortium blockchain-based
electric vehicles charging and discharging in a smart grid.

They optimize a dual objective function using an improved
grey wolf optimization algorithm. The objectives optimized
are the cost of charging to the electric vehicle owner at a
certain time t and the load variance. This helps to avoid
destabilization of the grid while encouraging users to save
costs of charging by charging at certain times.

In [8], authors propose an optimized charging schedule
for a plug-in electric vehicle on a PV-powered and grid-
connected charging station. With the main objective of
minimizing the cost of charging an electric vehicle, the
prediction of day-ahead solar generation is made using an
artificial neural network, and the data is integrated into
the scheduling algorithm. They also use day-ahead solar
generation prediction to reduce overall grid costs and the
burden on the grid. They compare the proposed algorithm’s
performance with uncontrolled charging with only grid
power, uncontrolled charging with grid power and the PV
power source, and optimized charging with grid power only.
The proposed algorithm surpasses the benchmark.

Authors in [23] propose an integration of electric vehicles
and distributed generators into the grid using the battle
royale optimization method. The method is implemented on
CIGRE 14-busMV distribution network. The authors explore
the performance of the grid in the following cases: when
DGs are integrated into a simple network, when EVs are
integrated into a simple network, and when both DGs and
EVs are integrated into a network. The performance of the
Battle Royale Optimization (BRO) algorithm is compared
to that of GA, PSO and Accelerated PSO (APSO) on these
three cases.

Authors in [24] propose a centralized matpower power
flow algorithm for charging EVs. They came up with a
power flow model on the branch that includes the plug-in EV
charging station and tested the model on the 123 IEEE test
system. They considered the following three scenarios: one
charging station located on a single bus in the distribution
network, three buses in the network having charging stations,
and lastly, multiple charging stations in a city, considering
the vehicles’ distribution. Authors in [25] compare different
classification machine learning algorithms when it comes to
directing EVs to the most effective charging locations on a
network with twelve different types of charging stations. Best
locations are determined by maximizing the effectiveness of
the distribution network and minimizing the cost of charging.
The models compared are decision trees, random forest (RF),
support vector machine (SVM), k-nearest neighbours (KNN),
deep neural network (DNN) and long short-term memory
(LSTM). The models’ ability to select charging stations with
the best charging speed was also determined. In both cases,
RF and LSTM outperformed other models with the best
accuracy.

Authors in [26] propose a blockchain-based EV charging
method to preserve the privacy of EV users. Authors assume
that charging stations are run by independent users, hence
they charge different prices for charging EVs at a given
time. In their protocol, an EV broadcasts the charging-
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FIGURE 1. High-level schematic of the EV-charging load-balancing framework.

request message that is received and processed by the
charging stations in the location specified by the message.
The charging stations bid for the charging price, and the
winning charging station communicates directly with the EV.
They propose the use of blockchain for transparency and to
verify the biddings. The EV can only expose its location to
the best bidder after the bidding process.

In [7], the EV charging load in a residential area is
modelled, and the model is analysed based on the actual
charging behaviour data for the residential area in Shanghai.
The model is based on the following: the establishment of
power consumption vs distance relationship using Advanced
Vehicle Simulator (ADVISOR) simulation platform, the
approximation of the distribution function that shows the
EVs’ return-to-home times using the National Household
Travel Survey (NHTS) data, and the construction of a
mileage model that is used to infer the state of charge
(SOC) distribution and hence the charging behaviour. The
proposed model could fit the actual charging behaviour for
the residential area selected in Shangai.

Authors in [27] propose a charging strategy for EVs in
old residential areas, based on two optimization layers. They
first came up with the LSTM model to predict the departure
time for each user based on the historical data that includes
the departure time for each user, collected by the charging
controller. They define the objective function as the total
user satisfaction, which is the ratio of users who gain a
SOC ≥ 80% of the target power at departure time, to the total
number of users. The first layer of optimization uses PSO to
obtain total user satisfaction based on the electricity allocated

to each EV. The second layer uses GA, based on the total
power distribution of each EV.

While these methods contribute to the knowledge that will
drive optimal grid use in the presence of EVs, the possibility
of balancing the load between the distribution grids remains
unexplored. This work seeks to extend to this dimension to
further widen the possible ways of optimal grid usage.

III. DYNAMIC PRICING STRATEGY AND EVS CHARGING
INFORMATION SHARING BETWEEN DISTRIBUTION
NETWORKS
In smart power grids, the price of electricity is normally set
based on the total grid load variation with time. Focusing
deeper into the level of distribution grids, it is observed
that different distribution grids have different patterns of
power consumption. In as much as conventional TOU pricing
helps to encourage better grid utilization, a mechanism
to encourage optimal grid usage at the distribution grid
level will further improve grid utilization and stability. This
work presents a dynamic EV charging price mechanism that
encourages an optimally distributed grid load by encouraging
the charging of EVs to be distributed between residential and
commercial areas. Figure 1 shows the high-level schematic of
the proposed framework.

The region covered with charging stations is split into two
area categories with different electricity consumption pat-
terns: residential and commercial/industrial areas. A single
charging stations aggregator for charging stations belonging
to each area is proposed. The aggregator collects information
from the charging stations such as the charging station
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FIGURE 2. The flowchart of the proposed dynamic pricing strategy.

location, number of charging slots, power rating of each
charging slot, which charging slots are in use at a given
instant, etc. This information is shared with the cloud server
so that it can be accessed by EV users anywhere.

We also present an algorithm that sets the EV charging
price in each area for the next 12 hours, based on the
conventional load pattern of a distribution network in each
area and the desired EV charging load pattern for an optimally
operating distribution network. The flowchart of the proposed
methodology is shown in Figure 2.
We propose a central pricing strategy that sets the EV

charging price for an area based on the consumption pattern
of that area. The power consumption behaviour in an area
is observed. After observing the consumption behaviour, the
load pattern that must come from the charging of EVs in
a manner that ensures optimal operation of a distribution
network is determined. To achieve an optimal operation of
the given distribution network, the charging activity of EVs is
maximized when the conventional load is in its minimal state,
and the charging activity is minimized when the conventional
load is in its maximum state. Themaximizing andminimizing
of the charging of EVs at a given time is done by setting
different charging prices that vary with the variation of load
in a given distribution network.

These varying charging prices and the location information
of the charging stations are made to be publicly available on
the cloud server, where EV users can access them. Moreover,
the users should be educated on the EV dynamic charging

price behaviour to enable them to make good decisions as to
when and where they charge their EVs, for the mutual benefit
of both the grid operator and the EV users.

A charging station periodically sends its availability
information to the aggregator in terms of its unique identi-
fication, location, and available slots. Charging availability
information is also shared with the cloud server when a new
EV is added to the CS or when an EV leaves the CS after
charging. The aggregator sends this information to the cloud
server together with the forecast charging price, where it can
be accessed by EVs anywhere. The price revealed to the user
is limited to 12 hours. An EV user that needs to charge has the
flexibility of charging at the available charging spot on the CS
of choice, considering the following factors: the distance to
the CS, the charging price of each CS, and the CS availability.

A. CHARGING STATIONS AGGREGATOR LOAD
Consider a charging station CS represented by

CS =


S1,0 S1,1 . . . S1,23
S2,0 S2,1 . . . S2,23
. . . . . .

. . . . . .

. . . . . .

Sn,0 Sn,1 . . . Sn,23

 , (1)

where

Si,t =

{
1, occupied
0, unoccupied

(2)
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FIGURE 3. Vehicle travel behaviour between residential and commercial regions based on U.S. NHTS data.

is the availability of the ith charging slot in an hourly
interval t ∈ [0, 23]. The charging station’s load lCSt at time
t is given by

lCSt =

n∑
i=1

Si,t · lSi,t , (3)

where lSi,t is the load of the ith slot at time t . The charging
load yt of the EVs in a distribution network with m charging
stations at time t is given by

yt =

m∑
i=1

lCSi,t . (4)

B. THE DISTRIBUTION NETWORK LOAD
The distribution network load consists of electricity con-
sumption from home appliances, machinery, etc. It varies
with time and has a predictable pattern depending on the
location of the distribution network, whether in the residential
or commercial area. The charging of electric vehicles has
the potential to alter the load pattern of the distribution
network since EVs are mobile and can be charged anywhere
convenient at a given time.

Let xt be the conventional distribution grid load at time t .
When the EVs are charged, the distribution load at a time t is
given by

xt + yt ≤ κ, (5)

where κ is the maximum load that can be handled by the
network.

The studies made in [12] and [13] show the load patterns
in residential and commercial areas. The load can be
approximated with the Gaussian mixture model (GMM).
Gaussian component densities can be combined with a
weighted sum to form a GMM [28]. In general, GMM can
be expressed as follows:

Given the mean vector µi, i = 1, . . . , j covariance matrix
6i, and the components weights wi, the GMM is given by

3(r|µi, 6i,wi) =

j∑
i=1

wiλ(r|µi, 6i), (6)

where r is a data vector of dimension D and λ(r|µi, 6i) are
the component Gaussian densities given by

λ(r|µi, 6i) =
1

(2π)
D
2 |6i|

1
2

exp−
1
2
(r − µi)⊺6i

−1(r − µi).

(7)

We further analyse the typical behaviour of vehicles
commuting between residential and commercial areas in a
day. For this purpose, we use the NHTS dataset [29]. Figure 3
shows the bar chart of commuting behaviour on a given
weekday.

As shown in Figure 3, the number of cars that leave
the residential area to the commercial/industrial areas peaks
in the morning at around 07:00 hours, and the number
of cars that leave the commercial/industrial areas to the
residential area peak just before an evening at around 17:00
hours. This suggests that during the day, the cars spend
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most of the time in the commercial areas, and from evening
till early morning, most cars are in the residential areas.
Without proper control of when and where the EVs charge,
distribution networks in the residential areas are likely to be
overloaded in the evening and night times, while commercial
areas distribution networks are likely to be overloaded during
the day. A mechanism to balance the load between the
distribution networks and to optimally utilize the network is
required.

C. DYNAMIC CHARGING PRICE
In smart grids, TOU pricing is made in such a way that
the unit prices vary according to the grid load at different
times of the day. A time span of 24 hours is divided into q
ranges such that for the total grid load {Lτ1 ,Lτ2 , . . . ,Lτq} in
time ranges {τ1, τ2, . . . , τq} there exists discrete unit prices
{Pτ1 ,Pτ2 , . . . ,Pτq}, Pτθ ∈ P = {P1, . . . ,Pn}, where P is a set
of unique discreet prices. The pricing mechanism is global.
The discrete unit prices are set in a manner that they are in
direct proportion to the total grid load. That is, if the total
grid load at a time range τθ is at the highest peak, then Pτθ is
made in such a way that Pτθ = max(Pτ1 ,Pτ2 , . . . ,Pτq ). In the
same manner, the unit price when the total grid load is at its
minimum is min(Pτ1 ,Pτ2 , . . . ,Pτq ).

We use the existing, grid-specific TOU pricing structure
to ease the practical implementation of the proposed pricing
strategy shown step-by-step in Algorithm 1.

Algorithm 1 Dynamic Pricing for Charging EVs
Require: load profile x, q TOU prices, ζ , κ
1: Divide x into 24-hour cycles
2: while cycles, do
3: Evaluate x′ based on Equation (8).
4: Calculate δ1 and δ2 using Equations (9) and (10)

respectively.
5: Evaluate y′ by minimizing g(y′

+ x′
+ δ1 + δ2).

6: Divide the values of y′ into n ranges within the
bounds of min(y′) and max(y′) to get y′′.

7: Sort y′′ in descending order and the P in ascending
order to get y′′

π = {y′′πd (1), . . . , y
′′

πd (n)
} and Pπ =

{Pπa(1), . . . ,Pπa(n)}, where πd and πa are permutations
that sort y′′ and P in descending and ascending orders
respectively.

8: for i in {1, . . . , n} do
9: Assign y′′πd (i) to Pπa(i)
10: end for
11: end while

Let κ be the distribution network capacity and x =

(x0, x1, x3, . . . , x23) be the conventional load of the distribu-
tion network for 24 hours, sampled on an hourly interval.
Evaluate x′ with equation (8):

x′
= f (x) = 2 ×

x
ζ

− 1, (8)

where f normalizes x in the range [1, −1] using ζ and 0 as
the maximum and minimum thresholds respectively. ζ is
chosen in such a way that max(x) ≤ ζ < κ . EVs can
be seen as the mobile load that can be plugged when the
distribution network is not highly utilized to fill the demand
valley and keep the grid operating optimally. For valley filling
and peak shaving, find δ1 and δ2 using equations (9) and (10)
respectively, where max(x′) and min(x′) are the largest and
the smallest element in x′.

δ1 = 1 − max(x′) (9)

δ2 = −1 − min(x′). (10)

Lastly, minimize g(y′
+ x′

+ δ1 + δ2) subject to

−1 ≤ y′
≤ 1. (11)

Since x′ has been normalized in the range [1,−1] using
equation (8), we solve a convex optimization problem by
finding the minimum of ||y′

+ x′
+ δ1 + δ2|| using the

exponential cone solver, restricting the decision variable y′

in the range [1,−1].
δ1 and δ2 addition to x′ is element-wise. y′ is the normalized

desired load that must come from the charging of EVs.
We denormalize y′ to get y using equation (12)

y = f ′(y′) = ζ × (
y′

+ 1
2

). (12)

After obtaining the desired valley-filling load y, the charg-
ing price is computed in the following manner. Using max(y)
and min(y) as the upper and lower bounds respectively, y is
divided into the number of levels that equal the number of
the discrete unit prices Pτ1 ,Pτ2 , . . . ,Pτq . Allocate the lowest
load to the highest price, the second lowest load to the second-
highest price, and continue allocating loads until the highest
load is allocated to the lowest price.

IV. RESULTS AND DISCUSSION
The decision to charge an EV is influenced by many factors.
In as much as the charging price significantly affects the
EVs charging load, there are conditions that can lead to
charging some EVswhen the charging price is not favourable.
We therefore test our method using three different possible
charging probabilities or load distributions for the given
charging price.

We first show how the current pricing strategy affects
the EVs charging behaviour in the absence of the charging
optimization algorithm.We use the pricingmechanism shown
in Table 1, inspired by [21]. We then show the simulation
results of the EV load behaviour in the presence of the
proposed strategy. We further investigate the probable EV
load behaviour for the total EV load significantly less than
or greater than the conventional load. The charging price and
corresponding charging probabilities are given in Table 1.

Data generation, pricing method and testing are all
implemented using Python programming language in a
Visual Studio Code environment.
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FIGURE 4. Residential and commercial conventional and EV load under fixed TOU pricing.

TABLE 1. EV charging prices and tested corresponding probabilities.

A. IN THE ABSENCE OF THE CHARGING OPTIMIZATION
ALGORITHM
To demonstrate the effect of fixed TOU pricing that applies to
all loads at different times, we adopt the pricing mechanism
given in [21], summarized by the first two columns in Table 1.
In the light of the studies made in [11], [12], and [13] on
the residential and commercial areas load patterns in the
presence of EVs, we show the EV load pattern as well as the
conventional load in the residential and commercial areas in
Figure 4.
Conventional residential load is generated by using the

GMM and the parameters are set to achieve the typical
residential load pattern shown in Figure 4. We consider
a residential distribution network with the capacity κ =

500 kW in the residential area with 350 kW peak demand.
In the same manner, the conventional commercial load
is generated using GMM in such a way that it follows
a commercial load pattern. We consider a commercial
distribution network with the capacity κ = 800 kW in the
commercial area with 550 kW peak demand.

We first consider a case where the total EV load
over the 24-hour period is approximately equal to the

total conventional load. We observe from Figure 4b that
the EV load reaches its peak when the unit price is
lowest. The EV load is lowest when the conventional
load is lowest during the hours around midday. During
this time, the grid is less utilized. In the evening when
the conventional load is at its peak, the total distribution
network load may reach or exceed the maximum capacity of
the grid.

In the commercial area, the EV load peaks during the
peak of the conventional load as shown in Figure 4e. The
distribution network is much utilized during working hours,
and less utilized thereafter. When the charging load increases,
the commercial area distribution network will encounter
congestion problems during the day and have less utilization
of the resources at night. Figures 4c and 4f show the total load
which is the sum of conventional load and EV charging load
in the residential and commercial areas distribution networks
respectively. From these Figures, it can be seen that the load
varies significantly for peak and off-peak hours of each area,
showing that in the absence of EVs charging optimization
algorithm, the grid is poorly utilized.

B. IN THE PRESENCE OF THE CHARGING OPTIMIZATION
ALGORITHM
To show the effectiveness of the proposed dynamic charging
strategy, we set the same peak and capacity values as in IV-A.
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FIGURE 5. Varying EV load impact in the residential and commercial areas.

We further introduce parameter ζ , which is the maximum
optimal load allowed on the grid, set at 80% of the distribution
grid capacity.

1) RESIDENTIAL AREA LOAD ANALYSIS
By setting ζ = 0.8 × κ = 400 kW , we use Equation (8)
to transform x and κ . The optimal EV load pattern and
the EV charging price are determined as stipulated in
Section III-C. Based on the dynamically varying price,
we compute the EV charging load pattern based on the
probabilities given in Table 1. Figure 6 shows the optimal EV
load pattern, EV charging price and all the load variations
based on the probabilities given in Table 1. Figure 6b
shows the total distribution network load pattern obtained by
adding the conventional residential load with the probability
2 EV load.

Comparing Figures 4c and 6b, the distribution in load over
the 24-hour period in Figure 6b is better than in 4c. The
difference between the peak and trough is 431.00 kW and

58.24 kW for Figures 4c and 6b respectively, which can be
seen in Figure 6c.

2) COMMERCIAL AREA LOAD ANALYSIS
For the commercial area load analysis, the same procedure
followed in the residential area load analysis is repeated. The
typical commercial load pattern is generated as shown in
Figure 4d. Normalization is done on x and κ with κ = 800 kW
and ζ = 640 kW .

In comparison to Figure 6e, Figure 4f shows better load
distribution over the period of 24 hours, with peak-to-valley
differences of 760.00 kW and 79.86 kW respectively. This
improvement is shown by a bar chart in Figure 6f.

3) VARYING EV LOAD ANALYSIS
In cases when the EV load is significantly greater than or
less than the conventional load, the charging price and the
subsequent EV load follow the patterns shown in Figure 5.
Figures 5a and 5b show the residential area distribution
grid results when the EV load is 25% lower and when
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FIGURE 6. An illustration peak shaving and valley filling in residential and commercial areas as a result of dynamic charging pricing strategy.

the EV load is 25% higher than the conventional load
respectively.

Similarly, Figures 5c and 5d show the commercial area
distribution grid results when the EV load is 25% lower
and when the EV load is 25% higher than the conventional
load respectively. It can be seen that the charging price is
set in a manner that inspires the EV load to be comple-
mentary to the conventional load, thereby optimally utilizing
the grid.

V. CONCLUSION AND FUTURE WORK
In this work, the framework to charge electric vehicles
in a load-balancing manner between residential and com-
mercial/industrial distribution networks is proposed. Based
on the evidence that most electric vehicles are charged
when the price of electricity is at its lowest value, we use
the distribution network-specific load-based dynamic EV
charging price to control where and when the EVs are
charged. The communication procedure to make known to
EV users the availability of charging slots and charging
prices in different areas is proposed. The method is tested
with EVs load that is equal to the conventional grid load,
the EVs load that is 25% higher than the conventional
grid load, and the EVs load that is 25% lower than the
conventional load. The load is distributed in different EV

charging probabilities determined based on the EV charging
price.

The results show that the distribution network is likely
to operate optimally when most of the EV users are
attracted by the incentive to charge EVs at the most
convenient place and time, determined by the best charging
price at a given time. This work adds contribution to the
optimal integration of EVs in the smart grid, with a focus
on the EVs charging. The future work will explore the
integration of EVs into the smart grid, considering both EV
charging and discharging, all while incorporating the learning
algorithms.
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