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ABSTRACT In the domain of pedestrian trajectory prediction(PTP) from a roadbed perspective, the visibility
of pedestrian feature points is inevitably compromised by external noise interference, impacting both
pedestrian pose estimation(PPE) and PTP. This paper presents an innovative model for PTP. The model
not only tackles noise interference but also takes into account the inherent correlation between pedestrian
pose features and trajectory coordinates. To tackle the challenge of noise interference during pedestrian
crossing, we reframe it as an anomalous feature detection problem using the Graph Deviation Network
(GDN). Subsequently, we enhance the Long Short-Term Memory (LSTM) module by incorporating a
time-domain anomaly suppression module, resulting in the development of an Anomaly Inhibition-LSTM
(AI-LSTM) with robust noise suppression capabilities. Finally, by integrating the predicted values of
behavioral pose and trajectory position, considering the behavioral characteristic relationship resolved by
the GDN algorithm, we achieve accurate prediction and pose estimation of pedestrian crossing trajectories
amidst noise interference. Experimental results demonstrate superior performance of our algorithm in the
PPE taskwhen compared toGDNand LSTMalgorithms. In the PTP task, our algorithm exhibits performance
comparable to the Transformer-based method, with the added advantage of improved interpretability.

INDEX TERMS Trajectory prediction, pose estimation, autonomous vehicles.

I. INTRODUCTION
Accurately predicting pedestrian trajectories is essential for
the safe operation of autonomous driving systems, aiding in
collision avoidance and playing a critical role in intelligent
path planning, human-computer interaction, and urban plan-
ning [1]. In recent years, researchers have discovered the
utility of PPE in understanding pedestrians’ action intentions,
identifying movement patterns, modeling spatial relation-
ships, and enhancing environmental perception. Leveraging
PPE significantly contributes to the accurate prediction of
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pedestrians’ future trajectories, thereby enhancing the over-
all accuracy and reliability of PTP [2]. Among various
methods for PPE, vision-based PPE has gained promi-
nence in intelligent transportation due to its non-contact,
real-time capabilities, multi-person pose estimation, com-
plex pose modeling, and scalability. However, vision-based
PPE encounters challenges such as occlusion, pose com-
plexity, and data noise. Figure 1 illustrates how the loss
or error of pedestrian joint points under external interfer-
ence results in inaccuracies in subsequent PPE. The issue of
addressing PPE features containing noise or obscuration in
predicting pedestrian trajectories has not received sufficient
attention.
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FIGURE 1. Pedestrian pose estimation results under external noise interference. Where
(a) denotes the original figure, (b) denotes the pose estimation result without external
interference, and (c) denotes the pose estimation result with external interference. These
figures were modified from [14].

On one hand, theoretically, it appears viable to employ
distinct anti-interference methods for various sources of
interference. However, the sources of interference impacting
PTP or PPE are diverse. If we establish individualmethods for
each source, the potential for these methods to transition from
laboratory settings to large-scale engineering applications
diminishes. On the other hand, we were surprised to discover
that, in comparison to other engineering challenges, there
are more evident internal connections between pedestrians’
pose and positional characteristics during street crossing. For
instance, pedestrians commonly rotate their heads to observe
vehicles before crossing the street. As they traverse different
locations during crossing, their heads turn within specific
ranges. Noise interference can be mitigated by leveraging the
relationship between pedestrian trajectory and pose. In this
context, this method proves highly interpretable and aligns
more closely with human cognitive styles.

As a deep learning algorithm for processing graph-
structured data, the Graph Neural Network (GNN) can
represent the features of nodes by learning their embedding
vectors. This embedding vector can then be used to represent
nodes’ characteristics and their relationship with neighboring
nodes, which is crucial to the learning task [3]. Building on
the capability of GNN to unveil and characterize relation-
ships between different features, Deng et al. [4] introduced
a GNN-based anomaly data detection method. This method
involves embedding various channel features and utilizing
GNN to establish associations between each channel param-
eter. Subsequently, it predicts the future data of each channel
based on existing data, identifying anomalies when the pre-
dicted value deviates significantly from the actual value.
While this approach offers advantages in exploring intrinsic
connections between nodes and detecting anomalous data,
it falls short in reducing the proportion of anomalous data
across the entire time series. As a result, direct application to
PTP and PPE is limited. However, if the proportion of anoma-
lous data in the entire time series could be reduced by fully

leveraging the internal relationships of features, a potential
solution to the challenge of PPE and PTP in the presence of
noise interference may be achieved.

Additionally, we recognize that LSTM is not only the most
widely utilized method for anomaly detection in multi-source
time series [5] but also the predominant deep learning-based
architecture for trajectory prediction in Intelligent Transport
Systems (ITS) [6]. Nevertheless, traditional LSTM units lack
the capability to actively suppress noise. If directly applied to
trajectory prediction with noise interference, it implies that
noise at a certain time node will interfere with subsequent
data for an extended period. Hence, the LSTM network struc-
ture must be modified when serving as the foundation for our
study.

To address the aforementioned challenges, we introduced
an algorithm for PPE and PTP by integrating GDN and an
enhanced LSTM. Initially, drawing inspiration from the GDN
network proposed by Deng et al., we reframed the PPE prob-
lem, which includes noise and interference during pedestrian
crossing, into an anomaly detection problem. To mitigate
the impact of anomalies on the prediction of subsequent
features in the time domain, we devised the AI-LSTM by
incorporating a time-domain inhibition module into the tradi-
tional LSTM network. Ultimately, the prediction results from
GDN and pedestrian crossing features were collaboratively
employed as inputs for the AI-LSTM.

In this paper, we mainly make the following contributions:
1. In response to the insufficient attention given to noise

interference in traditional PTP, we introduced a method that
reframes the noise interference problem in the pedestrian
crossing process as an anomalous detection task. Conse-
quently, the algorithm demonstrated enhanced interpretabil-
ity compared to the purely recurrent neural network-based
PPE and PTP algorithms;

2. Our proposedmethod integrates GDNwith anAI-LSTM
algorithm, taking noise inhibition into account. Our algorithm
not only maintains the internal relationship between pose
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features and their crossing positions during the pedestrian
crossing process but also effectively suppresses the influence
of noise information on the features in the time domain.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III presents our
proposed method to predict pedestrians’ pose and trajec-tory
containing noise. Section IV details the experiments and
results. Section V summarizes the current work and possible
work.

II. RELATED WORK
A. POSE ESTIMATION
Human Pose Estimation (HPE) is a critical task in computer
vision, focused on recognizing and estimating pedestrians’
poses and movements from images or videos. With the
advancement of deep learning techniques, this field has
been extensively explored from various angles. For exam-
ple, Li et al. [7] presented an online processing method
Online Knowledge Distillation Human Pose (OKDHP) for
pedestrian pose estimation, which obtains high-quality target
heat maps by combining multiple receptive fields and per-
forming connectivity changes. Wang et al. [8] constructed a
self-supervised calibration mechanism by constructing a 2D
to 3D bitmap transformation and a 3D to 2D projection trans-
formation to form a dual learning task. This ensures that the
algorithm can adaptively learn from 3D human pose data and
external large-scale 2D human pose data. To mitigate con-
straints to estimating the human poses in general scenarios,
Liu et al. [9] prosposed an efficient human pose estimation
model (EHPE) with joint direction cues and Gaussian coor-
dinate encoding. Particularly in recent years, the effective
resolution of HPE tasks has been further advanced with the
application of Transformer theory. For example, Li et al. [10]
proposed a new architecture for human pose estimation called
channel spatial integrated transformer (CSIT), which focused
on spatial features in visual information and innovatively uses
a parallel network to combine spatial features with texture
features to fully extract information from images through
transformer. Zhang et al. [11] leveraged the two intrinsic
inductive bias and proposed the ViTAE transformer, which
utilizes a reduction cell for multi-scale feature and a normal
cell for locality.

In the computer vision field, researchers have successfully
estimated human pose in complex environments using vari-
ous constraints. However, in ITS, pedestrian pose involves not
only anatomical constraints and other common constraints
in computer vision but also internal correlations with the
pedestrian’s trajectory. Addressing the challenge of mining
the relationship between a pedestrian’s trajectory and pose
to provide an ITS-oriented and interference-resistant pose
estimation approach has not received sufficient attention.

B. TRAJECTORY PREDICTION
In terms of the field of intelligent transportation systems,
pose estimation is also widely used in pedestrian trajectory

prediction. In traditional research, scholars main-ly used
historical trajectories of pedestrians as the main inputs for
predicting pedestrian trajectories. For example, Wu et al. [12]
proposed a Hierarchical Spatio-Temporal Attention archi-
tecture (HSTA) and studied pedestrian trajectory prediction
using pedestrian historical trajectories as input. Although
these methods using historical pedestrian trajectories as
inputs have made some improvements, the accuracy of the
algorithms still needs to be improved.

In recent years, more and more studies have incorporated
the influence factors such as pedestrian pose estimation,
pedestrian intention recognition, and pedestrian action recog-
nition results into pedestrian crossing trajectory prediction,
leading to a more significant improvement in trajectory pre-
diction accuracy. For example, Zhang et al. [13] employed
2D pedestrian pose estimation combined with air temper-
ature and traffic light duration as inputs. They realized
pedestrian crossing trajectory prediction and intention recog-
nition through SVM and other methods. Zhou et al. [14]
used 2D pedestrian pose estimation combined with pedes-
trian history trajectory and pedestrian crossing intention as
inputs to achieve pedestrian crossing trajectory prediction
and intention recognition by the IPVO-LSTM algorithm.
Kothari et al. [15] combined pedestrian history trajectorywith
body pose estimation and predicted pedestrian trajectory via
the LSTM network. Ahmed et al. [16] present a intent predic-
tion approach for multi-scale pedestrians using 2D pose esti-
mation and a Long Short-term memory (LSTM) architecture.
Zhang et al. [17] proposed a method for predicting pedestrian
crossing intentions based on spatio-temporal graph convolu-
tional networks using skeleton data (ST CrossingPose). This
approach offers a more comprehensive characterization of
the spatial and temporal aspects of pedestrian skeleton data
compared to manually designed features. Czech et al. [18]
introduced a novel method for predicting pedestrian trajecto-
ries using in-vehicle camera systems. This approach involves
processing pedestrian trajectories derived frommultiple input
modalities, including pedestrian bounding boxes, body and
head orientations, and poses, through independent coding
streams.

Unfortunately, despite the widespread use of pedestrian
pose parameters for trajectory prediction or intention recog-
nition, the specific issue of interference caused by noise
receives limited attention in current research on human tra-
jectory prediction. Furthermore, there is a lack of noise
suppression schemes leveraging the intrinsic relationship
between the pedestrian’s trajectory and pose.

C. ANOMALY DETECTION
Data anomaly detection entails identifying data that deviates
significantly from the majority through data mining. This
approach has found applications in various contexts and has
become a significant area of study for analyzing time series
data to extract valuable information.

For example, in the field of medicine. To present
a detailed examination on EEG signals with improved
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FIGURE 2. Pedestrian pose and trajectory prediction model considering behavioral feature relationships and noise inhibition.
Where Xt denotes the actual input value obtained by concatenating the empirical data with the real-time data, and Pt represents
the predicted value obtained by Xt after the GDN module.

detection accuracy, Rajinikanth et al. [19] proposed the
synchro-extracting-transform (SET), which converts the
complex 1D EEG into 2D images using time–frequency
transformation. You et al. [20] aimed to present a person-
alized deep learning-based anomaly detection algorithm for
seizure monitoring with behind-the-ear electroencephalo-
gram (EEG) signals. In the financial field, Cheong et al. [21]
proposed a spatiotemporal convolutional neural
network-based relational network (STCNN-RN) model that
can learn the complex correlations betweenmultiple financial
time-series data sets, and they used this model to identify
abnormal situations. Madurawe et al. [22] proposed a model
to detect collusion in stock markets through the application
of graph mining and anomaly detection. In the area of net-
work communications security, a DDoS attack may render
the server useless for a long period of time causing the
services to crash due to extensive load. Sharma et al. [23]
proposed an anomaly detection architecture for IoT net-
works where the detection actually happens on the fog
layer.

Despite the widespread use of anomaly detection in var-
ious fields, interpreting anomalies remains a significant
challenge [5]. This technology is less applied in the field
of autonomous driving, and there is a notable absence of
research addressing the detection of temporal anomalies due
to the loss of pedestrian feature points during pedestrian
crossings.

To address these challenges, we propose introducing
anomaly detection into the Intelligent Transportation Systems
(ITS) domain to enhance pedestrian trajectory prediction
and pose estimation under noise interference. Our approach
involves constructing a model that considers noise interfer-
ence, combining GDN and AI-LSTM networks. This model
aims to improve trajectory prediction and pose estimation
accuracy in noisy environments by identifying and mitigat-
ing the impact of noise on pose estimation and trajectory

prediction in the time domain, particularly by addressing
anomalous time nodes.

III. METHODOLOGY
A. MODEL OVERVIEW
As discussed in the introduction, neither the GDN nor the
LSTM algorithms proved capable of addressing the issue
presented in this manuscript. Therefore, in this section,
we constructed a model that takes into account the rela-
tionship between pedestrians’ behavioral features and noise
inhibition, as shown in Fig. 2.
Initially, the pre-collected empirical data were aligned

with actual pedestrian data, and the actual input values were
obtained through a sliding window. Subsequently, leveraging
the Graph Deviation Network (GDN), we performed corre-
lation learning and parameter prediction for each channel
parameter in the pedestrian crossing process. The purpose
of this AI-LSTM design is to suppress noise in the tem-
poral domain while predicting pedestrian trajectories and
estimating head poses. Finally, the predicted parameters of
pedestrian trajectories and head poses Pt are utilized as the
input portion of the anomaly suppression LSTM module.
Simultaneously, we enhanced the traditional LSTM by incor-
porating a time-domain anomaly inhibition module, resulting
in the creation of an Anomaly Inhibition-LSTM (AI-LSTM).
This AI-LSTMwas designed to suppress noise when predict-
ing the pedestrian trajectory in the time domain. Finally, the
pedestrian crossing parameter Xt , and the prediction results
of the parameters of each channel Pt were used as the input
part of the Anomaly Inhibition-LSTM module.

B. PEDESTRIAN STATE PREDICTION CONSIDERING THE
RELATIONSHIP BETWEEN BEHAVIORAL FEATURES AND
TRAJECTORIES
Enhancing the accuracy of PTP necessitates addressing target
detection failures and image noise interference during image
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acquisition. However, this challenge remains unsolved to
date. Simultaneously, there is an increasing focus on issues
related to time series anomaly detection. Notably, the GDN
network proposed by Deng et al. [4] not only considered the
correlation of channel parameters at different time nodes in
anomaly detection but also provided an interpretable method
for anomaly detection. This insight inspired us, considering
the dynamic nature of pedestrians during reciprocal cross-
ings. Although the subjects are constantly changing, treating
them as the same subject allows us to frame subsequent
noise-containing pedestrian poses and trajectories as a form
of anomaly detection within a continuous time series. In other
words, even though pedestrians may differ each time they
cross the street, pedestrians crossing the road at different
times can be considered the same pedestrians continuously
traversing the road in the context of a complete time series.
Specifically, in our model, firstly, the experience parameters
Xe ∈ RC∗te were used as an empirical database, as shown
in Equation (1), and through the concatenation operation,
the real-time parameters X ∈ RC∗te were fused with Xe to
obtain a time series variable Xt . It was noted that the Xt told
the head positions and trajectories(both empirical and real-
time). Finally, Xt was used to get prediction values for every
channel.

Xt = X ⊕ Xe,Xt ∈ RC∗(te+ta) (1)

where Xe and X were the empirical and real-time data of
each channel respectively, C denoted the number of channels
(in our study, the data of head transverse swing angle, head
pitch angle, head lateral inclination angle, and horizontal and
vertical coordinates of the trajectory position, totaling five
channels, respectively),and te and ta denoted the time step
between the empirical database and the actual data, respec-
tively.Xt was used as the input to the GDN network, and after
data embedding, graph structure relation learning, and graph
attention-based data prediction, the final prediction result P′

t
for each channel parameter was obtained.

P′
t = [ŝ(1), ŝ(2), · · · , ŝ(t)] (2)

where ŝ(t) denoted the predicted value at moment t and it was
calculated as follows [4]:

ŝ(t) = fθ
([

v1 ⊙ z(t)1 , · · · , vN ⊙ z(t)N
])

(3)

z(t)i = ReLU

αi,iWX(t)
i +

∑
j∈N (i)

αi,jWX(t)
j

 (4)

where z(t)i (i = 1, · · · ,N ) denoted the representations for
all N nodes, ⊙ denoted the Hadamard product (element-
wise multiplication of vectors), X(t)

i and X(t)
j were input

features of node i and j, W was a trainable weight matrix
that applied a linear transformation to each node, fθ denoted
the fully connected operation and vN denoted the embed-
ding matrix obtained after the data embedding operation
N (i) =

{
j|Aji > 0

}
,was the set of neighbors of node i

obtained from the learned adjacency matrix Aji, Aji denoted

the learned adjacency matrix, obtained after learning through
graph structure relations, and the attention coefficients αi,j
were computed as:

αi,j =
exp(π (i, j))∑

k∈N (i)∪{i}
exp(π (i, k))

(5)

where the attention coefficient π(i, j) = LeakyReLU(
a⊤

(
g(t)i ⊕ g(t)j

))
, ⊕ was concatenation operation, g(t)i was

mainly used to concatenate the embedded data vi with the
corresponding transformed featuresWX(t)

i :

g(t)i = vi ⊕ WX(t)
i (6)

Since P′
t was a prediction of the overall results of X

and Xe, the predicted value Pt corresponding to the actual
collected value X also needs to be filtered from P′

t at this
point, as shown in Equation (7).

Pt = X ∼ P′
t ∈ RC∗ t (7)

C. PEDESTRIAN POSE AND TRAJECTORY PREDICTION
BASED ON ANOMALY INHIBITION-LSTM
As shown in Fig. 3(a), for the standard LSTMs, ft and it
are used in the forgetting gate and input gate, respectively,
to control the previous state’s forgetting status and the current
state’s retaining status, respectively, to calculate the state’s
output at moment t of the cells, as shown in Eq. (8).

ct = ft ⊙ ct−1 + it ⊙
∼
ct (8)

where ft ∈ [0, 1], it ∈ [0, 1].
Inspired by the principle of this algorithm, we added the

temporal anomaly inhibition module to the standard LSTM,
as shown in the red module in Fig. 3(b), and used the dif-
ference Et between Pt and X as the output parameter for
controlling the cells’ state at the moment t , as shown in
Eq. (9).

Et = X − Pt (9)

The fundamental concept is that a higher Et value signifies
a significant difference between the predicted value and the
actual value. In this context, the state at the current moment
has a higher probability of being interference noise, and thus,
it should be inhibited. Conversely, a lower Et value suggests
that the state at the current moment does not contain noise.
At the same time, to ensure that the final training process
can have a faster convergence speed, Et is distributed in the
interval [0,1]. As shown in Eq. (10), e−x

2
is used to process

Et to obtain the coefficient αt used to control the degree of
forgetting in the previous moment and make β t = 1 − e−E2

t .

αt = e−E2
t (10)

At the same time, considering ft , it ∈ Rhidden×1, it is
necessary to perform affine transformation on αt and β t , thus
ensuring that α′

t , β
′
t ∈ Rhidden×1, as shown in Eq. (11).

α′
t = Wααt , β

′
t = Wββ t (11)
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FIGURE 3. Schematic diagrams of LSTM and AI-LSTM structures.
(a) denotes a standard LSTM unit and (b) denotes an AI-LSTM unit.

where Wα,Wβ ∈ Rhidden×C are learnable affine matrices.
Then the output of the cellular state at moment t is

ct = α′
t ⊙ ft ⊙ ct−1 + β′

t ⊙ it ⊙
∼
ct (12)

After obtaining the intermediate hidden layer vectors
∼

H =

[
∧

H1,
∧

H2, · · ·,
∧

Ht

]
output from the AI-LSTM unit,

we processed them through fully connected and regression
operations. Finally, we obtained the predicted values of each
channel with the noise interference removed Y ∈ RC∗t .

Y = Wy
∼

H+by (13)

As shown in Eq. (14), the final loss value loss is obtained
by target value tij and predicted value yij. Where tij and yij
represented the target value and predicted value of channel j
at moment i, respectively.

loss =
1
2

t∑
i=1

C∑
j=1

(tij − yij) (14)

IV. EXPERIMENTS
A. EXPERIMENTAL DESIGN AND TRAINING SAMPLE
CONSTRUCTION
The algorithm operates under the following constraints:
1. Pedestrian information must be captured from the angle
of the road-based equipment; 2. The information must be
captured by the same road-based sensors (this restriction
is primarily intended to mitigate the influence of informa-
tion such as the road structure, traffic flow, and traffic laws

and regulations on pedestrian poses, ensuring that empirical
information aligns with the characteristics of road condi-
tions); and 3. The captured pedestrian information must be in
three-dimensional form.

While numerous pedestrian crossing datasets are available,
our previous research [14] revealed that existing datasets
often do not align with our specific requirements. Conse-
quently, we opted to construct a virtual environment for the
dataset used in this paper. As depicted in Fig. 4, prioritizing
the safety of the experimental process led us to adopt the
offline simulation method. Initially, we created a virtual city
road scene using Unreal Engine 4 (UE4). Recognizing that
various scenarios may elicit distinct responses from pedes-
trians, we opted for a typical urban road setting comprising
solely of a crosswalk for our experimental investigations.
Subsequently, we connected the Oculus Quest2 device to
the test host via a Bluetooth module to collect various
characteristic parameters of pedestrians. The experimenter
simulated street crossing by wearing the device in a safe
indoor environment, simultaneously collecting three-channel
head and positional coordinates data. As mentioned in the
‘‘Introduction’’ section, the noise we encounter stems from
interference, such as the occlusion of jointed body parts
during target detection. Moreover, we observed that this
interference exhibits high randomness and continuity, consis-
tent with the characteristics of Gaussian noise. Hence, after
acquiring each dataset from the experimenter, we introduced
Gaussian noise with different σ values to simulate noise inter-
ference in a real environment. Notably, the Oculus Quest2 is
a VR device enabling the subject to simulate street crossing
in a virtual environment, recording information such as the
subject’s head pose angle, absolute position, and relative
position in the virtual environment.

The hardware information we applied in the network train-
ing process was as follows: GPU was NVIDIA RTX4070TI,
RAM was 12GB, the software platform was pytorch1.5.1,
and the other environment informationwas cuda10.2+cudnn-
10.2.The parameter settings during the network training
session were as follows: 1. the TOPK value of GDN was
15, the embedding dimension was equal to 96; 2. the settings
of LSTM, LSTM, +Attention, Bi-LSTM, and GRU were as
follows: the hidden states were equal to 100, the optimizer
was Adam, the maximum number of epochs to use for train-
ing was set to 30, and we padded sequences on the right; 3.
Our method’s TOPK value and embedding dimension were
15 and 96, respectively. Moreover, we set The hidden states,
the optimizer, and the maximum number of epochs as the
same as LSTM.

B. POSE ESTIMATION COMPARISON EXPERIMENT
In the experiments comparing pose estimation, we introduced
various levels of Gaussian noise to the pedestrian head pose
data. We then combined this noise, characterized by different
variances, with the actual values of head poses for each angle.
Subsequently, we applied our method and each of the other
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FIGURE 4. Schematic diagram of data acquisition equipment and process. Where (a) represents the virtual scene we built based on
UE4, (b) represents the virtual road scene and the experimental equipment, (c) represents the experiment process.

FIGURE 5. Box diagrams of head pose angles for different algorithms.
Where (a) denotes the sway angle, (b) denotes the pitch angle.

control groups to address this perturbed data.

Channel(j) =

√√√√ 1
M

∑
n=1,··· ,M

(
xnj − x̂nj

)2
(15)

where j = 1, 2, 3 denote the head pitch angle, the transverse
swing angle, and the lateral inclination angle, respectively.
xnj and x̂ni denote the predicted and actual values of different
head pose angles at the moment n, respectively.

FIGURE 6. The average variance of head pose angle for different
algorithms.

As our method is derived from modifications to GDN
and LSTM, we initially designated GDN and LSTM as
two control groups. Additionally, we included several other
widely-used prediction methods based on time-series data
(Bi-LSTM, GRU, LSTM+Attention) as control groups for
comparison. The results are presented in Fig. 5. To expe-
dite the selection of methods most closely aligned with
the effectiveness of our approach for further comparison,
we initially conducted preliminary comparisons among vari-
ous algorithms when σ = 1, as illustrated in Figure 5.

As depicted in Fig. 5, our method exhibits higher accuracy
and smaller fluctuations in the prediction interval com-
pared to the other three methods (LSTM, Bi-LSTM, GRU,
and LSTM+Attention). Our algorithm surpasses the GDN
algorithm in predicting the head pitch angle. Furthermore, our
method generates fewer outliers, indicating its greater ability
to eliminate noise interference. It is evident that the GDN
algorithm exhibits performance similar to our method when
interference is minimal, and even slightly outperforms our
method in pitch angle. Therefore, we have chosen the GDN
algorithm as a further benchmark for comparison, we further
compared them by introducing additional control groups with
increased noise. The comparison is based on the total mean
values of the sway angle and the pitch angle.

VOLUME 12, 2024 46913



J. Zhou et al.: PTP and Pose Estimation

FIGURE 7. Results of partial pedestrian trajectory prediction. Where (a) represents the entire trajectory prediction, (b) represents the prediction results
during the first half of the period, and (c) represents the prediction results during the second half of the period.

FIGURE 8. ADE result.

The results, depicted in Fig. 6, clearly show that our pre-
diction results are closer to the actual values.

C. TRAJECTORY PREDICTION COMPARISON TEST
In pedestrian trajectory prediction experiments, to identify
methods that closely match the effectiveness of our approach,
we initially visually compared the overall performance of
different methods (σ = 1). As our method is an improvement
upon GDN and LSTM, we first selected GDN and LSTM as
control groups. Additionally, we chose the transformer-based
method proposed by Giuliari et al. [24] as another control
group.

Demonstrated in Fig. 7 are some of the prediction results
of the three methods in pedestrian longitudinal trajectories.
From Fig. 7(a), it is evident that our algorithm and Giuliari’s
algorithm consistently approximate the actual value through-
out the longitudinal trajectory prediction. Observing Fig. 7(b)
and Fig. 7(c), it becomes apparent that in the early stage of
the prediction, the LSTM algorithm exhibits a larger bias.
Over time, it gradually converges towards the actual value
in the subsequent stages of the prediction. In contrast, the
GDN algorithm is closer to the actual value at the beginning

FIGURE 9. FDE result.

of the prediction but gradually deviates from the actual value
in the subsequent prediction process. We believe that the phe-
nomenon described above arises from the fact that the LSTM
algorithm fails to consider the inherent relationships among
input features. Consequently, it is highly susceptible to noise
during the early stages. However, over time, it gradually
suppresses some of the noise based on observations within
certain time steps. In contrast, the GDN algorithm, benefiting
from the interrelationships among features, can suppress the
influence of noise during the early stages. Nevertheless, the
GDN algorithm itself lacks the capability for noise suppres-
sion. Therefore, in the later stages, due to the accumulation of
noise, the predicted values gradually deviate from the actual
values.

In the above experiments, the differences between the
remaining control groups are not significant enough, except
for the LSTM control group, which is less effective. To fur-
ther compare the differences among the remaining control
groups, we introduced additional interference into the orig-
inal trajectories to create control groups. We then evaluated
them using commonly used metrics in pedestrian trajectory
prediction, namely Average Displacement Error (ADE) and
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FIGURE 10. Anomaly detection test using pedestrian longitudinal trajectory as an example. Gaussian
noise with with mean 0, variance 4 added in (a), and Gaussian noise with with mean 0, variance
8 added in (c). Figs. 10(a) and 10(b) represent the actual and predicted values, while Figs. 10(b)
and 10(d) display the anomaly detection results in the red interval in (a) and (c), respectively.

Final Displacement Error (FDE). ADE represents the mean
square error between the actual trajectory coordinates and
the model-predicted trajectory coordinates for all trajectories.
FDE is the error between the actual trajectory end coordinates
and the model-predicted trajectory end coordinates for all
trajectories. We employed these two metrics to evaluate the
predictive capability of the model. The equations for the two
metrics are shown in (16) and (19):

ADE(k) =
1
T

∑
t=1,2··· ,T

√(
x tk − x̂ tk

)2
+

(
ytk − ŷtk

)2 (16)

ADE =
1
N

∑
k=1,2··· ,N

ADE(k) (17)

FDE(k) =

√(
xTk − x̂Tk

)2
+

(
yTk − ŷTk

)2 (18)

FDE =
1
N

∑
k=1,2··· ,N

FDE(k) (19)

where
(
x tk , y

t
k

)
denoted the model-predicted trajectory coor-

dinate points for all pedestrian trajectories at all moments;
(x̂Tk , ŷTk ) denoted the final pedestrian trajectory coordinate
points predicted by the model; (x̂k , ŷk ) denoted the actual tra-
jectory coordinate points corresponding to the predicted tra-
jectory coordinate points; T denoted the predicted sequence
length; N denoted the number of all pedestrian trajectories.
Some of the experimental results are shown in Figures 8

and 9. From Figures 8 and 9, we can see that in the three
groups of experimental results with mean 0, variance 2,
6 and 10, our method outperforms the GDN algorithm in
all the indexes, and basically has a similar performance with
the Transformer-based method, which occurs because, com-
pared with the GDN algorithm, we inhibit the effect of the
high-noise moment data on the whole time series.

D. ANOMALY DETECTION TEST
Although our algorithm slightly underperforms compared
to the Transformer in terms of ADE and FDE evaluation
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TABLE 1. Main variables and descriptions.
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metrics, our method possesses interpretability. Specifically,
for our model, if it can identify outlier data and their cor-
responding time points throughout the entire time series,
its overall good performance can be attributed to the sup-
pression of these outlier data. This indirectly suggests that
the model’s convergence process possesses a certain degree
of interpretability. To assess this capability, we introduced
different noises in the data interval from 6850 to 7050 steps.
As depicted in Figs. 10(b) and 10(d), our method effectively
identifies anomalous data nodes.

In summary, our method is effective not only in detecting
anomalous data but also in suppressing the effect of the
anomalous data on pose estimation throughout the entire time
series in the subsequent AI-LSTMmodule. Our method is not
only noise-suppressive but also interpretable compared to the
method of Giuliari et al.

V. CONCLUSION
This paper proposes a method for PPE and PTP under noise
interference, achieved by combining a GDN network and a
novel LSTMunit. Initially, we obtained the predicted value by
considering the relationship between the pedestrian’s position
and pose through the GDNmodule. Subsequently, we utilized
this value and the actual value as inputs to the AI-LSTM
network, ultimately obtaining prediction results with noise
suppression. The effectiveness of our method was also ver-
ified through experiments from both pose estimation and
trajectory prediction perspectives. The shortcomings of our
study are mainly reflected as follows:

(1). The premise of our method was based on pedestrians
crossing the road rationally. Our method may not effectively
handle irrational crossing patterns (e.g., crossing the road
directly without observation) or data anomalies caused by
special behaviors (e.g., making a phone call while cross-
ing the road). In the future, we could explore introducing
quantum characterization to enhance uncertainty in data pro-
cessing, addressing the aforementioned challenges [25].

(2). Our method does not address the issue of head
pose changes due to interference behavior between different
pedestrians. We may consider introducing a GAP (Group
Activity Recognition) algorithm in later studies [26].

(3). Our study did not consider the impact of
inter-pedestrian influence on trajectory prediction results.
In future research, we could explore the incorporation of an
inhibition module into the social-LSTM algorithm [27] for a
more comprehensive investigation.

APPENDIX
See the Table 1.
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