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ABSTRACT Traffic flow prediction has become an important component of intelligent transportation
systems. However, high-precision traffic flow prediction (especially long-term prediction) is still very
challenging due to the complex spatial-temporal dependences of urban traffic data. In this paper, a novel
Multi-scale Temporal and Enhance Spatial Transformer (MTESformer) model is proposed to capture
complex dynamic spatial-temporal dependencies. MTESformer provides a reasonable feature embedding of
periodic characteristics of traffic; it can recognize different temporal feature patterns and capture long-term
dependencies, and efficiently focuses on two different node-space dependencies (long-range and neighboring
nodes dependencies). Specifically, we develop a special multi-scale convolution unit that unites temporal
self-attention to capture a wider range of dynamic temporal dependencies from a multi-receptive field and
identify different temporal feature patterns. Secondly, we design a novel Enhance Spatial Transformer mod-
ule, which can better focus on the dynamic spatial dependencies among nodes by fusing their neighborhood
information. Experimental results on the public transportation network datasets METR-LA, PEMS-BAY,
PEMS04, and PEMS08 data show that our proposed method outperforms most of the baseline models and
outperforms the state-of-the-art models in long-term prediction. (TheMAE of 60min prediction of our model
on METR-LA, PEMS-BAY dataset is 3.37, 1.87, and the MAPE is 9.62%, 4.35%, respectively, and all of
them outperform the PDFormer on PEMS04 and PEMS08 datasets.)

INDEX TERMS Long-term traffic flow prediction, multi-scale convolution, spatial-temporal dependency,
transformer.

I. INTRODUCTION
With the rapid development of the economy and the accel-
eration of urbanization, the traffic flow in the transportation
road network is growing, making the traffic congestion prob-
lem increasingly serious, and the problem of accurate traffic
flow prediction becomes more and more urgent. Traffic flow
forecasting is the process of using various historical data
from the past in a given area to predict the volume of
traffic in a given time period in the future. Traffic flow
prediction [1], as a core technology of Intelligent Trans-
portation Systems (ITS), has been widely studied, including
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traditional statistical methods and machine learning and
deep learning methods. Accurate traffic flow forecasts can
be used for a variety of transportation-related applications,
including route planning, vehicle scheduling, and conges-
tion mitigation, and they play an important role in traffic
management and planning in cities, where they can help
to alleviate traffic congestion and improve transportation
services.

Due to the influence of various factors, traffic flow changes
in a traffic road network show a complex and highly dynamic
pattern of changes. Nodes (each recording point) in a traffic
road network are affected by their neighboring nodes, which
is evident due to various potential factors (e.g., traffic acci-
dents, road closures, congestion, etc.). On the other hand,
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FIGURE 1. A simple simulation of the dynamic spatial-temporal dependencies in the road network by means of a static road network map and a
dynamic spatial-temporal transformation map.

two nodes with similar urban functions may have spatial
dependencies over long distances, even if their locations are
far apart. And the temporal dependency of the same nodemay
span multiple time steps. As demonstrated in Fig.1. In Fig.1-
(a), the circles represent nodes in the road network, and the
green lines represent actual roads, which enumerate nodes
with different urban functions and show the connectivity
between nodes. Fig.1-(b) shows the dynamic spatial-temporal
dependency. Spatial dependency: red dashed lines connect
nodes with similar urban function, despite their distance, due
to the fact that they share the same traffic data pattern (e.g.,
industrial areas can be congested at the same time due to
morning and evening peaks); the fork sign indicates that the
connectivity of the road may be affected by potential factors
(e.g., car accidents, congestion, etc.). Temporal dependency:
Purple dashed lines indicate temporal dependencies of nodes
that may span multiple time steps.

How to effectively capture complex and dynamic
spatial-temporal dependencies and model traffic data is the
core challenge in traffic flow prediction [2], and complex
spatial-temporal interactions greatly increase the difficulty
of the traffic prediction task. In recent years, a large num-
ber of deep learning models have been used to solve such
spatial-temporal problems. Spatial correlations have been
extensively explored using convolutional neural networks
[3], [4], and recurrent neural networks (RNNs) have been
widely used to learn temporal dynamics [5], [6]. However,
CNN methods are suitable for capturing local spatial corre-
lations in regular spatial grids, but are ineffective for traffic
prediction in road networks with a variety of long-distance
spatial correlations and belonging to an off-grid structure.
Sequence learning methods for RNNs require iterative train-
ing, which progressively introduces error accumulation and
incurs additional training time, and encounters the problem
of gradient explosion or gradient vanishing when capturing
long-term time dependencies [7], [8], [9]. Later, Given the
superior performance of graph neural networks (GNNs) in
processing graph-structured data, and given the fact that

spatial-temporal data often comes with an underlying graph
structure, GNN-based models were widely used to explore
spatial-temporal properties [10], [11], [12]. Despite its natural
advantages for handling data with non-Euclidean spatial
structure, GNN-based approaches still encounter constraints
in traffic forecasting. First, spatial dependencies in road
networks are highly dynamic and such dependencies change
over time; second, existing methods are usually locally
designed and cannot capture remote dependencies. And these
related models, which lack the ability to capture long-term
dependencies, are still deficient in long-term prediction.

In addition, traffic flow data, there are complex variations
and irregular dynamic similarities. Over long periods, there
are similar daily patterns of morning and evening peak flow
changes, as well as differences in traffic patterns between
weekdays and days off. At the micro level, a large number of
stochastic factors (e.g., different driving habits, roadway clo-
sures, etc.) make the flow changes highly dynamic, as shown
in Fig.2. However, most approaches e.g [13] and [14], they
lack a simultaneous focus on short-term and long-term char-
acteristics.

To address the above problems, we propose a novel neural
network framework for traffic flow prediction Multi-scale
Temporal and Enhance Spatial Transformer (MTESformer).
The main contributions of this paper can be summarized as
follows:

(1) We propose the MTESformer model based on spatial-
temporal self-attention for accurate prediction. Our method
solves the problems of dynamic, long-range and long-term
prediction with low accuracy.

(2) We design the Enhance Spatial Transformer, which
fuses the neighborhood information of nodes into spatial
self-attention, and can focus on both long-range depen-
dencies and neighboring nodes that have more influence
on them.

(3) We design a concise and effective multi-scale convo-
lution unit (MSCU), which can discover temporal feature
patterns at different scales through a multi-scale convolution
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kernel, and further combine with temporal self-attention to
mine more hidden temporal dependencies.

(4) Extensive experiments on real four datasets show that
our model outperforms most of the baseline models and out-
performs the state-of-the-art models in long-term prediction.

II. RELATED WORK
A. TRAFFIC FORECASTING
As a key functional component of intelligent transporta-
tion systems, traffic prediction has been widely studied and
applied in various fields. Earlier, historical average (HA)
[15], [16], traditional time series method ARIMA [15],
machine learning models support vector regression(SVR)
[17],vector autoregressive model (VAR) [18] and k-nearest
neighbor (KNN) [19]were used for traffic prediction. How-
ever, these methods are strongly hypothetical and do not
take into account the effect of spatial dependencies on the
prediction, and are ineffective in dealing with traffic flow data
with spatial-temporal dynamic complexity.

B. DEEP LEARNING METHOD
Deep learning models have become increasingly popular in
solving traffic flow prediction problems. Considering that
convolutional neural networks (CNNs) have demonstrated
strong feature extraction capabilities in numerous applica-
tions, CNNs have been used to extract grid-based spatial
dependencies [20], [21], [22]. However, the CNN method
is suitable for capturing local spatial correlations in regular
spatial grids, and for road networks with various long-range
spatial correlations and belonging to off-grid structures,
CNNs still have great limitations in capturing spatial depen-
dencies. RNNmodels are a special approach to deal with time
series, RNN-based models have been widely used in traffic
prediction tasks in ITS [23], their variants Gated Recurrent
Units (GRUs) [24] and Long Short-Term Memory Networks
(LSTMs) [25]are used to simulate temporal dependencies in
traffic prediction [26], [27]. In addition, Temporal Convolu-
tional Networks TCN [28], a neural network structure based
on causal convolution, have also been widely used to explore
temporal dependencies due to its speed, small number of
parameters, and structural soundness [29]. With the remark-
able achievements of graph neural networks (GNNs) in the
graph field, GNNs can be well adapted to the structure of road
networks and have good performance [30], GNNs are widely
used for traffic prediction [31], [32]. In addition, some works
have used attention mechanisms to capture spatial-temporal
dependencies due to their efficiency and flexibility [33], [34].

Currently, many works are based on the above approach
to construct models to capture spatial-temporal dependencies
and have achieved good results. Recurrent Neural Networks
(RNN) have gained wide application in capturing temporal
features due to their unique structure [35], which has a natural
advantage in processing sequential data. Hussain et al. [36]
used a stacked model of Bi-LSTM and GRU for traffic
prediction, but its effectiveness still needs to be improved

as it does not consider spatial dependency. Dynamic graph
convolutional recurrent network (DGCRN) [37] constructs
a dynamic adjacency matrix of node similarities and fuses
GNN and RNN to capture spatial-temporal dependencies.
Dual spatial convolution gated recurrent unit (DSC-GRU)
[38] uses a DSC unit, which models global spatial dependen-
cies by adding inter-node correlation coefficients on top of a
static graph to generate a new dependency graph, and embeds
the DSC unit in a GRU. Spatial-temporal gated recurrent
unit (GCST-GRU) [39] uses GRU to capture temporal depen-
dencies, and in terms of spatial modeling, explores spatially
dependent optima in k-hop neighborhoods based on GCN,
and explores regularization to improve the loss function.
MGCN-WOALSTM [40] establishedMGCN (Multi-channel
Graph Convolutional Neural network), which utilizes the
self-attention mechanism to adjust the spatial correlation on
different dimensions of the traffic flow, constructs LSTM to
obtain temporal features, and introduces WOA (Whale Opti-
mization Algorithm) to find the globally optimal combination
of the parameters of the LSTM network. Spatial-temporal
residual graph convolutional network (STRGCN) [41] opti-
mizes serial GCN into DFRGCN with residual connectivity
and capable of parallel computation, and learns historical
temporal information between traffic streams by using an
attention-based mechanism of bi-directional gated recurrent
unit (ABi-GRU). Spatial-temporal dynamic graph convolu-
tional neural network (STDGCN) [42] is a joint prediction
model based on GCN and GRU, which performs cosine
similarity computation on the nodes to generate dynamic
neighbor matrix, and encodes and fuses the input features and
node information. Another class of model components that
captures time dependence is represented by TCN [43] based
on 1D CNNs. Graph WaveNet [10] uses dilated causal con-
volution [13] to capture temporal dependencies, expands the
receptive field by varying the size of the convolution kernel,
and introduces an adaptive matrix, which is learned through
node embeddings to capture hidden spatial dependencies in
the data. Spatial-temporal graph attention network (STGAT)
[44] constructed ST-Block by Gated Temporal Convolution
Layer (GTCN) and graph attention layer (GAT) [45] and
captured potential and existing spatial dependencies using
dual path architecture. Progressive graph convolutional net-
work (PGCN) [46] also uses dilated causal convolution and
GCN together to capture spatial-temporal dependencies, but
it uses an adjacency matrix measured by the cosine sim-
ilarity of the node signals. Graph self-attention WaveNet
(G-SWaN) [47] uses SGT (spatial graph transformer) instead
of GCN on the basis of Graph WaveNet [10]and SGT can
adjust the adaptive neighbor matrix and the true neighbor
matrix.

It can be seen that the classical spatial-temporal graph-
ical models (STGNN) have been widely used in the field
of traffic flow prediction, but due to their own model-
ing constructs, these models are not as effective as they
should be in long-term flow prediction. RNN models have
obvious limitations for long-term prediction due to their
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iteration-based approach to time-dependent simulation; TCN
uses one-dimensional convolutional kernel to capture the time
dependency, using the right size of convolutional kernel can
effectively capture the local time dependency, and in short-
term prediction, better results have been achieved, such as
(Graph WaveNet, MTGNN, and other models),but TCN still
can’t solve the long-term time dependency even if larger
convolutional kernel is used. For spatial dependencies, many
models explore hidden spatial dependencies other than the
static adjacency matrix, DGCRN, PGCN and STDGCN gen-
erate new adjacency matrices by calculating node similarity,
and Graph WaveNet captures hidden spatial dependencies
using node-embedding dictionaries. These models have been
extended in terms of spatial dependence to make up for the
shortcomings of static adjacency matrices, and certain effect
enhancements have been achieved. However, these meth-
ods still have defects: this spatial dependence is basically
determined at the end of model training, and the depen-
dence is unchangeable in the subsequent prediction process.
Whereas the dependencies between nodes change over time,
the node dependencies of these traffic flows are highly
dynamic.

C. TRANSFORMER
Transformer [48] is a neural network model based on the
self-attention mechanism. Transformer has demonstrated its
effectiveness in natural language processing tasks and has
gained extensive adoption in natural language processing [49]
and other sequence modeling tasks. Transformer has also
been successfully applied in computer vision tasks [50], [51].
Transformer is becoming increasingly popular due to its supe-
rior performance.

In addition, the attention mechanism, as a core part of
Transformer, has been widely studied in the field of traffic
flow prediction based on the self-attention variant model
due to its effectiveness in capturing spatial-temporal depen-
dencies [52]. Attention-based models can be dynamically
adapted to capture spatial-temporal dependencies with real-
time data, which is somewhat superior to STGNN models.
Attention-based models have been widely used for traf-
fic flow prediction, and they are more advantageous than
STGNN models in long-term prediction with good results.
Attention based spatial-temporal graph convolutional net-
work (ASTGCN) [53] and multi-component attention graph
convolutional network (MCAGCN) [54] extract information
from traffic flow data of different time periods in three dif-
ferent period components, each of which is augmented with
spatial-temporal convolution using attention mechanism.
Spatial-temporal transformer networks (STTN) [55] cap-
ture temporal dependencies using temporal self-attention and
spatial dependencies using spatial self-attention fused with
GCN, respectively. Graph multi-attention network (GMAN)
[33] fuses temporal attention with spatial attention to form
STAtt Block and employs an encoder-decoder structure.
Fast pure transformer network (FPTN) [56] also achieved

good results using only self-attention for spatial depen-
dence modeling and sensible embedding of time-periodic
features. Adaptive graph spatial-temporal transformer net-
work (ASTTN) [57] uses localized multiple self-attention,
stacks multiple spatial-temporal attention layers, restricts
attention to spatially adjacent nodes, and introduces adap-
tive graphs to capture hidden spatial-temporal dependen-
cies. Dynamic spatial-temporal aware graph neural net-
work (DSTAGNN) [58] proposes dynamic spatial-temporal
aware graph to enhance the node association and M-GTU
module to capture the dynamic information and improve
the traditional spatial-temporal attention module. Spatial-
temporal attention fusion dynamic graph convolution net-
work (AFDGCN) [59] extends the fully-connected operations
in GRU to GCN to form dynamic graph convolutional
recurrent network (DGCGRU) and further uses tempo-
ral self-attention and GAT for spatial-temporal information
enhancement.

For self-attention based models, ASTGCN and MCAGCN
use different traffic cycle features for fusion, but this
approach, using a three-path framework, greatly increases the
computational complexity; STTNs and GMANs are modeled
using only ordinary spatial-temporal attention, lacking fur-
ther exploration of spatial-temporal dependence, and their
effectiveness remains to be improved. ASTTN and FPTN
focus the model on spatial dependence and achieve good
results, indicating the effectiveness of exploring the spa-
tial dependence of nodes for the improvement of traffic
flow prediction. DSTAGNN incorporates graph convolution
based on Chebyshev polynomial approximation into atten-
tion and uses M-GTU (multi-scale Gated Tanh Unit) to
obtain extensive dynamic time dependence. AFDGCN uses
temporal self-attention to augment DGC-GRU with GCN
modules and GAT to attend to neighboring nodes. Although
DSTAGNN and AFDGCN take into account the effects of
multi-scale temporal dependence and domain nodes, respec-
tively, their models are overly complex and provide little
enhancement.

The above models do not make reasonable use of the
periodicity of traffic and do not pay attention to both the
multi-scale temporal dependence and the complex dynamic
spatial dependence of the nodes, leading to their poor pre-
diction results. To address these issues, we propose MTES-
former. MTESformer does not overcomplicate the model by
using too many components, but at the same time solves
these complex dependencies and achieves good results in
long-term forecasting. MTESformer makes reasonable use
of the periodicity of traffic for periodic feature embedding;
the use of MSCU in conjunction with temporal self-attention
allows for the discovery of temporal feature patterns at dif-
ferent scales and captures long term temporal dependencies;
and the incorporation of three-hop adjacency matrices into
improved spatial self-attention pays better attention to the
dynamic spatial dependencies between nodes (long-distance
spatial dependencies and the influence of neighboring
nodes).
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FIGURE 2. 5 nodes in the PEMS04 dataset and their flow variations are shown for the daily and weekly cycles, respectively.

TABLE 1. Summary of datasets.

III. MATERIALS AND METHODS
A. MATERIALS
1) DATASET
Our model is validated on four real datasets. In addition,
We set both the historical time steps and future time steps
to 12. METR-LA and PEMS-BAY are divided into training,
validation, and test sets in the ratio of 7:1:2. PEMS04 and
PEMS08 are divided in the ratio of 6:2:2.

METR-LA, the collection site was Los Angeles County
freeways. The dataset contains a total of 207 sensors and
covers the time period from 3/1/2012 to 6/30/2012.

PEMS-BAY, the collection site is in the Bay Area, Califor-
nia. The dataset contains a total of 325 sensors with a time
range of January 2017 through May 2017.

PEMS04, collected from CalTrans PeMS. The dataset con-
tains a total of 307 sensors and covers the time period from
January 2018 through February 2018.

PEMS08, collected from CalTrans PeMS. The dataset con-
tains a total of 170 sensors and covers the time period from
July 2016 through August 2016.

In addition, the spatial neighbor map of each dataset is
constructed based on the actual road network. Where the
number of #Edges is the sum of the number of edges in the
multi-order matrix. A summary of the dataset information is
shown in Table.1.

2) DATA PRE-PROCESSING
The time interval for flow data is 5 minutes. For the small
amount of missing data, as in most models, we replace them

with zeros and mask them in the calculations. And the data
were normalized by z-score.

In this work, we represent a road network as a graph
G = (V ,E), where V is the set of nodes containing N
nodes and E is the set of edges representing the connectivity
relationships between nodes. The adjacency matrix of the
graph G is denoted by A ∈ RN×N , where an element Aij
in the adjacency matrix A is equal to 1 if nodes vi and vj
belong to V and there exist connecting edges (vi, vj) ∈ E .
We can denote the state of the traffic at any time step t as
X t ∈ RN×C , where C denotes the type quantity of traffic
parameters. In this study, our goal is to predict one parameter
type, traffic flow (C = 1)

3) DATA AUGMENTATION
In order to better extract the hidden information of traffic
features, we use the fully connected layer to obtain the traffic
feature embedding Ef ∈ RT×N×D:

Ef = FC
(
X (t−T+1):t

)
(1)

where D is the embedded feature dimension of the model and
FC(·) denotes the fully connected layer.

In addition, considering that the changes in traffic flow are
influenced by people’s lifestyle and commuting habits, which
have a cyclical nature on a large scale, as shown in Fig.2,
the daily flow changes and weekly flow changes are demon-
strated for five nodes in the PEMS04 dataset. During the day,
a significant increase in traffic occurs during the morning
and evening peak hours, and during the week, the pattern
of traffic variation varies again on weekdays and days off.
Therefore, we introduce these two important features into our
model as well. Specifically, we use the learnable day-of-week
Embedding dictionary Td∈RNd×D, and time-of-day Embed-
ding dictionary Tt∈RNt×D where, Nd= 7, Nt =288 (number
of timestamps per day). The day-of-week dataWd∈RT of the
weekly time series at the corresponding moment of the flow
is used as an index to extract the day-of-week Embedding
Zd∈RT×D. The time-of-day data Wt∈RT of the daily time
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FIGURE 3. Schematic of a 1D CNN acting on a time series.

series at the corresponding moment of the flow is used as
an index to extract the time-of-day Embedding Zt∈RT×D.
Finally, the time-period embedding featuresEd∈RT×N×Dand
Et∈RT×N×Dof the N nodes are obtained by broadcasting.

We add the above 3 embedding vectors to get the embed-
ding feature input:

X = Ef + Et + Ed (2)

B. METHODS
1) CNN
One-dimensional CNNs use a similar approach to TCNs to
process time series. As shown in Fig.3, a time series of length
n is processed using a convolutional kernel of size 1∗3. The
1∗3 convolution kernel will be shifted along the time axis
dimension, and the processing of the time series will result
in a sequence of length (n-3+1). With different sizes of
convolutional kernels, temporal information can be extracted
at different scales.

2) ATTENTION
Multinomial self-attention can be attentive to the global
scope, and it has been widely used to capture spatial-temporal
dependencies. The core idea is to first perform self-attention
by query and key to get the attention score, and then update
the value. The operation of the ith header is as follows,
query, key, and value are obtained by the projection of X,
respectively:

XW (i)
q = Q(i),XW (i)

k = K (i),XW (i)
v = V (i) (3)

The value is then updated by the scaled dot product function
and softmax operation to compute the attention score A(i):

A(i) = Softmax

(
Q(i)K (i)T

√
d

)
(4)

Att
(
Q(i),K (i),V (i)

)
= A(i)V (i) (5)

where d is the number of feature dimensions of the ith header,
then expand the single header into amulti-header by doing the
following:

O(i)
= Att

(
Q(i),K (i),V (i)

)
(6)

O = Concat
[
O(1),O(2), . . . ,O(H )

]
(7)

IV. METHODOLOGY
A. SYSTEM MODEL
1) MULTI-SCALE TEMPORAL TRANSFORMER
Since the self-attention mechanism is unable to capture the
temporal position information of the observed time series,
we use position embedding to inject the ‘‘temporal position’’
information into the input time series. The temporal position
embedding information P̂t∈ RT×N×D

is learned through the
learnable dictionary Pt∈RT×D and the broadcasting mecha-
nism, The output X of the Feature Embedding Layer is then
summed with P̂t to get X

′

t :

X ′
t = X + P̂t (8)

By adopting the multi-head self-attention mechanism in
combination with multi-scale convolution unit (MSCU), it is
possible to pay attention to both short-term and long-term
correlations in time series data, discover temporal feature
patterns at different scales, and capture hidden dependen-
cies at multiple scales. The self-attention mechanism is first
applied along the time axis to capture complex temporal
dependencies. For a multi-attention model with H attention
heads, we define the following variables:

XtW (i)
q = Q(i)

t ,XtW
(i)
k = K (i)

t ,XtW (i)
v = V (i)

t (9)

A(i)t = Softmax

(
Q(i)
t K

(i)
t

√
d

)
(10)

Att
(
Q(i)
t ,K (i)

t ,V (i)
t

)
= A(i)t V

(i) (11)

where Xt ∈ RN×T×D is obtained from the output X ′
t of

the Feature Embedding Layer by reshaping, and Q(i)
t , K (i)

t ,
V (i)
t ∈ RN×T×d are obtained by projection from the learn-

able parameters W (i)
q,k,v ∈ RD×d (d = D/H ), and then the

self-attention score A(i)
t ∈ RN×T×T by introducing the scaled

dot product function and softmax row-by-row normalization
operation.

The above is the operation of the ith head in multiple self-
attention, we extend to multiple heads:

Oit = Att
(
Q(i)
t ,K (i)

t ,V (i)
t

)
(12)

Ot = Concat
[
O(1)
t ,O(2)

t , . . . ,O(H )
t

]
(13)

where Oit ∈ RN×T×d denotes the output of the ith head of
temporal self-attention, and Ot ∈ RN×T×D is the output of
H-heads of temporal self-attention spliced together in the last
dimension, subsequently, Ot is sent to the Feed Forward &
Layernorm layer after a linear transformation:

Y ′
t = LayerNorm (Linear (Ot) + Xt) (14)

Yt = LayerNorm
(
FFN

(
Y ′
t
)
+ Y ′

t
)

(15)

whereXt is the input of multi-head self-attention, FFN is Feed
Forward Network, and Yt ∈ RN×T×D is the output of Feed
Forward & Layernorm layers.
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FIGURE 4. (a) Overall architecture of MTESformer, (b) and (c) show the specific details of each module in detail.

To further enhance the model’s perception of dynamic
temporal dependencies in the road network, we add a
MSCU(multi-scale convolution unit) after the temporal
multi-head self-attention, which discovers temporal feature
patterns at different scales, specifically, as shown in Fig.5,
the MSCU has four convolution kernels of different sizes,
the convolution kernels are 01 ∈ R1×S1×D×D, 02 ∈

R1×S2×D×D, 03 ∈ R1×S3×D×D, 04 ∈ R1×S4×D×D, as well
as the linear and ReLU activation layers, and residual con-
nections are also set up for them. Where the kernel sizes are
1 × S1, 1 × S2, 1 × S3, 1 × S4. This is done as follows:

Z ′
t = (Concat (01 ⋆ Yt , 02 ⋆ Yt , 03 ⋆ Yt , 04 ⋆ Yt , )) (16)

Zt = Linear
(
ReLU

(
Linear

(
Z ′
t
)))

+ Yt (17)

where ⋆ represents the convolution operation, Yt ∈ RN×T×D

is the output of the temporal self-attention, which is obtained
from the output of the temporal self-attention Yt by the four
convolution kernels respectively, after one-dimensional con-
volution on the timeline dimension, the dimensions on the
timeline are T−S1+1, T−S2+1, T−S3+1, T−S4+1, and
use the concat operation to splice them together in the time
axis dimension, after the splice and after the first projection
in the time axis dimension to get Z ′

t ∈ RN×Q×D, and then
map the number of dimensions in the time axis to T to get the
output of the MSCU Zt ∈ RN×T×D.

2) ENHANCE SPATIAL TRANSFORMER
Similar to Embedding in Multi-scale Temporal Transformer,
we use positional embedding to inject information that distin-
guishes between different nodes into the output ofMulti-scale
Temporal Transformer, which we reshape to represent as
Zs ∈ RT×N×D, learn the spatial embedding information
P̂s ∈ RT×N×D by the learnable dictionary Ps ∈ RN×D and
broadcasting mechanism, and then add Zs and P̂s to obtain
Xs ∈ RT×N×D:

Xs = Zs + P̂t (18)

In capturing spatial dependencies, we focus on nodes near
the center node and nodes that exhibit similar functions
despite being distant from each other. Therefore, we develop
a new module to capture dynamic spatial dependencies
between nodes. We incorporate the adjacency matrix into
the improved multi-head spatial self-attention to dynamically
mine the hidden relationships between nodes based on histor-
ical information, and we denote the ith-hop adjacency matrix
by Ai ∈ RN×N (if Aij,k =1, it means that the k-node is the
ith-hop neighbor of the j-node and the diagonal element is 1),
for a multi-head spatial self-attention model with H multiple
heads of attention model, we define the following variables:

XsW (i)
q = Q(i)

s ,XsW
(i)
k = K (i)

s ,XsW (i)
v = V (i)

s (19)
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FIGURE 5. Multi-scale convolution unit.

P(i)s = Softmax

(
Q(i)
s K

(i)
s

√
d

+ Ai ⊙M i

)
(20)

where Xs ∈ RT×N×D is obtained from the output of
the spatial Embedding in Enhance Spatial Transformer,
Q(i)
s ,K (i)

s ,V (i)
s ∈ RT×N×d is obtained by projection from

the learnable parameters W (i)
q,k,v ∈ RD×d (d = D/H ), M i

∈

RT×N×N denotes the Mask matrix of the ith head, ⊙ is the
element-wise Hadamard product, M i, Ai jointly adjust the
attention scores for each head, and then the self-attention
scores P(i)

s ∈ RT×N×N are obtained by introducing the
scaling dot product function and softmax row-by-row nor-
malization operation.

Att
(
Q(i)
s ,K (i)

s ,V (i)
s

)
= P(i)s V

(i)
s (21)

Os = Sum
[
O(1)
s W (1),O(2)

s W (2), . . . ,O(H )
s W (H )

]
(22)

where Ois ∈ RT×N×d is the output of the ith head, W (i)
∈

RT×d×D is the feature transformation matrix, Os ∈ RT×N×D

denotes the output of the multi-headed spatial self-attention
layer, and subsequently, Osis sent to the Feed Forward &
Layernorm Layer after a linear transformation:

Y ′
s = LayerNorm (Linear (Os) + Xs) (23)

Ys = LayerNorm
(
FFN

(
Y ′
s
)
+ Y ′

s
)

(24)

where for FFN is Feed Forward Network and Ys ∈ RT×N×D

is the output of Feed Forward & Layernorm layer.

3) PREDICT LAYER
After stacking multiple layers of Spatial-Temporal Trans-
former Layer, the output of the last layer is obtained as
O ∈RT×N×D, which is reshaped as O

′ ∈ RN×TD, denoting
features extracted from each of N nodes, and then passes
through a layer of fully connected layers:

Y ′
= FC

(
O′
)

(25)

where Y ′
∈ RN×MC , which is then reshaped to obtain the

output of the final model Y ∈ RM×N×C , M represents the

number of time steps being predicted, and C = 1 denotes the
flow characteristics.

B. ARCHITECTURE AND WORKING
To cope with the dynamics of real-time data, we need to
further study the dynamic characteristics of these dependen-
cies in detail. Therefore, we propose a new spatial-temporal
attention module which organically combines Multi-scale
Temporal Transformer and Enhance Spatial Transformer to
further enhance the extraction of dynamic spatial-temporal
dependencies. The proposed MTESformer is shown in Fig.4-
(a), MTESformer consists of Feature Embedding Layer and L
layers of Spatial-Temporal Transformer Layer with residual
connectivity, each Spatial-Temporal Transformer Layer in
turn consists of a Multi-scale Temporal Transformer and an
Enhance Spatial Transformer to jointly extract the spatial-
temporal features, as well as a final prediction layer. The
flow pattern of traffic data X is illustrated in Fig.4-(a). Firstly,
X undergoes data augmentation through the Feature Embed-
ding Layer, followed by the extraction of spatial-temporal
dependencies using L layers of Spatial-Temporal Trans-
former. Finally, the Predict Layer is utilized to forecast the
traffic data for future time intervals.

V. EXPERIMENTS
A. EXPERIMENTATION
Our experiments were performed in a Window environment
using an Intel(R) Core(TM) i9-10900K CPU@3.70GHZ and
a NVIDIA GeForce RTX 3090 GPU card. Indeed, our model
is hyperparameter insensitive and widely adaptable with the
following hyperparameters: the number of Spatial-Temporal
Transformer Layers is 3, the embedding dimension D is 24,
the number of heads of multi head self-attention H is 3, the
sizes of the four one-dimensional convolutional kernels in
the MSCU are 3, 5, 7, and 9, respectively, the intermediate
layer timeline dimension Q in the MSCU is 64, hidden layer
dimension in FFN is 256, history time step T and future
time step M are both 12, Adma is used as the optimizer, the
learning rate is decayed from 0.001, the batch size is 16, the
number of iterations is 100, and an early stopping mechanism
is used with the error of the validation set. The only difference
is that we use Huber loss on PEMS04, PEMS08, use MAE
loss on METR-LA, PEMS-BAY and remove the activation
layer in MSCU. For a more detailed overview of the model’s
parameters, we present them in Table 2. We use MAE (Mean
Absolute Error), MAPE (Mean Absolute Percentage Error),
and RMSE (Root Mean Square Error) to validate our model.

MAE =
1
n

∑n

i=1
|ȳi − yi| (26)

RMSE =

√
1
n

∑n

i=1
(ȳi − yi)2 (27)

MAPE =
1
n

∑n

i=1

∣∣∣∣ ȳi − yi
yi

∣∣∣∣ (28)
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TABLE 2. Detailed experimental parameters.

Among them, n represents the number of nodes, while
ȳi and yi respectively represent the true value and predicted
value for the i-th time step.

B. RESULTS AND ANALYSIS
1) RESULTS
In this study, our proposed model is compared to the follow-
ing baselines.

SVR: Support Vector Regression, a classical time series
regression task using linear support vector machines [17].

DCRNN: Diffusion convolutional recurrent neural net-
work, merging diffusion map convolutional network and
seq2seq for traffic flow prediction [8].
FC-LSTM: A special RNN model with fully connected

LSTM layers [60].
AGCRN: Adaptive graph convolutional recurrent network

combining GCN with GRU using learnable embedding of
nodes in graph convolution [61].
STGCN: Combined graph convolutional and convolutional

sequence learning layers for modeling [62].
GWNet: Will expand causal convolution and GCN to

jointly capture spatial and temporal dependencies [10].
MTGNN: Capturing spatial-temporal dependencies using

hybrid jump propagation layers, expanded initial layers, and
graph learning modules [63].

GMAN: An attention-based model, with encoder-decoder
architecture [33].

DSTAGNN: An improved spatial-temporal multi-attention
model that incorporates GCN into spatial attention and uses
multi-scale gated convolution [58].

AFDGCN: Augmentation of DGC-GRU with GCN mod-
ule using temporal self-attention and attention to neighboring
nodes using GAT [59].

PDFormer: A spatial and temporal self-attention model,
with graph mask matrices and delay-aware feature transfor-
mation modules [64].
We conduct experiments on four datasets PEMS-BAY,

METR-LA, PEMS04, and PEMS08, and the experimen-
tal results are shown in Table.3 and Table.4. MTESformer
clearly outperforms most of the baseline models, especially
in long-term prediction.

For the METR-LA dataset and the PEMS-BAY dataset,
MTESformer’s results are slightly worse compared to
MTGNN and Graph WaveNet in the short-term predictions
(15min and 30min), but in the 60min prediction, MTES-
former performs much better than all baselines on all three
metrics. On the METR-LA dataset, there is a significant
decrease in both MAE and MAPE for MTESformer com-
pared to GWNet and DCRNN; Compared to PDFormer,
MTESformer predicted 0.35 and 1.29% lower MAE and
MAPE at 60min, respectively; On the PEMS-BAY dataset,
again, MTESformer’s prediction at 60 min is significantly
better than all models. On the PEMS04 and PEMS08 datasets,
MTESformer outperforms all models on three evaluation
metrics. And the advantage is more obvious on the PEMS08
dataset, where the MAE and MAPE of MTESformer are
reduced by 1.18 and 1.2%, respectively, compared to GMAN,
and by 1.69 and 1.28%, respectively, compared to DCRNN.

(1) Deep learning models significantly outperform tradi-
tional models such as SVR due to their strong assumptions
about the data. FC-LSTM performs poorly because it does
not consider spatial dependence.

(2) DCRNN, AGCRN are typical RNN-based methods for
predicting spatial-temporal data. These models are limited by
their lack of ability to maintain long-range temporal patterns
due to their cyclic-based. Graph Wave Net combines GNN
and Gated TCN with small inceptive field convolution kernel
to form a spatial-temporal layer, which is more advantageous
in short-term prediction. MTGNN uses a combination of
a mix-hop propagation layer and a dilated inception layer
for fusion, a strategy that has also yielded good results.
These models rely heavily on CNN methods to capture
temporal dependencies, but one-dimensional convolution is
usually limited by the size of the receptive field and pays
insufficient attention to long-range temporal information.
Compared with these classical spatial-temporal fusion mod-
els with one-dimensional convolution or based on RNN, due
to the structure of MTESformer based on the attentional
mechanism, although it has shortcomings in short-term pre-
diction, MTESformer has a huge advantage in long-term
prediction, which is often more important.

(3) GMAN is modeled using spatial-temporal attention
with an encoder-decoder architecture that lacks further explo-
ration of spatial-temporal dependencies. PDFormer models
local geographic neighborhoods and global semantic neigh-
borhoods using a graphmasking approach. DSTAGNN incor-
porates graph convolution based on Chebyshev polynomial
approximation into attention and uses M-GTU (multi-scale
Gated Tanh Unit) to obtain a wide range of dynamic temporal
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TABLE 3. Performance on METR-LA and PEMS-BAY datasets.

TABLE 4. Performance on PEMS04 and PEMS08 datasets.

dependencies, but it fails to incorporate the periodic charac-
terization of the traffic as well as to consider the interactions
of domain nodes. AFDGCN uses temporal self-attention to
augment DGC-GRU with GCN modules and GAT to attend
to neighboring nodes. DSTAGNN and AFDGCN take into
account the multi-scale time dependence and the influence of
domain nodes, respectively, and their model components are
overly complex, but the enhancement is minimal.

It is worth noting that MTESformer embeds traffic cycle
features compared to models also based on self-attention;
the use of MSCU in conjunction with temporal self-attention
allows for the capture of multi-scale temporal dependen-
cies and long temporal dependencies; and the incorpora-
tion of three-hop adjacency matrices into improved spatial
self-attention allows for the effective focus on two different
kinds of spatial dependencies. MTESformer simultaneously

addresses the shortcomings of the above models. Instead of
using overly complex components, the temporal features and
effective spatial attention patterns are captured by more fine-
grainedmodules, andMTESformer significantly outperforms
both GMAN and PDFormer in both short and long-term
forecasting on the METR-LA dataset and the PEMS-BAY
dataset. On the PEMS04 and PEMS08 datasets, MTESformer
was significantly better than the other baseline models,
achieving the best results for all metrics.

(4) MTESformer outperforms most of the baseline models
in the four real datasets, achieving optimal performance,
especially in long-term prediction, with great advantages.

2) ANALYSIS
In order to assess the effectiveness of different components in
MTESformer, we conduct a comparative study by contrasting
MTESformer with the following variations. (1) w/o t_d_E:
this variant removes time of day and day of week Embed-
ding. (2) w/o E_S: this variant removes Enhance Spatial
Transformer. (3) w/o MSCU: this variant removes MSCU
(multi-scale convolution unit). (4) w/spatial_att: this variant
replaces the Enhance Spatial Transformer with ordinary spa-
tial self-attention.

The experimental results are shown in Table.5, and the spe-
cific prediction errors of each variant model on the PEMS04
and PEMS08 datasets are plotted in Fig.6, where w/o E_S has
the highest error, and the error of w/o t_d_E is also higher
compared to MTESformer, while the errors of w/o MSCU,
w/spatial_att are slightly close to MTESformer but still have
some gap.
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FIGURE 6. Ablation experiment of module effectiveness on PEMS04 and PEMS08.

TABLE 5. Performance on PEMS04 and PEMS08 datasets.

(1) w/o t_d_E: After removing the time of day and day
of week Embedding, the MAE rises by 0.63 and 0.97 on
the PEMS04 and PEMS08 datasets, which suggests that our
periodical feature embedding of the flow is reasonable. It can
capture daily and weekly traffic patterns and can help the
model to better capture temporal dependencies.

(2) w/o E_S: The removal of this module results in a
significant decrease in model performance. It not only illus-
trates the importance of capturing spatial dependencies for
model prediction, but also proves that the Enhance Spatial
Transformer module we developed does play an important
role in model prediction.

(3) w/o MSCU: After removing the MSCU, all three met-
rics increase on the PEMS04 and PEMS08 datasets, with the
MAE increasing by 0.22 and 0.11, respectively. illustrating

that the MSCU module can discover temporal feature pat-
terns at different scales, further improving themodel accuracy
based on temporal self-attention.

(4) w/spatial_att: After using the ordinary spatial
self-attention module instead of Enhance Spatial Trans-
former, the prediction accuracy of the model decreases on

both datasets. This indicates that Enhance Spatial Trans-
former we developed is significantly better than the ordinary
spatial self-attention module, and that Enhance Spatial
Transformer simultaneous focus on long-distance spatial
dependencies and neighborhood nodes effectively improves
the model accuracy. The 4 sets of comparisons above demon-
strate the effectiveness of our model components. These
well-designed components are the reason why our model
achieves an advantage.

C. VISUALIZATION
1) VISUALIZATION OF TEMPORAL DEPENDENCY
In order to better explore the effectiveness of multi-scale
convolution unit (MSCU) in capturing the dynamic time
dependence, we conduct experiments on the test set of
PEMS04 dataset. As shown in Fig.7, a1, a2, a3 are the heat
maps plotted by the temporal self-attention coefficient with
the addition of the MSCU, and b1, b2, b3 are the heat maps
plotted by the temporal self-attention coefficient with the
deletion of the MSCU, a1 and b1 are plotted for the same
test set of data, a2 and b2 are plotted for the same test set of
data, a3 and b3 are plotted for the same set of test data. It can
be seen that in b1, attention is focused on time points 11 and
12, while with the addition of the MSCU, as shown in a1,
additional attention is paid to time points 4 and 7, on top of the
attention being retained at time points 11 and 12. And a2, b2
and a3, b3 are similar. We believe that the multi-scale convo-
lution unit (MSCU), by discovering temporal pattern features
at different scales and joining the temporal self-attention
module, can mine more hidden temporal dependencies, better
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FIGURE 7. a1, a2, a3 Heatmap of the temporal dependence matrix derived from the temporal self-attention scores of MTESformer on the test set data.
b1, b2, b3 Heatmap of the temporal self-attention scores derived from the w/o MSCU on the same test set data.

FIGURE 8. (a) Shows the road network connectivity in PEMS04 with number 36 and 47 as the center nodes. (b) and (c) are plots of the spatial
attention coefficients of nodes numbered 36 and 47 to the surrounding nodes, respectively, where the values on the red arrows are derived from the
spatial self-attention scores in the enhance spatial Transformer in the third spatial-temporal transformer layer.

identify different traffic flow patterns, and help the model
extract dynamic temporal dependencies.

2) VISUALIZATION OF SPATIO DEPENDENCY
To further explore the role played by Enhance Spatial Trans-
former in the model, we conduct experiments on the test set
of PEMS04 dataset. As shown in Fig.8, (a) is the schematic

diagram of some node adjacencies in the PEMS04 dataset,
(b) and (c) are the schematic diagrams of adjacencies for the
nodes numbered 36 and 47 as the center node, respectively,
and the numbers on the red arrows are the attentional scores
of the center node to other nodes. In (b) and (c), it can be
seen that the nodes numbered 36 and 47 all have generally
high attention coefficients to their closer neighboring nodes,
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FIGURE 9. Comparison of the prediction results of MTESformer with graph WaveNet is shown on the METR-LA and PMES04
datasets.

indicating that they pay more attention to their surrounding
nodes because the traffic changes of the surrounding nodes
are more influential to them. The other nodes which also
have high attention scores (e.g., node number 36 has attention
scores of 0.0042, 0.0040, 0.0041 for nodes such as 11, 30,
44, etc., respectively), we believe that these nodes are nodes
which are farther away from node number 36 but have similar
functions.

3) VISUALIZATION OF FLOW PREDICTION
In order to better demonstrate the advantages ofMTESformer
in long-term prediction, we performed visualizations on the
PEMS04 and METR-LA datasets, respectively. As shown
in Fig.9. We selected two days of complete traffic data on
the test set for prediction. We selected Graph WaveNet and
DSTAGNNmodels as a comparison and presented the 60min
prediction results. On the METR-LA dataset, MTESformer
predicts significantly better than Graph WaveNet during the
peak periods of traffic as well as during periods of sudden
changes in traffic. Similarly, on the PEMS04 dataset, MTES-
former’s predictions are closer to the true values during peak
periods. From the prediction results, it can be seen that in
the long-term prediction of 60 min, MTESformer is more
accurate in predicting the peak period as well as the period
of sudden change in flow, which indicates that MTESformer

can accurately capture the spatial-temporal dependence of the
complex time period, and it has an advantage for long-term
prediction as well as the prediction of the complex time
period.

VI. CONCLUSION AND PROSPECT
In this work, we propose Multi-scale Temporal and Enhance
Spatial Transformer (MTESformer) to predict traffic flow
conditions on traffic road networks. Specifically, we make
reasonable use of the periodic characteristics of the traf-
fic flow; we develop a Multi-scale Temporal Transformer,
which effectively focuses on the temporal correlations in
time series data, it combines the multi-head self-attention
mechanism with multi-scale convolution units (MSCU) to
better identify different traffic flow patterns and capture long-
term dependencies; we have also developed an Enhance
Spatial Transformer, which incorporates node adjacencies
into the attention mechanism to enhance attention to nearby
nodes and capture long distance spatial dependencies more
effectively.We conducted extensive experiments on four real-
world datasets, and our model exceeds most of the baseline
levels and has a great advantage in long-term prediction,
proving the superiority of our proposed MTESformer model,
in addition to visualizing the learned attention. However,
our model does not take into account the effects of external
factors such as unexpected events, special weather condi-
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tions, road conditions, and regional attributes. In the future,
we would like to incorporate more effective external factors
into the model and study how to use these external factors
correctly to make the prediction more accurate. Meanwhile,
it is hoped that MTESformer can be applied to other spatial-
temporal predictions, and pre-training techniques in the field
of traffic prediction will also be explored to solve the chal-
lenges of missing data and to reduce the task burden.
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