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ABSTRACT The technology’s integration into factories has accelerated automation’s growth, creating
autonomous working conditions and cutting-edge capacity for production. Modern and smart factories
provide consumers with time-saving solutions and reliable outcomes. The present paper presents the
concept of Event-Dependent Process Planning (EDPP), which seeks to improve the time-effectiveness of
smart factories. The suggested approach automatically arranges planned and queued activities according to
previous results, matching themwith customer demands. Before process planning, essential data are provided
by intelligent measuring equipment in the factories. Recurrent learning ensures the integrated process
planning is successful and aligned with customers’ needs. The efficiency with which the planning method
exceeded customer expectations in earlier years is used to instruct this learning process. Applications of
the technique are made to the manufacturing automation process’s delivery and production layers. Essential
metrics like processing time, response ratio, delivery delay, and backlogs are evaluated in an experimental
analysis to validate the suggested process strategy. The proposed EDPP achieves 11.38% less processing
time, 5.43% high response ratio, 10.18% less delivery delay, and 3.8% less backlog rate.

INDEX TERMS IoT, process planning, queuing and scheduling, recurrent learning, smart factory, cutting-
edge capacity.

I. INTRODUCTION
Industrial Internet of Things (IIoT) is the assimilation of
Industry 4.0 and the recent Internet of Things (IoT) paradigm.
The IIoT improves smart factory production and planning
to meet consumer demands [1]. IoT is employed for con-
sumer interaction, distributed industrial process analysis,
data migration, and visualisation in industrial automation.
The processing includes data collection, analyzing, and
exchange of information among machine-to-machine (M2M)
or machine-to-human (M2H) [2]. This leverages heteroge-
neous entities’ data and process management in the industrial
environment. IIoT uses cloud and edge computing, mobile
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technologies, 3-dimensional production, robotics, RFID tech-
nology, etc. [3]. IIoT operates in five layers: Field, control,
supervisory, planning, and management. Different produc-
tion and manufacturing industries rely on IoT networks for
reliable data storage and exchange [4]. The planning layer
is responsible for sensing the data and deciding the interac-
tion with the environment. The operational and maintenance
cost for high-quality data transmission, analysis, and stor-
age is optimal through distributed IoT functions. Real-time
decision-making and visualisation are adopted from the IoT
paradigm for better smart industry environment performance
control [5].

The Internet of Things is a framework that enables several
resources to be connected simultaneously. It can communi-
cate with distributed systems, cloud computing, autonomous
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storage, and wireless sensor networks (WSN) [6]. The com-
munication devices vary from mobiles, sensors, wearable
computing devices, large processing servers, and virtual
machines. The scope of IoT is to monitor and control the
devices for better automation in an industrial environment [7].
IoT consists of three tiers: Device, Edge gateway, and cloud,
which perform different functions inside and outside the
smart industry. Based on these three tiers, the smart factories
establish reliable communication with diverse heterogeneous
devices [8]. This increases communication infrastructure
without any delay or loss through appropriate communication
technologies. IoT is used in many applications, such asWear-
able sensors, smart cities, factories, homes, and healthcare
systems. It increases the capabilities of smart factories in
the network through different levels of human-to-computer
interaction [9].

The data from various smart factory components is pro-
vided for analysis to make the best judgments about task
production and planning. The choice is reached about how
to distribute the work to the machines, product delivery,
evaluation of customer feedback, and behaviourmodelling by
the previous task [10], [11]. The process analyses the patterns
and updates of the running tasks in different layers of the
IIoT. Machine learning in smart factories is used to discover
and improve decision-making at all the process planning and
analysis levels [12]. Some conventional analysis relies on
computation and task offloading, queuing, resource alloca-
tion, etc. It uses the preceding data to analyse the resultant
output through decisions and process planning [13]. This
paper aims to balance the scheduling and delivery process
to enhance the response ratio. The queue and response time
are maintained throughout the process for better results to
overcome and reduce the delivery delay.

II. RELATED WORKS
Tang et al. [14] presented an industrial cloud and edge
intelligence using a reconfigurable manufacturing method.
This method is used for a multi-agent system under three
processes: agent interaction, agent behaviour, and negoti-
ation mechanism. The proposed method uses mixed-flow
production done on random orders.

López et al. [15] provided as it offers a foundation for creat-
ing Industry 4.0 systems, the Reference Architectural Model
for Industries 4.0 (RAMI 4.0) lacks tangible management
platforms. The I4.0 platform for manufacturing that this study
suggests offers infrastructure services for I4.0 system man-
agement. Due to its industrial agent foundation, the platform
facilitates collaboration and negotiation. The unique feature
of the platform is that it offers configurable AASs, which
shortens development timeframes.

Computational offloading is performed in IoT- Edge–
Cloud Computing Environments using the Multi-hop Coop-
erative method modelled by Hong et al. [16]. The multi-hop
cooperative messaging mechanism (MCMM) is integrated
with game theory to enhance the quality of service (QoS).

The initial step is to decrease the computation time of the
process. Then, to improve the path, the Nash equilibrium is
proposed.

Dai et al. [17] evaluated the effort to solve task offload-
ing and service caching difficulties; the paper presents a
framework for fog computing that is helped by the cloud
for enterprise management systems (EMS). The framework
reduces task latency and energy use by shifting work to local,
fog, and cloud processing. By noncooperative game theory,
the authors provide a distributed work offloading method-
ology and employ the 0-1 knapsack technique for dynamic
resource caching. Several trials have confirmed the efficiency
of the suggested algorithms.

Huo et al. [18] implemented an Industry 4.0 context to
gather fuzzy control systems in smart factories. Real-time
data are collected with two stages of fuzzy control: Type 1
and Type 2. The first is used to determine and satisfy the
re-balanced data lines, and the second is used to enhance the
machine.

Implementing the task orchestration is proposed by a
hidden Markov model for smart shop floors developed by
Ding et al. [19]. Autonomous manufacturing is used to inter-
act with thework-in-progress (WIP) at the time of production.
The Markov model is used to resolve a particular process
flow.

Liu et al. [20] propose the digital twin-based model for
the flow-types mart manufacturing system. Configuration,
motion, control, and optimisation (CMCO) are two key
methodologies for customised and software-defined design.
They encapsulate the digital twin method.

Smart job shops in Industry 4.0 are done on the graphical
deduction for producing instructional service systems intro-
duced byWang et al. [21]. The author developed a framework
for key-based methods to make the necessary set of services
in the system. These three layers are used: manufacturing
resource, technical support, and Application layer.

Liu et al. [22], proposed a Cloud-based Advanced Planning
and Scheduling (CAPS) System for developing the automo-
tive parts in the industry. CAPS is used for intelligent dynamic
planning and scheduling. It is used for a production planner
to upload the CAPS data in the web page.

Sekhar et al. [23], displayed the soft sensor technique based
on machine learning for auto industry lean manufacturing
level prediction. It uses a database of 46 auto component
companies in Pune, India, that have implemented lean man-
ufacturing and related flexibilities. The greatest prediction
accuracy of 80% was attained by the trilayered neural net-
work design, which was followed by ensemble RUSBoosted
trees, fine, medium, along with coarse trees, narrow as well
as wide neural networks with quadratic and cubic SVMs, and
broad and narrow neural networks.

Installation of industrial product-service systems (IPSS)
is implemented in cloud-based resource planning tools is
developed by Mourtzis et al. [24]. IPSS is used to produce a
reliable link between the user and the environment. It resolves
the complex integration of heterogeneous stakeholders.
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A Smart manufacturing implementation system (SMIS) is
presented by Zhang et al. [25], for top-level planning architec-
ture. The first step is to learn the factory information through
SMIS planning. Then, smart manufacturing is used to select
the production control in smart factories.

Hamed et al. [26], demonstrated the Strain sensors, such
as FBG, SAW, and MRs, are discussed in the paper as
options for next-generation smart tools and components.
Even though FBGs have been thoroughly examined, further
study is still required to resolve device-specific problems,
lessen data processing load, and enhance features. Consistent
strain sensitivity, multimodal sensing, device downsizing,
and affordable high-volume production are among the
difficulties.

Dehnavi et al. [27], proposed a Fog integrated smart factory
for reliability aware resources in the industrial application
in real-time scenarios. This work decreases communication
bandwidth by introducing the local private cloud with fog
nodes: branch and bound-based exhaustive search algorithm.

Raza et al. [28] displayed arguably the most significant
innovations for tackling global issues like energy consump-
tion and global warming: smart energy or SE. Using smart
meters to gather data for business intelligence (BI) incor-
porates IoT technologies with energy infrastructure. The
incorporation of BI with data from smart meters is examined
in this study, along with research gaps and drawback path.
The following table 1 shows the clear understanding of the
related works.

III. EVENT-DEPENDENT PROCESS PLANNING
IoT-aided smart factories incorporate machines and devices
for communication. It enhances the time-effective solutions
for smart factories by using event-dependent process plan-
ning (EDPP). This proposed work aims to balance the
scheduling, i.e., en-queue and delivery processes, throughout
the entire progression. Recurrent learning is used to balance
the two processes. The input is obtained from the sensor
machine in the field layer and sent to the control layer.
Figure 1 presents the overview of scheduling and process
planning in IIoT architecture.

The initial step is to identify the current event in the
machine. The scope is to decreases the backlogs and pro-
gression time in this way the delivery delay is reduced.
If the delivery delay decreases the response ratio increases.
To achieve this, the schedulingmethod is queued by incoming
data and it is formulated by using the following (1).

e = i+
∑p

t

(q′
+ v)
n

(1)

In (1), the sensor data collection process is denoted as e,
and the incoming data are represented as i and the data are
acquired in the required time t . The processing of data is
termed as p, the data are queued as q′. v is termed as an event,
and n represents the number of incoming data. By using this,
the scheduling is done and the data is queued. The data is

queued based on the time; the first incoming data is queued
and followed by the impending data.

After scheduling the event identification is done, this
is necessary to see whether the process is under certain
evaluation. The running processes are derived by using the
following (2) as follows. In this proposed work it uses two
layers first is the field layer second is the control layer, which
is used to sense and plan the data for communication.

so =


f0 =

q′
+ i
e

∗

(∏n

p=0
[ti + hi]

)
r0 =

(
q′

∗ e
)
+

∑
ti
n

g0 = (p+ e) ∗

∏v

n
ti +

i
l

(2)

By using (1), the sensed data are queued as the scheduling
process, in (2), the scheduling data identify the events. The
events are classified into three types they are as follows.

• Offloading
• Overloading
• Dropping
Based on these three classifications the events are analyzed

by using (2). s0 is denoted as scheduling. In Figure 2, the
process of the above events in the IIoT is presented.

The offloading is denoted as f0 and there is formulated in

the first case as q
′
+i
e ∗

(∏n
p=0 [ti + hi]

)
. In this, the offloading

is used to share the data with the other machine to increases
the progression time. It is evaluated as the incoming data are
queued. From that, the data are not able to process in the
required time so in this case, the process is shared hi to the
other machine.

The second case is overloading for this the perusing data
are queued for processing the event. It is evaluated by(
q′

∗ e
)
+

∑
ti
n here; the process is completed in the required

time, so the perusing data are queued for further processing.
The third classification is dropping, (p+ e)∗

∏v
n ti +

i
l in this,

if the data are not able to complete in the required time means
there leaves l from themachine. All these three classifications
take place in two layers.

In the field layer, the data are sensed from the machines
through a sensor represented by using (1). Then, the sensed
data are sent for further data processing by the rest of the
layers. The sensing is done in every layer, but it varies accord-
ing to the structures. The preliminary layer knows how many
machines are processing and obtains the related information.

The second layers sense the information regarding the
planning and processing of the machine. The control layer
measures the device processing in the queued data. Based
on the classification of the data the response time should
increases. They are done by balancing the scheduling and
delivery of a process, which is achieved by using recurrent
machine learning. It checks for the event in the machine for
processing.

The table 2 represents pseudocode that explains how to
apply recurrent learning with event-dependent process plan-
ning (EDPP). First, factors are set, then events are identified

VOLUME 12, 2024 45963



O. Alruwaili et al.: Enhancing Smart Factories Through Intelligent Measurement Devices

TABLE 1. Comparison of existing works with proposed EDPP framework.

from sensor data, scheduling is arranged, types of events
are determined, recurrent learning is used to improve how
they perform, choices are taken regarding dropping, over-
loading, or offloading, hidden layer generation, computation
reduction, handle equalization, the parameter modification,
and the process is repeated for continuous improvement.
IoT-assisted smart factory aim to balance scheduling and
delivery procedures to guarantee effective workflow and
enhanced performance. Recurrent learning is used to adjust

to occurrences to enhance the system’s overall efficiency. For
continuous enhancement, the process is iterated.

Smart measuring devices in advanced factories gather
data on production, quality, energy usage, maintenance, and
supply chain. This information is used in Event-Dependent
Process Planning (EDPP) to improve production scheduling,
identify obstacles, allocate resources effectively, and forecast
and avoid delays. EDPP changes process queues as needed,
distributes workloads evenly, and deals with challenges in
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FIGURE 1. Process Planning in IIoT.

FIGURE 2. Event Process in IIoT.

advance to improve efficiency and product quality. Using
real-time data from smart measuring devices, EDPP enhances
decision-making, lowers processing time, minimizes sup-
ply delays, and ensures efficient production processes in
advanced factories.

A. EDPP- RECURRENT LEARNING
Recurrent learning is used to verify the balance between the
customer and the process in the machine. It monitors the
event and increases the response ratio. The control must be
done if the queuing increases the response ratio decreases and
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TABLE 2. Pseudocode for event-dependent process planning.

vice versa. To avoid this following machine learning is used.
The offloading, overloading and dropping are identified and
enhance the performance of the machine. The EDPP is used
to plan the event while processing and it is based on (1). The
following (3) is used to identify the offloading.

θ (f 0) = e+ i ∗


∑v

ti

[
p+ q′

]
∗
h
n

= 0∑v

ti

[
p+ q′

]
∗
h
n

̸= 0
(3)

By using (2), the scheduling is performed from the sensed
data, from that the offloading is detected in (3). In these
conditions the first state denotes, if the queued process is
still working at the same time, if the new process enters the
queue means it shares the data to the subsequent machine.∑v

ti

[
p+ q′

]
∗
h
n = 0, states the resultant is equal to 0, which

means the machine is ideal so allocate the data to increases
the performances.

The second case is
∑v

ti

[
p+ q′

]
∗
h
n ̸= 0, here it is not equal

to 0, so it states that the machine is busy processing the

data. Here, in offloading the first case satisfies the condition.
If the event is identified, then it gives high performance at the
particular stage in the machine. In this way, every machine is
assigned a process in offloading by sharingmethods. The sec-
ond condition is used as the training data in recurrent learning.
The overloading is detected by using the following (4) as
follows.

θ (r0) = p− tv


∏s0

e

[
q′

∗ ei
]

< t∏s0

e

[
q′

∗ ei
]

> t
(4)

From (3), the offloading is calculated, in (4), the overload-
ing is derived in two stages. Figure 3 illustrates the learning
process for classifying offloading events.

The first stage is
∏s0

e
[
q′

∗ ei
]

< t , if the process enters
the machine and already the machine is processing the data
means the new process is en-queued. In this way, if the
process is not completed in the assigned timemeans it denotes
that the process is taking too long time to finish. In this case,
the response ratio increases, and hence, time management is
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FIGURE 3. Offloading—First Stage.

FIGURE 4. Overloading Analysis—Second Stage.

necessary to improve the overloading process. The second
stage of overloading analysis in a recurrent manner is pre-
sented in Figure 4.

The second stage is
∏s0

e
[
q′

∗ ei
]

> t , here, the queued
process is completed in the assigned time. Where the time is
lesser than the process it states that machines should perform
further evaluation. The third classification is dropping; it
affects the success rate. In this stage, it should process either
offloading or overloading. The following is used to formulate
the dropping method in EDPP.

θ (g0) =

{
1, q′

+

∏s0

e
[p− l]

0, otherwise
(5)

In (4), the overloading measures the sensed data in the
assigned time. (5) is used to drop data from the queue.
In recurrent learning, the analysis refers to the previous data
from the hidden state. To improve the success, rate the drop-
ping must be a focus on either offloading or overloading
method. The following (6) derives the dropping to increase
the success rate using recurrent learning based on existing and
preceding data.

c = j (ot , θ [f0, ro, go]) +H (6)

(5) is used for dropping data in the queue on two condi-
tions. In (6), the existing and preceding data are computed as
c and o. The function is termed as j to decide whether the
dropping is done on overloading or offloading. It uses the
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hidden layer for retrieving the preceding data and it is denoted
as H. By using the above (6), it reduces the backlogs, which
is said to be a stagnate data in the queue. The process is not
performed for a long time but remains in the queue and it is
derived by using (7).

β =
θ [s0] +

∏ (
q′

∗ti
)
+ (n ∗ v)

c
(7)

By using (7), the backlogs are maintained by fixing the
time for every process in the queue. It reduces the backlogs β

and maintains the queue and response ration. By using (6),
the existing and preceding data are evaluated. If the exist-
ing data are obtained in the assigned time means the queue
process is maintained properly. If it takes more time means
the delivery delay attains, in this, it addresses the backlogs
in the machine. The EDPP takes the appropriate step to
improve the process. The queuing and backlog should be
maintained After the backlogs, the decision making is done
for balancing the scheduler and delivery process by utilizing
three classifications.

The decision is made on how much time does the data
tends to process in the machine. It is calculated by using fixed
time for doing this operation. The following (8) is used to
formulate the decision-making process in recurrent learning.
It uses (6) and (7) for evaluating the result.

α = β +


(ot , θ[f0]) +

h
n

< ρ

(ot , θ [r0]) ∗

∏s0

e

[
q′

]
= ρ

(ot , θ [g0]) + [p− l] > ρ

(8)

In (6), the existing and preceding data are computed, and
the decision is done by using (8). In this first condition is
(ot , θ[f0]) +

h
n < ρ, here the offloading is computed in

the assigned time. The overloading is the second condition
(ot , θ [r0]) ∗

∏s0
e

[
q′

]
= ρ, in this, the time taken is equal

to the processing of the data. So, it is not considered for
processing, the third condition is the dropping is greater than
the assigned time. Form this first importance is given to the

offloading process because the computation is done on the
assigned time.

By evaluation this above (8) the dropping must decide
which method to be performed to get the success rate. The
dropping might be overloading or offloading classification.
The weights and biases are improved by using the activation
function. The following (9) is used for calculating the activa-
tion function.

µ = ct + ⟨tanh[wo] ∗ α⟩ + ⟨[wo(θ )]t⟩ (9)

The above (9) is used for calculating the activation function
for the recurrent network. The activation function is repre-
sented asµ, and the weight of the neuron is denoted asw0 and
the recurrent neuron is termed as ∂ . The formula is evaluated
in the tanh activation function, here the weight of neuron
and detection of classification methods are determined. It is
determined based on the fixed time α.

The Recurrent is done by training the data in the network
based on the input and output data. It is maintained by using
hidden layers, here, it is associated with two hidden layers.
There are used for increases the response ratio which is the
scope of this work. The following (10) and (11) are used as
the hidden layers in this network.

H1 =


11 =

[
(s0 + e) ∗ q′

]
+ wo

12 = 11 + q′
∗ (pt − n) + θ

...

1m = 12 ∗ e+ i− 1m−1

(10)

H2 =


11 = wo[so + e− n]
12 = 11 ∗ q′

+ θ

...

1m = 12 + α − 1m−1

(11)

The above two (10) and (11), the hidden layer is calculated.
The variables H1 and H2 represent the two hidden layers.
Similarly, 1 it denotes the layers and m denotes the number

FIGURE 5. Hidden Layer Processing for IoT Offloading Decisions.
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FIGURE 6. Processing Time Comparisons.

FIGURE 7. Processing Time Comparisons.

of hidden layers. Based on these hidden layers the data are
being trained. It is used for the recurrent network to improve
the response ratio. By using this, the dropping classification
is calculated to enhance the success rate. The hidden layer
process based on different conditions is illustrated in Figure 5.

The hidden layer process in the recurrent network as when
the offloading is performed the error occurs is sent back to the
first hidden layer as the training set. If the second process is
overloading means, the output error data are again sent to the
hidden layer. The aim of designing the hidden layers is used
to get the appropriate result by matching the preceding data
in the layer. In this way, the recurrent learning is processed
based on the preceding data the output of the first hidden layer
is given as the input to the second hidden layer.

The following (12) is used for obtaining the dropping
method for an efficient method. The recurrent machine learn-
ing is used to achieve the efficient result and improve the
process in the scheduled queue, by decreasing the processing
delay (delivery) in the network. The objective is satisfied
by using the backlogs by using (7). It is updated for every
incoming process enters the queue.

g0 (∂) =


[∏n

p=0
[ti + hi] +

h
n

]
∗ µ +H1 +H2 = αρ

µ

[∑
ti
n

+ q′
∗ ei

]
H1 +H2 ̸= αρ

(12)

From (10) and (11), the hidden layers are observed for
the recurrent layers. By using this, the above (12), αρ rep-
resents the fixed time for making a decision. This equation
is used to decide the dropping can be either overloading or
offloading methods. It uses two conditions the first level is[∏n

p=0 [ti + hi] +
h
n

]
∗µ+H1+H2 = αρ here the offloading

and overloading are used for processing the data. In a queue,
the data are evaluated by the fixed time if it does not process
in the fixed time and weight of the data. It means the first
condition satisfies the processing time and data weight.

The second condition is µ
[∑

ti
n + q′

∗ ei
]
H1 + H2 ̸=αρ

here, they are having the time, and the weight of the data is
done by using (9). This condition does not satisfy the case.
The results denote the dropping includes the offloading meth-
ods because the above equation satisfies the first condition.
The offloading performs better because if it has more process
to complete it shares the process to the other machine.

In this way, the offloading is reliable compared to the
overloading. After the dropping decision is made the bal-
ancing is done for the scheduling and delivery process. It is
done by acquiring two hidden layers in (10) and (11). The
following (13) is used to evaluate balancing the two processes
by using recurrent learning.

∂ =


[∏n

p=0
[ti + hi] +

h
n

]
+H1 +H2 ∗ q′ < R[∏n

p=0
[ti + hi] +

h
n

]
+H1 +H2 ∗ q′ > R

(13)

From (12), the decision is made for the dropping method,
using this the recurrent learning obtains the better result by
using (13). In (13) it indicates two levels, the initial condition
is

[∏n
p=0 [ti + hi] +

h
n

]
+ H1 + H2∗q′ < R, the response

ratio is denoted as R. The first level satisfies the condition as
the process done on the machine achieves the more response
time.

The second level is
[∏n

p=0 [ti + hi] +
h
n

]
+ H1 +

H2∗q′ >R, here there the process takes more response
ratio. It does not satisfy the conditions. In this case, again
they process (8) and (9). By doing this the queue and the
response ratio are balanced by deriving (2). The proposed
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FIGURE 8. Processing Time Comparisons.

FIGURE 9. Response Ratio Comparisons.

objective is satisfied by using (13) and obtains an increase
in response time. In this, both the scheduling and delivery
process are balanced through the process completes. Thus,
the IoT in smart factors performs using field and control
layers and improves the process planning from the measuring
devices.

IV. PERFORMANCE ANALYSIS
In this section, the performance of the proposed EDPP is
analyzed. The smart factory environment is simulated using
the Contiki Cooja simulator with a pack of 32 machine sen-
sors. An aggregator set of 8 devices is capable of organizing
the sensor data based on time. The sensor data requires
augmentations of queuing and process scheduling depending

FIGURE 10. Response Ratio Comparisons.

on the available queuing slots of 10-100. Each queuing slot
is capable of gaining 2-24 processes such that a maximum
of 30 processes is queued at a single slot for processing.
The analyzing and dissemination system handles a maximum
of 40 processes and the same in the maximum slot inter-
val of 8 mins is responded. The offloading limit is set as
12 processes and the maximum time for response is 18 s.
Using this experimental setup, the proposed EDPP is ana-
lyzed for the metrics processing time, response ratio, delivery
delay, and backlogs. To perform a comparative analysis, the
above metrics are considered for the methods TSRM [17],
L-OSCT [23], and MCMM [16], which are discussed in the
related works section.
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FIGURE 11. Response Ratio Comparisons.

FIGURE 12. Delivery Delay Comparisons.

A. PROCESSING TIME
The acquired sensor data in each processing event is assigned
to the appropriate scheduling instances based on so. This clas-
sification determines the overloading/ offloading scenario by
identifying appropriate slots for processing data. The differ-
ent classification of fo and ro assigns free slots for the active
requests. Similarly, the available free slots adapt to the incom-
ing e such that no overloading/ drop is experienced. Unlike
the other methods, scheduling is not sequential/ invariant for
different concurrent processes of offloading and overloading.
Therefore, concurrency in this method increases the chances
of higher processing. The significant reason for wait time-
less process assignment and estimation helps to reduce the

FIGURE 13. Delivery Delay Comparisons.

number of failed analyses for the varying inputs (Figure 6)
and varying slots (Figure7). In case of varying queued e/ slot,
the conditional analysis of < t or > t [ (4)] and θ (fo) = 0
or ̸= 0[ (3)] for offloading is performed recurrently. This
recurrent analysis is performed for both the fo and ro in a
concurrent manner. Therefore, the processing time is shared
and hence is less for even the enqueued process (Figure 8).

B. RESPONSE RATIO
Figures 9,10, and 11 represents the comparative analysis of
response rate in concern to varying processes, slots, and
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FIGURE 14. Delivery Delay Comparisons.

FIGURE 15. Backlog Comparisons.

process in either fo and ro. This classification is useful in
reducing go based on refining H based output c. The condi-
tion is analyzed for θ [fo]+ h

n < ρ and
∏ [

q′
]

= ρ to extract
more feasible c from the existing solutions of θ [fo] such that
a smaller number of responses is backed off. The mediate
offloading requirements and overloaded queuing is identified
using the hidden layer outputs estimated using s (10) and (11).
For the overloaded processes, the solution is filtered as go(∂)
and ∂ validates if the responses to request ratio. The response
ration from the learning process decides offloading or alloca-
tion or overloaded instances of the queuing and scheduling of
different acquired processes. Therefore, both θ[go] and θ [fo]
along with go(∂) is capable of providing amaximum response
to the acquired requests. Both the offloaded and overloaded
instances are capable of verifying ∂ and g(∂) in achieving a
high response rate.

FIGURE 16. Backlog Comparisons.

C. DELIVERY DELAY
The maximum time for response in the simulation is set
as 18s. With is the analysis is performed to verify if EDPP is
delay conscious. The delay of the proposedmethod is reduced
by independently analyzing H1 and H2 using (p + e) and
(q′

+ e) constraints. The number of process events and
the varying slots is synchronized to ensure go(∂) is achiev-
ing in both (c − α) and α(alone) validations. The over-
loaded instances are extracted from the conditions satisfying(
q′

+ e
)

> t and h
n ̸= 0 where the slots are mapped to

the existing requests other than the new (queued) requests.
Therefore, considering the time of ti for n, the delay observed
in (ti/n) instance is less, compared to the other methods.
This is unanimous for varying process events (Figure12),
slots (Figure 13), and process/ slot (Figure 14). In all
these instances, the recurrent analysis aims to differentiate
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FIGURE 17. Backlog Comparisons.

TABLE 3. Comparative analysis for varying e, varying s slots, varying queued e/slot.

overloaded and dropping processes. Such differentiation
helps to allocate available queuing and scheduling slots based
on their availability and the capability of the processing
systems. Therefore, the prolonged waiting/ paused process
analysis is prevented by identifying the event of the process
and its appropriate slot, reducing delay.

D. BACKLOG
The proposed EDPP achieves fewer backlogs compared to
the other methods for varying e slots and queuing/ slot [17,
Refer to Figures 15, 16]. There are two prime reasons for
suppressing backlogs viz: initial classification of go, fo and
ro based on the sequence of e and available time slots, and
offloading. The initial classification relies on the occurrence
of ro in any of e process, such the offloading is performed.
Contrarily, if an extracted c is the solution, then ∂ and g(∂)
are the validating conditions to ensure if the request/ response
is balanced. This conditional verification is performed in a
recurrent manner for H1 and H2 using different conditions.
The mediate mapping conditions based on (p+e) and (q′

+e)
help to identify all the possible allocations where the incom-
ing e is assigned to the free slot. The free slots with the

conditions h
n = 0 and q′ > t are selected for assigning the

overloaded requests and therefore, β from c∈ (p + e) is the
ro backlog. In the case of go and ∂ verification, (α − β) is
the final output of c achieving fewer backlogs. In Tables 3,
the comparative analysis results in concern to the varying e,
slots, and queuing e/ slot is presented.

In concern to the varyinge, the proposed EDPP achieves
11.77% less processing time, 5.04% high response ratio,
11.63% less delivery delay, and 4.27% less backlog rate.
In concern to the varyinge, the proposed EDPP achieves
11.32% less processing time, 4.83% high response ratio,
11.46% less delivery delay, and 4.3% less backlog rate.
In concern to the varyinge, the proposed EDPP achieves
11.38% less processing time, 5.43% high response ratio,
10.18% less delivery delay, and 3.8% less backlog rate.i

The setup for testing the suggested Event-Dependent Pro-
cess Planning (EDPP) technique included creating a virtual
smart manufacturing setting using the Contiki Cooja simula-
tor with 32 machine detectors and 8 aggregator devices. Data
collectionmethods involved collecting data on the rate of pro-
duction, quality measures, energy usage, maintenance plans,
and supply chain activities from the advanced measuring
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devices in the simulated intelligent factory. Statistical
methods like comparing data, analyzing past records, and
evaluating measurements were used to evaluate how well the
EDPP plan performed. The investigations assessed process-
ing time, reaction ratio, delivery delay, as well as backlog
rates to confirm the usefulness of the suggested EDPPmethod
in enhancing operational efficiency and decreasing delays in
smart factory operations.

The evaluation of the suggested Event-Dependent Pro-
cess Planning (EDPP) approach against TSRM, L-OSCT,
and MCMM in smart production situations might be based
on their importance, recognized norms, data accessibility,
methodological resemblances, and research extent. These
approaches might be selected because of their particular
emphasis on smart manufacturing settings, past industry
acknowledgment, or common traits with the suggested EDPP
methodology. The selection could also take into account the
accessibility of data for contrast and how well it aligns with
the study aims.

V. CONCLUSION
This article discusses the event-dependent process planning
that is focused on improving the performance of the industrial
internet of things. In this method, the data process from the
machine sensors is classified for overloading or offloading
at an early stage to prevent process backlogs. The diverse
queuing and scheduling conditions are recurrently analyzed
to ensure the request and responses are balanced for the
analyzed process. Recurrent processing based on a different
slot and process allocation helps to reduce the processing
time by a concurrent allocation of requests and its associated
data. The pre-classification of process instances and the allo-
cated slots refines more feasible outputs through appropriate
offloading guided by the recurrent analysis, improving the
response rate. The experimental analysis verifies the consis-
tency of the proposed method by improving the response rate
and reducing processing time, delay, and backlog.

Future research areas involve investigating more advanced
optimization methods, incorporating machine learning
for forecasting, improving security in multi-hop flexible
approaches, emphasizing scalability andmanaging resources,
creating real-time monitoring with IoT, enhancing interop-
erability, studying energy-efficient computing, and carrying
out validation research. These pathways seek to improve
work delegation in IoT-Edge-Cloud settings, boost system
efficiency, guarantee data protection, and encourage sustain-
ability in intelligent manufacturing. By focusing on these
areas, academics may help improve and make more safe
industrial automation methods, pushing forward the devel-
opment of IoT technology in manufacturing processes.
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