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ABSTRACT The reconstruction algorithms play an important role in acoustic thermometry and are a
research hotspot. This paper proposes a novel reconstruction method to improve the accuracy of temperature
field reconstruction methods based on acoustic tomography. First, three mesh models are constructed by
using the finite element method, which overcomes the defects of oversimplified classical discretization
models. Secondly, the coefficient matrix A of the acoustic thermometry forward problem is calculated
offline, and then the temperature values of several points in the measurement are obtained by solving the
inverse problem using the improved regularization method based on singular value decomposition. Finally,
the temperature profile of the entire region is obtained through interpolation. The correctness and feasibility
of the proposed method are validated through simulations and experimental testing with three different
temperature fields. Results show that the proposed method has satisfactory reconstruction accuracy and
provides a different solution for reconstructing the ultrasound temperature field.

INDEX TERMS Acoustic tomography, temperature field, finite element, singular value decomposition,
regularization, interpolation.

I. INTRODUCTION
The acoustic tomography temperature field reconstruction
technique calculates the temperature distribution of the mea-
sured area based on the time of flight (TOF) of sound waves
between the transceivers around the measured area. Because
of its advantages of a non-contact and non-destructive tem-
perature field, a wide range of temperature measurements,
and strong adaptability to the environment, it has become
a research hotspot in the field of temperature field mea-
surements. Monitoring the temperature profile of industrial
boilers is a typical application of this technique. Meanwhile,
researchers are using this technique to monitor temperature
profiles in deep-sea hydrothermal vents, the atmosphere,
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stored grains, and stacked materials. Most research has
focused on a few factors, such as the composition of the
measured medium, the measurement accuracy of the TOF of
acoustic waves, the reconstruction algorithm of the tempera-
ture field, the layout of acoustic transducers [1], as well as the
bending effect of the acoustic propagation path [2]. Various
reconstruction algorithms have been proposed to improve
reconstruction accuracy [3], [4], [5], [6].

Common reconstruction methods can be divided into two
categories. One is the discrete region method. The classi-
cal methods for ultrasonic temperature field reconstruction
require discretization of the reconstructed regions, each of
which is referred to as a grid or pixel. The velocity in
the grid and the distance traversed by the sound ray are
employed to model the forward problem Ax=t, where A rep-
resents the distance coefficient matrix, x denotes the slowness
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(the inverse of the velocity), and t denotes the TOF vector.
The temperature value in each grid is assumed to be the
average temperature of the grid, which is a constant. Then,
the continuous temperature field can be obtained by using the
interpolation method. This is the most common method used
in acoustic temperature field reconstruction, but it has two
drawbacks. One is that the temperature in the grid is simply
regarded as a constant, which reduces the model’s accuracy
and increases the reconstruction error. Another drawback
is that the temperature field needs to be reconstructed by
interpolation, and the geometric center of the grid is often
chosen as the interpolation point, leading to the failure to
obtain the temperature field outside the interpolation point,
i.e., the temperature distribution at the edge of the measured
area cannot be obtained.

Another category of common reconstruction methods is
the series expansion method. In such methods, the parameter
field is approximated with an expansion of a continuous
function consisting of a set of basis functions and unknown
coefficients. Different from the first category, considering the
continuity of the function, the prior information of continuity
is incorporated into the reconstruction of the temperature
field, which guarantees the smoothness of the temperature
field and reduces the ill-condition of the problem. By solving
the coefficient of this function, the parameter distribution can
be reconstructed. However, it is difficult to obtain a satisfac-
tory temperature field by this method. Also, when using the
method, the following problems need to be solved, such as the
selection of shape parameters, the types of basis functions,
and the collocation of basis function central points, which
affect the improvement of reconstruction accuracy. Besides,
since the method adopts the idea of global approximation, the
reconstructed temperature field is too smooth to well display
the details of the temperature field.

In this paper, the finite element method is adopted to
construct three mesh models, and the accuracy of modeling is
improved by approximating the internal slowness of the mesh
using a linear combination of the values of the slowness at the
nodes of the mesh, thereby overcoming the shortcomings of
oversimplified classical discretization models. Additionally,
the local details of the temperature field are improved by
using the method of piecewise function local approximation.

The ill-posed problem needs to be solved by reconstruc-
tion algorithms after establishing the mathematical model
of the temperature field. Currently, non-iterative methods
and iterative methods are the two main reconstruction algo-
rithms. Conventional non-iterative methods include the filter
back projection (FBP), the linear back projection (LBP),
the least squares method (LSM), and some kernel function
approaches. As the conventional algorithms for reconstruct-
ing temperature distributions, FBP, LBP, and LSM have the
advantages of low computational complexity and understand-
able principles. However, in these algorithms, the number
of effective acoustic wave propagation routes needs to be
larger than the number of divided grids, which limits the
resolution of the reconstructed images. For the reconstructed

temperature values of kernel function approaches, the tran-
sition information from the high-temperature region to the
low-temperature region is not completely reconstructed, and
the shape of the reconstructed isotherms is distorted.

Conventional iterative methods include the algebraic
reconstruction technique (ART), the simultaneous iterative
reconstruction technique (SIRT), and the Landweber iter-
ation algorithm. These iterative algorithms exhibit better
convergence and stability with lower reconstruction errors.
However, they have longer computing time than noniterative
algorithms. These iterative methods can be understood as
optimization methods for weighted least squares problems.
However, these algorithms may demonstrate varying numer-
ical performances in different applications, which need to be
further analyzed.

In recent years, many high-performance reconstruction
algorithms have been proposed to continuously improve the
reconstruction quality of acoustic tomography. Kolouri et
al [7], [8] first showed the effectiveness of an unscented
Kalman filter (UKF) for the non-linear travel time under
specific measurement situations. They calculated the scalar
and vector tomography of the atmosphere by using this
inverse approach. Also, they pointed out that the computa-
tional complexity of the time-dependent stochastic inversion
(TDSI) technique is significantly higher than that of the
UKF approach. Moreover, Zhang et al. [9] evaluated the
reconstruction performance of the covariance matrix adapta-
tion evolution strategy (CMA-ES) algorithm. Niu et al. [10]
utilized the Gaussian parametric level set method coupled
with regularized Landwebe to reconstruct the temperature
fields. This novel technique has proven to be very promising
in reconstructing temperature in non-axisymmetric distribu-
tion. Niu et al. developed a combination technique based on
the Kalman filter and the recursive least square estimator
(KF-RLSE) to reconstruct the temperature fields [11]. High-
precision reconstruction may also be generated by using the
Legendre polynomial method, where the expansion coeffi-
cients could be considered as slowness and the polynomial
functions will be employed to reconstruct the temperature.

Many deep learning-based reconstruction methods have
been proposed to reconstruct the temperature field or velocity
field. Kong et al. employed the radial basis function neu-
ral network (RBFNN) to measure the velocity field of the
boiler and furnace [12]. A novel improved RBFNN acoustic
algorithm was used to reconstruct two-dimensional velocity
fields. Also, they considered adding adjustable linear polyno-
mials in the RBF layer to enhance its performance. Zhang and
Li proposed a two-stage algorithm based on virtual observa-
tion (VO) and residual network (ResNet) [13]. ResNet was
constructed to predict the temperature distribution under the
refined grid, and the dual-input model was utilized to enhance
the network’s generalization ability. Lin et al. designed a con-
volutional neural network (CNN) to train a machine-learning
model that can reconstruct a gas temperature distribu-
tion from acoustic velocities [14]. By adjusting the label
and the loss function, a practical training approach was
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developed. The proposed neural networks can be considered a
reliable and efficient 2-D gas temperature field reconstruction
methodology.

In recent years, more reconstruction methods based on
deep learning have been provided for under-determined
inverse problems, indicating the main research direction
of this field in the future. Wu et al. [15] proposed a
wavelet-improved score-based generative model to alleviat-
ing inaccurate distribution of the data distribution gradient
and enhancing the overall stability for medical imaging.
The modal has demonstrated remarkable performance in
addressing challenging under-determined inverse problems
in medical imaging. Guo et al. [16] proposed an itera-
tive deep reconstruction network to synergize unsupervised
method and data priors into a unified framework. The method
employs an unsupervised deep training strategy to obtain
high-quality images from noisy data in an end-to-end fashion.
Three large-scale preclinical datasets experiments demon-
strate that the method reconstructs better image quality than
other the state-of-the-art methods. Wu et al. [17] proposed
a deep embedding attention refinement (DEAR) network to
address sparse-view tomography imaging. The results on
clinical datasets demonstrate the efficiency of the proposed
DEAR in edge preservation and feature recovery.

In this paper, an improved singular value decomposition
(SVD)-based Tikhonov regularization method is proposed
to handle ill-posed problems since the standard Tikhonov
regularization method makes no difference correction to all
singular values. The proposed method improves the general-
ized inverse operation method based on the principle of least
squares. By regularizing adjustment, the singular matrix is
replaced by a full-rank matrix, and then the ill-posed problem
is transformed into a well-posed problem so that the ill-posed
problem can obtain a unique solution.

The rest of the paper is organized as follows. In Section II,
the temperature field reconstruction principle of acous-
tic tomography is introduced, the two common models
are described, and the mathematical model of the for-
ward problem is established. In Section III, the pro-
posed finite element-based discretization model is presented.
In Section IV, an improved Tikhonov regularization method
is proposed for solving the inverse problem. In Section V,
a qualitative and quantitative analysis is conducted by sim-
ulating several typical temperature fields, and the results
demonstrate the effectiveness and robustness of the proposed
method. In Section VI, an experiment system is constructed
to verify the effectiveness of the proposed reconstruction
algorithm. Finally, this paper is concluded in Section VII.

The main contributions of this paper are as follows.
1) Three mesh models based on the finite element method

are proposed to formulate the forward problem for AT tem-
perature field reconstruction.

2) Three types of discretization methods of temperature
field are analyzed and compared, and their advantages and
disadvantages are discussed. The proposed method is more
computationally intensive but has higher accuracy.

3) The inverse problem is solved with the improved
SVD-based Tikhonov regularization method.

4) A corresponding experimental platform is built to verify
the correctness and effectiveness of the proposed method.

II. PRINCIPLE OF ACOUSTIC TOMOGRAPHY
THERMOMETRY
The relation between the propagation velocity of acoustic
waves in a gas medium and the thermodynamic absolute
temperature of the gas medium is expressed in (1):

c =

√
γR
M

T = Z
√
T . (1)

where c denotes the velocity of sound (m/s), γ denotes the
ratio of specific heats (1.4 for air), R represents the ideal gas
constant (8.314 J/mol ·K), M represents the molar mass of
gas (28.8×10−3 kg/mol), and T denotes the thermodynamic
absolute temperature (K). If the gas medium is known, Z is
a constant (20.045 for air). Therefore, the acoustic velocity
in the gas medium can be considered a unary function of the
temperature of the gas medium. To obtain the temperature
distribution of the measured area, it should be divided into N
grids (pixels), and several acoustic transceivers should be set
around the measured area to form M effective acoustic paths.
The sound propagation medium can be considered a homoge-
neous medium. When the sound velocity is relatively large or
the temperature field gradient change in a high-temperature
environment is small, the sound wave can be approximately
regarded as propagating along a straight line. Figure 1 shows a
typical layout of transducers and the effective acoustic paths
between the transducers. The TOF of acoustic waves along
the M effective paths can be obtained via measurements or
simulations. Then, the acoustic velocity distribution in the
measured area can be reconstructed by using the TOF and
an appropriate reconstruction algorithm. Finally, temperature
distribution can be obtained using (1).

FIGURE 1. Transducer layouts and effective acoustic paths.

Assume that acoustic waves propagate along a straight line
and any two acoustic sensors correspond to a ray. The time
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consumed for its transmission is the TOF, which is a function
of slowness and distance. Let the measured temperature field
be T (x, y) and the slowness distribution of acoustic waves be
f (x, y); then, the TOF tk along any path lk can be expressed
in (2):

tk =

∫
lk
f (x, y)dl k = 1, 2, · · · ,M . (2)

where M denotes the number of effective acoustic paths. This
paper introduces a classical description model for the forward
problem. The measured temperature field is divided into N
grids, the temperature in each grid is unknown and assumed
to be uniform, and then the reconstruction requires finding
the temperature in each grid. Equation (2) can be discretized
as follows.

tk =

∑N

i=1
1Ak,ifi (3)

where tk denotes the TOF of the sound wave along the k-th
ray,1Ak,i denotes the distance of the k-th effective path going
through the i-th grid, fi represents the slowness within the
i-th grid, and N represents the total number of grids.

Considering all M valid acoustic rays, (3) can be repre-
sented in a matrix form.

Ax = t (4)

where t = (t1, t2, · · · , tM )′ denotes the m-dimensional col-
umn vector corresponding to the TOF of each ray. x =

(x1, x2, · · · , xN )′ represents the slowness value in the discrete
cell, and it is a n-dimensional column vector. A is a matrix of
order M×N with corresponding elements Ai,j.

After discretization, the problem is transformed into solv-
ing a matrix equation. In this case, the matrix equation needs
to be over-determined before it can be solved. However, there
is one serious drawback in the above description, i.e., it is not
reasonable to assume that the value of the slowness within
each grid is a constant to be solved. The larger the grid, the
larger the error introduced by the model.

The equation Ax = t is ill-conditioned since small per-
turbations of vector t will lead to a significant change in
the solution. Assuming that the observed data t has a minor
perturbation δt, and the corresponding perturbation of the
solution is δx, then the equation Ax = t becomes:

A (x+ δx) = t + δt.

Then,

δx = A−1δt

where A−1 denotes the generalized inverse of matrix A.
According to the property of subordinate norms, we have

∥δx∥ =

∥∥∥A−1δt
∥∥∥ ≤

∥∥∥A−1
∥∥∥ ∥δt∥

∥x∥ ≥
∥Ax∥
∥A∥

=
∥t∥
A

.

Then,

∥δx∥
∥x∥

≤

∥∥A−1
∥∥ ∥δt∥

∥t∥ / ∥A∥

Thus,

∥δx∥
∥x∥

≤ cond(A)
∥δt∥
∥t∥

where cond(A) represents the condition number of matrix A,
and it is a constant once the coefficient matrix A is deter-
mined. When the observed data t has minor measurement
errors, the relative error of the solution is determined by the
measurement error. In practical scenarios, t will inevitably
contain measurement errors. Thus, a precise TOF measure-
ment method is required to reduce the measurement error of t.
To facilitate the discussion of our proposed reconstruction
algorithm, the error of t is ignored in this paper.

The following introduces the reconstruction model based
on radial basis functions [15], [16], [17]. The slowness is
expressed as a linear combination of N-radial basis functions.

f (x, y) =

∑N

j=1
xjϕj (5)

where xj denotes the N undetermined coefficients, and ϕj
represents the radial basis function whose center lies inside
the temperature field.

Combining (2) and (5), we have

tk =

∑N

j=1
akjxj, akj =

∫
lk

ϕjdlk . (6)

Consider M sound rays and define
A = (akj)k=1,··· ,M;j=1,··· ,N

x = (x1, x2, · · · , xN )′

t = (t1, · · · , tM )′

Thus, Equation (6) can be represented in a matrix form

Ax = t (7)

A in (4) and (7) can be obtained after the transducer
position and grid are determined, and t can be obtained by
simulation calculation or actual measurement. After obtain-
ing the coefficient matrix A and the sound propagation time t,
Equations (4) and (7) can be solved using various reconstruc-
tion algorithms. Though (7) and (4) are formally identical,
they differ in the physical meaning of the quantities at the left
end of the equation. In (4), A is the ray segment matrix, and
the unknowns are the average temperature of each grid. In (7),
A is the integral coefficient matrix obtained by integrating
the basis functions, and the unknowns are the weighting
coefficients corresponding to each basis function. The second
model is better than the first one because it does not require
the subsequent interpolation operation to obtain the tempera-
ture field T(x, y), and there is no obvious defect in the model,
so it has higher reconstruction accuracy. Researchers have
conducted numerous studies around the radial basis function
method.

50350 VOLUME 12, 2024



H. Zhang et al.: Acoustic Tomography of Temperature Field by Finite Element Method

III. FORWARD PROBLEM MODELING BASED ON THE
FINITE ELEMENT METHOD
In Section II, it is shown that the acoustic temperature field
reconstruction algorithm first establishes the mathematical
model Ax=t and then solves the inverse problem via vari-
ous algorithms. To solve this problem, the temperature field
needs to be discretized and divided into grids of a regular
shape. Assuming that the internal and boundary slowness
of each mesh can be represented by the slowness values
assigned at the nodes of the mesh, some interpolation meth-
ods can be employed to find the values between nodes.
In this approach, the drawback that the classical discretization
model considers the grid temperature value as a constant can
be overcome. The limiting case of infinitely many grids is
equivalent to the case where the temperature field is smooth
and continuous. In our algorithm, a grid model is applied
where the unknown slowness f (x, y) is approximated as
a linear combination of the slowness values of the grid
nodes.

f (x, y) =

∑N

k=1
fkNk (x, y) (8)

where fk denotes the slowness value of the node, Nk is
an interpolation function (shape function). Generally, first-
or second-order polynomials are utilized to interpolate the
slowness values between nodes. For example, the mea-
sured area with triangles can be covered, where N=3, and
the function Nk (x, y) can be a two-dimensional first-order
polynomial. The distribution of slowness for each triangle
is approximated as a plane. This is a standard interpo-
lation in finite element methods, which is known as the
linear Lagrangian triangle interpolation. The space gen-
erated by nodal variables is a two-dimensional space of
continuous piecewise linear functions. Equation (9) can be
solved by considering the discretization and substituting (8)
into (2).

t0 =

∫
0

f (x, y) dl =

J∑
j=1

∫
0j

f (x, y) dl

=

J∑
j=1

∫
0j

3∑
k=1

fkNk (x, y)dl

=

J∑
j=1

3∑
k=1

(
∫

0j

Nk (x, y)dl)fk (9)

where J denotes the total number of triangle grids traversed
by a ray, which can be regarded as the total number of triangle
grids because the integral term is 0 for triangles that are not
traversed by a ray. j denotes the index of the current triangle.
0j = 0 ∩ 1j denotes the part of the sound ray that passes
through the j-th triangle. The matrix form of (9) is

Ax = t. (10)

where x represents the slowness value vector of all triangle
nodes, and it is the parameter to be evaluated. t denotes the

TOF vector. Matrix A is called a piecewise integral sum-
mation coefficient matrix, and its element is

∫
0j
Nk (x, y)dl.

MatrixA reflects the linear relationship between themeasure-
ments and the unknowns, and it is different from the distance
coefficient matrix in (4) and the integration coefficient matrix
in (7). From the names of the three matrices, it can be seen
that their solution processes are different. Here, this paper
focuses on the solution of A in (10). The grid cells and nodes
are illustrated in Figure 2.

FIGURE 2. Grid cells and nodes. (a) 3-node cell. (b) 4-node cell.
(c) 6-node cell.

Figure 2 demonstrates a 3-node triangular cell on the left,
a 4-node square cell in the middle, and a 6-node triangular
cell on the right. Based on the 3-node cell, the 6-node cell
is formed by adding the midpoints of the three edges of the
triangle as additional nodes. Taking the 3-node triangular cell
as an example, the piecewise integral summation coefficient
matrixA is solved, i.e., the integral term

∫
0j
Nk (x, y)dl in (9).

After the transducer position and grid distribution are deter-
mined, the integration path is determined, and the problem
can be transformed into solving the shape function Nk (x, y).
Taking the 3-node triangular cell as an example, the corre-
sponding shape function is solved. As shown in Figure 3, the
numbers of the three nodes are 1, 2, and 3, and their respective
position coordinates are (xi, yi), i = 1, 2, 3. The slowness
values of the three nodes are f1, f2, and f3, respectively.

FIGURE 3. 3-node triangular cell.

The slowness of a triangular cell can be expressed by a two-
dimensional first-order polynomial as follows

f (x, y) = c1 + c2x + c3y (11)

where c1, c2, and c3 are the undetermined coefficients. Sub-
stituting the node coordinates into (11), the values of c1, c2,
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and c3 can be obtained. f1
f2
f3

 =

 1 x1 y1
1 x2 y2
1 x3 y3

  c1
c2
c3

 H⇒

 c1
c2
c3


=

 1 x1 y1
1 x2 y2
1 x3 y3

−1  f1
f2
f3

 (12)

Substituting (12) into (11) yields

f (x, y) =
[
1 x y

]  c1
c2
c3

 =
[
1 x y

]  1 x1 y1
1 x2 y2
1 x3 y3

−1  f1
f2
f3


=

[
N1(x, y) N2(x, y) N3(x, y)

]  f1
f2
f3

 . (13)

where N1(x, y),N 2 (x, y) ,N 3(x, y) are the shape function or
interpolation function. The shape function depends only on
the nodal coordinates and is independent of the nodal retarda-
tion value. After the shape function is solved, the coefficient
matrix A can be obtained by solving the integral term in (9).
Though the computational procedure is cumbersome and
time-consuming, it can be conducted offline in advance.

The following introduces how to solve the shape function
for a 4-node square cell and a 6-node triangular cell. Since
there are four and six nodal values, there will be four and six
undetermined coefficients. The slowness function requires
quadratic terms in x and y, which also appear in the shape
function. Based on (11), the slowness function of the 4-node
cell and the 6-node cell can be obtained, as shown in (14)
and (15).

f (x, y) = c1 + c2x + c3y+ c4xy (14)

f (x, y) = c1 + c2x + c3y+ c4x2 + c5xy+ c6y2 (15)

The quadratic terms in xand y appear in (14) and (15). The
derivation of the shape function follows the same procedure
as that of the 3-node cell. The 4-node cell shape functions
are N1(x, y), N2 (x, y), N3(x, y), and N4(x, y). The 6-node
cell shape functions are N1(x, y), N2 (x, y), N3(x, y), N4(x, y),
N5 (x, y), and N6(x, y).
To sum up, once the shape function is obtained, the coef-

ficient matrix A can be calculated, which describes the linear
relationship between the known and unknown quantities
(TOF and slowness). Different shape functions have different
computational accuracies. Since the 4- and 6-node shape
functions contain quadratic terms in x and y, the model has
higher accuracy and better functional approximation capa-
bilities, and the final temperature field is more accurate.
However, the number of unknowns and the computational
complexity rise steeply with the number of nodes, eventually
leading to the problem of solving large underdetermined lin-
ear equations. This problemwill be solved in the next section.

IV. THE METHOD FOR SOLVING THE INVERSE PROBLEM
For the classical discretization model method, the radial basis
function global approximation method, or the polynomial
piecewise approximation method proposed in this paper, the
linear equations (4), (7), and (10) need to be solved to obtain
the temperature distribution. Their general form is given
below:

Ax = b. (16)

where A is a known matrix of order M×N; M denotes the
number of equations, and it is determined by the number of
effective rays; N denotes the number of desired unknowns,
which can be slowness or weight coefficients, determined by
the number of grids, basis functions, or nodes; brepresents
the TOF data, which can be obtained from real measurements
or simulations. Here, x is an unknown quantity, and this
is a classical inverse problem. Generally, inverse problems
can be divided into two categories: solving equations where
the number of unknowns is small compared to the number
of equations, and solving equations where the number of
unknowns is large. These two types of equations are referred
to as overdetermined or underdetermined equations.
The least-squares method is a popular method for solving

discrete models of classical forward problems. In this case,
the number of rays needs to be larger than the number of
grids, i.e., Equation (16) becomes an overdetermined sys-
tem of equations. However, there are two problems with the
least squares method. The first, as mentioned in Section II,
is the low reconstruction accuracy due to imperfections in
the discretization model. The second is the impossibility of
reconstructing the temperature field outside the sampling
points since the interpolation method is employed to obtain
a finer temperature field distribution after obtaining the tem-
perature values at the geometrical center of the grid. Since
the accuracy is not high, extrapolation is not used, and
only the temperature field inside the sampling point can
be reconstructed. In practical applications, due to various
external constraints and cost reduction considerations, it is
not desirable to install too many transducers, causing the
number of sound rays smaller than the number of unknowns,
and in this case, Equation (16) becomes an underdetermined
system of equations. Researchers have mainly focused on
solving underdetermined equations, which are more practi-
cal, but underdetermined problems can lead to ill-posed and
ill-conditioned solutions. Specifically, ill-posedness implies
that the solution of equations is unstable and not unique,
and ill-conditioning implies that a small perturbation in the
measurement data b will cause a drastic shift in the solution
of an equation. Therefore, it is necessary to adopt a suitable
reconstruction algorithm that can avoid the above problems
and reconstruct the temperature field more accurately.
The methods for solving underdetermined systems of

equations can be mainly divided into two categories: SVD-
based regularization methods [18], [19], and various opti-
mization methods. The general idea behind most inversion
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methods is to solve the following minimization problem.

min∥Ax− b∥22 (17)

The minimization problem can be formulated as follows

ATAx = ATb (18)

After applying SVD to matrix A, the least squares solution
of (16) can be expressed as follows.

x =

∑p

i=1

uTi b
σi

vi (19)

where σ1 ≥ σ2 ≥ · · · ≥ σp > 0 is the singular value of the
matrix, p denotes the total number of nonzero singular values,
and ui and vi represent the left and right singular vectors of
matrix A, respectively. Due to the ill-posedness of the inverse
problem, the condition number will be large, which will lead
to very small singular values. According to (19), if σi is
small, the small measurement error of b will be magnified
many times, and the solution will deviate seriously from
the true solution. Based on SVD, Tikhonov regularization is
employed to suppress the error of the solution. The basic idea
is to incorporate prior information about the solution into the
original problem to minimize a certain norm of the solution
while ensuring the fit of the data. Considering the solution of
the inverse acoustic CT problem, i.e., the sound velocity value
is a bounded positive number, the following minimization
problem is solved:

min∥Ax− b∥22 + µ ∥x∥22. (20)

The minimization problem can be formulated as (21).

(ATA+ µI)x = ATb (21)

where µ > 0 is the regularization parameter, and I is the
identity matrix. The solution of (21) is represented in (22).

x =

∑p

i=1

σ 2
i

σ 2
i + µ

uTi b
σi

vi =

∑p

i=1

uTi b

σi + µ
/
σi
vi (22)

where f =
σ 2
i

σ 2
i +µ

is the filtering factor. According to (18)

and (21), Tikhonov regularization does not directly transform
matrixA but transforms the normal equationATAx = ATb of
the original equation Ax = b by replacing the ill-conditioned
matrix ATA with a well-conditioned matrix ATA + µI , and
then transforms the ill-posed problem into a well-posed prob-
lem.

In this paper, an improved Tikhonov regularization method
is developed to solve the inverse problem. The standard
Tikhonov regularization method makes no difference correc-
tion to all singular values. In practice, a more reasonable
correction method is that the larger the singular value, the
smaller the correction amplitude, and vice versa. Firstly,
by using the threshold singular value σt , the singular values
are divided into large singular values and small singular
values, where the ones are not modified while the small ones
need to be corrected, and the smaller the singular value,

the greater the correction amplitude. In this paper, the min-
imum singular value satisfying (23) is set as the threshold
singular σt .

σt ≥ max
1≤j≤p

kσj (23)

where k is the threshold obtained by experience.
The filtering factors of improved Tikhonov regularization

are given below:

f =


1, 1 < i < 0

σ 2
i

[
σ 2
i + µ

(
σt

σi

)1/2
]−1

, t ≤ i ≤ p
(24)

V. NUMERICAL CALCULATION AND SIMULATION
EXPERIMENT
A. BUILDING SIMULATION MODEL
To verify the correctness and validity of the model pre-
sented in Section III, several temperature fields are simulated
using the reconstruction algorithm in Section IV, and the
constructed simulated model is illustrated in Figure 4. The
measured area is a square area of 12 × 12. The locations
of the eight ultrasound transducers are known, and they are
uniformly placed on the four edges to form 24 effective
acoustic paths. The measured area is divided into 25 square
grids, and each grid is divided into two isosceles right trian-
gles. Figure 4(a) and (b) correspond to triangular cells, while
Figure 4(c) corresponds to square cells. It can be seen that
the difference between Figure 4(a) and (b) is the triangulation
of the four corners. After performing numerical calculations
beforehand and referring to existing studies, it was found that
the four corner nodes had large computational errors and thus
were discarded. The reason is that very few rays pass through
the triangle where the four nodes are located, so the nodes
are used fewer times in the calculation. Similarly, the square
cells with four corners are replaced by four triangular cells in
Figure 4(c). Therefore, there are 32 slowness values to eval-
uate for both the 3-node triangular and square models, while
there are 109 slowness values for the 6-node triangular model.
After the slowness values are obtained, the two-dimensional
piecewise function of the temperature distribution can be
obtained by (1) and (13), or the distribution of the temperature
field can be obtained by interpolation.

FIGURE 4. Different cell models. (a) Complete triangle model.
(b) Incomplete triangle model. (c) Square model.

Different cell models in Figure 4 are used to simulate
and reconstruct the temperature field in three distributions:
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unimodal symmetric, unimodal skew, and bimodal skew.
The initial temperature field model is presented in
Figure 5. The temperature field is given in (25), (26),
and (27).
The unimodal symmetry model is represented as:

T (x, y) = 800 sin (
πx
12

) sin (
πy
12

) + 1200 (25)

The unimodal skew model is represented as:

T (x, y) = 1200 exp

[
−
(x − 8)2 + (y− 4)2

100

]
+ 800 (26)

The bimodal skew model is represented as:

T (x, y) = 1200 + 800 exp [−0.2(x − 3.5)2 − 0.06(y− 7)2]

+ 600 exp [−0.2(x − 9)2 − 0.04(y− 4.5)2] (27)

FIGURE 5. Temperature field models. (a) unimodal symmetry model.
(b) unimodal skew model. (c) bimodal skew model.

B. SIMULATION RESULTS AND DATA ANALYSIS
The quality of the reconstructed temperature field can be
evaluated based on the maximum relative error Emax , the
average relative error Eave, and the root mean square error
Erms. They are defined as follows:

Emax = max

∣∣∣∣∣ T̂ (i) − T (i)
T (i)

∣∣∣∣∣ × 100%, i = 1, 2, · · · ,M (28)

Eave =
1
M

∑M

i=1

∣∣∣∣∣ T̂ (i) − T (i)
T (i)

∣∣∣∣∣ × 100% (29)

Erms =

√
1
M

∑M
i=1

[
T̂ (i) − T (i)

]2
Tave

× 100% (30)

where T (i) and T̂ (i) denote the temperature values of the
i-th (i=1, 2, · · · , M) node in the temperature field model
and reconstructed temperature field model, and M is equal
to 32 and 109 in this paper, respectively. Tave represents the
mean temperature of the temperature field model and can be
obtained by computing the double integral divided by the area
of the measured region. The regularization parameter µ con-
trols the weight of measurement data and prior information in
the solution. According to (22), since σi > 0 andµ > 0, there
is σi+µ/σi ≥ σi. When the value of µ is too small, σi+µ/σi
will approximate σi, which cannot effectively suppress noise
interference. However, when the value of µ is too large,
σi+µ/σi will deviate greatly from σi, which will lead to a low
confidence of the solution for the measurement data, and the
solution will be too smooth and lose too much detail informa-
tion. Much research has been conducted on how to select an
appropriate regularization parameter, and somemethods have
been developed. In most cases, the parameter is selected by
experience. In this paper, let µ be equal to 5×10−4, and the
standard Tikhonov regularization is directly used to find the
slowness value of nodes. Though the method may introduce
large reconstruction errors, it can be used as a simple way to
verify the correctness of the algorithm. Since the system of
equations is underdetermined, a least-squares solution of the
equations will be obtained. The corresponding errors for the
three temperature fields are presented in Tables 1, 2, and 3,
respectively.

TABLE 1. Reconstruction errors of unimodal symmetry model.

As listed in these tables, all the errors of the 3-node model
are larger than those of the 4-node model. The main reason is
that the shape function of the 4-node model uses quadratic
terms in x and y, and the function approximation is bet-
ter. For the 6-node model, the ×···· in the table indicates that
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TABLE 2. Reconstruction errors of unimodal skew model.

TABLE 3. Reconstruction errors of bimodal skew model.

the correct solution cannot be obtained and thus the error
cannot be calculated. The main reason is that the system
of equations is severely underdetermined, with 24 equations
solved for 109 unknowns, which is impossible without any
available prior information. Another study also shows the
case of solving underdetermined equations: 24 equations
with 100 unknowns were solved using SVD with an error
of less than five percent, which is acceptable. Both cases
are severely underdetermined, where the former is unsolv-
able and the latter is solvable, and the reason needs to be
investigated. After calculating the condition number of the
coefficient matrix, it is found that the condition number of
the former is extremely smaller, about ten, while that of the
latter is larger than 104. The larger the condition number, the
more ill-conditioned the matrix, and the more susceptible the
solution of the system of equations to tiny changes in the
measurement data, and vice versa. The coefficient matrix of
the latter is constructed based on radial basis functions, and
the condition number is usually large. Meanwhile, the coeffi-
cient matrix of the former is constructed based on a piecewise
polynomial approximation with a minimal condition num-
ber. That is, the mathematical principles for constructing the
coefficient matrix are different, which leads to different con-
dition numbers. The condition number is the main difference
between the two matrices, but it is not sufficient to explain
why the former is not solvable while the latter is. This paper
believes that the main reason is that the latter uses prior
information about the temperature field and the temperature
distribution and the chosen basis function are similar in shape.
Only in this case can the system of equations be solved and
satisfactory results be obtained when the system of equations
is severely underdetermined. Studies have focused on how
to select basis functions that are closer to the shape of the
temperature field distribution [20], [21]. The more similar
the shape, the better the function approximation. Since the
3-nodemodel has large errors and the 6-nodemodel cannot be
solved, only the reconstructed temperature field correspond-
ing to the 4-node model is presented here. The slowness value
corresponding to 32 nodes is calculated, the corresponding
temperature value can be obtained following (1), and then the

FIGURE 6. Reconstruction of the temperature field. (a) unimodal
symmetry. (b) unimodal skew. (c) bimodal skew.

reconstructed temperature field can be obtained by using the
interpolation method, as illustrated in Figure 6.

As illustrated in Figure 6, the reconstructed and original
temperature fields are considerably different, especially at the
four corner positions. The reason for this is as follows:

a) The underdetermined system of equations leads to large
errors in the temperature values, and naturally, the tempera-
ture field interpolated using these data has a large error.

b) 32 pieces of original data are too few, resulting in low
reconstruction accuracy.

c) Since nodes with four corners are not used, the tempera-
ture fields of the four corners are calculated by extrapolation,
and the error is large. To address the above issues, the follow-
ing measures are taken:

a) The number of transducers is increased to 16 so
that the number of effective sound rays is increased
from 24 to 96, thereby alleviating the problem of
underdetermined equations.

VOLUME 12, 2024 50355



H. Zhang et al.: Acoustic Tomography of Temperature Field by Finite Element Method

b) The amount of original data is increased by using the
6-node model. Since the area occupied by the four corners is
about four percent of the entire temperature field, they can
be ignored. By discarding 12 nodes in the four corners, the
number of unknowns is reduced from 121 to 109, and the
dimension of the system of equations becomes 96×109. As a
result, higher reconstruction accuracy is achieved. Finally, the
improved layout is illustrated in Figure 7. After the optimiza-
tion of the placement of the transducers, the acoustic ray does
not pass through the four triangular meshes at the corners.

FIGURE 7. 96 × 109 improved layout.

By using the improved Tikhonov regularization method
in Section IV and setting the threshold constant k = 10−3,
Table 4 shows the errors of the three temperature fieldmodels.
The corresponding reconstructed temperature field is pre-
sented in Figure 8.

TABLE 4. Three types of temperature field reconstruction errors.

All reconstruction errors were found to be small and
acceptable. It is easy to understand that the more complex the
temperature field, the larger the error. Meanwhile, the recon-
structed temperature field matches the original extremely
well, except for the four-corner region.

C. THE COMPARISON WITH RECONSTRUCTION METHOD
BASED ON RADIAL BASIS FUNCTION AND SVD
The classical temperature field reconstruction algorithm
based on the least square method is simple in principle and
performs well in practice. However, due to the strict restric-
tion that the number of grid divisions in the measured region
cannot exceed the number of effective acoustic propagation

FIGURE 8. Reconstruction of the temperature field by using the
96 × 109 layout. (a) unimodal symmetry. (b) unimodal skew.
(c) bimodal skew.

paths (i.e., the corresponding linear equations Ax=b must
be overdetermined equations), the reconstructed results have
low accuracy. Meanwhile, due to the use of an interpola-
tion method to reconstruct the temperature field, there will
be serious temperature information loss at the boundary of
the measured area. In this section, considering the excellent
ability of the radial basis function (RBF) in function approx-
imation and fitting to scattered and sparse data, along with
the advantage of SVD in handling ill-conditioned problems,
they are taken to compare with the proposed reconstruction
method.

The RBF takes spatial distance as its unique variable, and
it can approximate almost any function. RBF has the advan-
tages of less computation and high fitting accuracy. Attributed
to its strong ability to fit dispersed data, it has been widely
used in physics and other fields. Common RBFs include
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Gaussian (GS) function, Markov (MK) function, Multi-
quadric (MQ) function, inverse multiquadric (IMQ) function,
and thin plate spline (TPS) function. Wang et al. [25]
employed the logarithmic-quadratic (LQ) RBF and SVD
method to reconstruct the complex temperature field in the
boiler furnace with less measured data. The LQ function has
good range, smoothness and sensitivity to parameters and
overcomes the defects of other classical RBFs, so it is more
suitable for fitting dispersed and complex temperature data.
Reconstruction methods based on LQ RBF and SVD are used
and compared with the proposed method. The temperature
field model in Figure 5 was reconstructed with the layout
in Figure 7. The corresponding reconstructed temperature
field is demonstrated in Figure 9. The errors of the three
temperature field models are listed in Table 5.

TABLE 5. Temperature field reconstruction errors of lq brf and svd-based
method.

By comparing various errors and reconstruction tempera-
ture fields, the following conclusions are made. The proposed
method has a greater maximum error than the LQ RBF
method, and the other two methods perform slightly better
than the LQ RBF method. The maximum error appears in the
four-corner region, and this is consistent with the previous
observation. Since the LQ RBF method has better global
approximation ability, the reconstructed temperature field is
closer to the temperature field model overall. However, the
local region of the temperature field is not very smooth and
has more burrs. To sum up, the proposed method has higher
reconstruction accuracy.

VI. EXPERIMENTAL TESTING AND ANALYSIS
To better verify the proposed reconstruction method and
prove its universality, an experimental data-based verifica-
tion was conducted. An experimental platform was built,
and the TOF acquisition circuit was designed. To gener-
ate driving acoustic signals with high stability and strong
anti-interference, the ultrasonic driving circuit must have
strong output power. To obtain weak echo signals with noise,
the echo-receiving circuit should have strong amplification
ability and filtering ability. Additionally, the onset time of
the output acoustic wave and the arrival time of the echo
are important parameters for calculating the TOF, so the
ultrasonic driving circuit should be designed to transmit syn-
chronous pulses, and the ultrasonic receiving circuit should
be matched with the corresponding data acquisition system
to acquire echo signal waveforms and send them to the
host computer for analysis. Through a comprehensive anal-

FIGURE 9. Reconstruction of the temperature field by LQ RBF and SVD.
(a) unimodal symmetry. (b) unimodal skew. (c) bimodal skew.

FIGURE 10. ZYNQ hardware system.

ysis of the software and hardware functional requirements
of the temperature measurement system, this paper selects
the ZYNQ system, an FPGA+ARM heterogeneous system,
as shown in Figure 10.
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A. EXPERIMENT SYSTEM
To reconstruct the two-dimensional temperature field, the
system needs to design the ultrasonic driving sequence and
should be able to perform multi-channel echo signal acquisi-
tion. Meanwhile, the signal generation and signal acquisition
of this system are designed around ZYNQ to realize various
functions. The ZYNQ system is an embedded heterogeneous
system promoted by Xilinx Corporation in recent years. The
hardware system of ZYNQ is mainly composed of a mini-
mum core system, a power supply system, an AD acquisition
system, a transmission control system, etc.

Its most important feature is the integration of FPGA and
ARM cores. It not only supports the flexible design of the
digital logic through the FPGA part and parallelized data
acquisition but also uploads streaming data to the host com-
puter by using the Gigabit Ethernet protocol supported by the
ARM core. Considering the multi-channel transceiver signal
acquisition and control requirements of the system, using the
ZYNQ chip as the core control unit of the embedded system
is an excellent way to set up the ultrasonic temperature mea-
surement system. This paper designed the baseboard around
the ZYNQ core system, and the ultrasonic drive circuit, multi-
channel echo acquisition circuit, power supply circuit, data
upload, and local storage interface based on Gigabit Ethernet
and SDIO protocol are integrated into the baseboard. The
final hardware PCB is presented in Figure 11, and the physi-
cal object is shown in Figure 12.

FIGURE 11. PCB design.

A long-distance (3-10m) array ultrasonic layout is com-
pleted according to the design requirements of the temper-
ature field size. The selected ultrasonic transceivers need to
have a beam range as narrow as possible and a driving voltage
as high as possible. Additionally, the higher the ultrasonic
frequency, the higher the frame refresh rate, but the stronger
the attenuation effect. Therefore, it is necessary to balance

FIGURE 12. Physical object.

the frame refresh rate and attenuation intensity to select an
appropriate driving frequency. The frequency of high temper-
ature turbulence noise is concentrated below 10 KHz. Thus,
to mitigate the interference of noise on the useful signal, the
frequency of driving sound waves is at least 20 KHz. Finally,
the system selected a center frequency of 40 KHz, the farthest
theoretical transmission distance of 16 m, and the highest
driving voltage of 18V for ultrasonic transceivers to complete
the design. The key parameters of ultrasonic transceivers are
listed in Table 6.

TABLE 6. Key parameters of ultrasonic transceivers.

A nine-sided frame with a side length of one meter was
built. Nine ultrasonic transducers were used, each fixed at
the vertex of the frame. The actual test environment is
demonstrated in Figure 13. The operation of the system is
introduced as follows: one transducer transmits the ultrasonic
signal, and six transducers receive the echo signal. Then, the
next transducer emits the ultrasonic signal, corresponding to
six transducers receiving the echo signal, and this process
continues until all transducers have emitted an ultrasonic
signal. This paper uses the finite element method to divide
the measured area, as shown in Figure 14. The central region
is formed by isosceles right triangles, and the surrounding
region is formed by irregular triangles and quadrilaterals.
Meanwhile, both 6- and 4-node cell models are used. Though
there are irregular triangles and quadrilaterals, this does not
affect the use of the finite element method. To complete the
calculation, only the coordinates of each node need to be
known.
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FIGURE 13. Test environment.

FIGURE 14. Finite element division of the measured area.

B. EXPERIMENT RESULTS
Unimodal symmetric and skewed temperature fields are con-
structed by placing the electric stove in the center and the
lower right corner of the measured area, respectively. Mean-
while, two identical heat sources are placed at coordinates
(−0.75, 0) and (0.75, 0) to form a bimodal symmetric tem-
perature field. Figure 15 shows the reconstructed temperature
field. Errors can be calculated by using the temperature val-
ues of several points in the temperature field measured by
the thermocouple as the actual values and the reconstructed
temperature field. The errors are listed in Table 7.

TABLE 7. Temperature field reconstruction errors of Experiment test.

As shown in Figure 15, there are multiple hot spots,
which is consistent with the actual situation. The ambient

FIGURE 15. Reconstruction of the temperature field by experiment test.
(a) unimodal symmetry. (b) unimodal skew. (c) bimodal symmetry.

temperature is about 25 ◦C, the maximum temperature of
the temperature field is about 98 ◦C, and the reconstructed
temperature value basically falls within this range. Thus,
the temperature field generated by the electric stove is well
reconstructed.

VII. CONCLUSION
For the reconstruction of the temperature field by acoustic
tomography, it is essential to improve the reconstruction accu-
racy of reconstruction algorithms. In this paper, the forward
problem ismodeled based on finite element interpolation, and
the inverse problem is solved with SVD-based regularization.
Then, the distribution of the temperature field is obtained by
interpolation, and three typical temperature fields are inves-
tigated quantitatively and qualitatively.

Simulation results indicate that the proposed reconstruc-
tion method is feasible with satisfactory accuracy, thus pro-
viding an alternativemethod for reconstructing the ultrasound
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temperature field. Based on the theoretical and experimental
results, the following conclusions are obtained:

1) The first step of reconstructing the ultrasound tem-
perature field is to discretize the problem. The choice of
discretizationmethod is critical and directly affects the recon-
struction accuracy of the temperature field. To the best of
our knowledge, there are three main discretization methods.
Classical discretization methods have large errors and can
be used in situations where the reconstruction accuracy is
not significant. Methods based on radial basis functions are
widely adopted. Such methods have excellent global approx-
imation capability because the shape of the basis function
and the distribution of the temperature field are similar. There
has been much research around finding basis functions with
better approximation capabilities. Our proposed method pro-
vides polynomial piecewise approximation. It has better local
approximation capability and is an alternative scheme.

2) The three discussed methods have varying computa-
tional complexity of the coefficient matrix. The radial basis
function- based method requires only one integration opera-
tion to solve the coefficient matrix and is simple and easy to
implement. The classical discretization method needs to find
the distance traversed by the acoustic rays of each grid, and
its computational demand increases with the number of rays
and grids. Our proposed method, which requires piecewise
integration followed by summation, is the most cumbersome
but has higher accuracy. In the method, all coefficient matri-
ces are computed offline and do not affect the real-time
performance of the reconstructed temperature field.

3) The solution to the inverse problem is a crucial part
of the reconstruction of the ultrasound temperature field.
Mainstream methods include regularization methods based
on radial basis functions, SVD, and various optimization
methods. For the former, the choice of the regularization
parameter and threshold constant directly affects the recon-
struction results. This will be investigated in our future work.
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