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ABSTRACT Vibroacoustic diagnostics (VM–Vibroacoustic Method) is one of the methods for diagnosing
the active part of power transformers. One of the recently published objective method for the detection
of transformer unit core damage was based on the analysis of the statistical properties of the vibration
signal registered on the surface of the tank of an unloaded transformer in the steady state of vibrations. The
GGD vibroacoustic detector of power transformer core damage is based on the relative changes in vibration
power as a function of frequency and the generalized Gaussian distribution (GGD). The article shows how
to configure the detector in order to reduce the variance at the detector output and speed up the detection.

INDEX TERMS Vibroacoustic method, transformer core damage, generalized Gaussian distribution,
estimation.

I. INTRODUCTION
Transformers are one of the most important elements of the
power system. Operators are forced to take care of their
technical condition due to high production and repair costs.
Although the reliability of transformers is high, in the event
of damage, they lead to serious technical and economic
consequences. The task of preventive diagnosis is to optimize
the costs associated with maintaining reliable work of
transformers.

Diagnostics of power transformers is based mainly on
three technologies: analysis of transformer oil properties,
Frequency Response Analysis (FRA) and vibration analysis
of the unit’s structure using the VM method.

Changes in the properties of transformer oil provide
valuable information about the technical condition of the
active part of the transformer. One of the main diagnostic
methods, applied and developed for many years, is non-
invasive testing of transformer oil.

The gas chromatography (DGA, Dissolved Gas Analysis)
is important in assessing the technical condition of the active
part. DGA is based on measurements of the concentrations of
key gases: hydrogen, methane, ethane, ethylene, acetylene,
carbon oxides, propane, propylene, oxygen and nitrogen
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[1], [2]. Unfortunately the analysis of DGA results may lead
to ambiguous conclusions as to the source of the fault. This
is due to the fact that gases may be generated as a result of
damage to the insulation system, but also from the core and
other steel elements located inside the transformer tank.

The technical condition of the windings and some core
damage is also assessed using the recently introduced FRA
method [3], [4]. The method is based on the relationship
between the transfer function and the winding geometrical
construction. If the winding geometry changes, e.g. as a
result of moving a single turn, disc or a larger part of
the winding, the capacitance and inductance values of the
coils also change, which leads to a change in the shape
of the FRA curve. At the current stage of development
of this measurement method, the assessment of winding
deformation is performed by visual comparison of the
measured characteristics with reference curves or comparison
is conducted for a given unit between curves recorded at
certain time intervals. In the case of the FRA method, the
assessment of the technical condition of the active part may be
ambiguous. In practice, comparative analysis usually allows
for the detection of significant cases of deformation. Smaller
differences between the characteristics are only interpreted
as the possibility of deformation, without the possibility of
locating it or assessing its size. In addition to winding defects,
the shape of the frequency response characteristics may also
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FIGURE 1. Transformer TR-16000/110, 115/16.5 kV, 16 MVA with
accelerometer sensor and recorder.

be influenced by mechanical defects of the core (partial
delamination or short circuit of magnetic circuit sheets).

A very important part of transformer diagnostics are
vibration measurements of its structure. Fig. 1 shows the
process of recording the acceleration signal of transformer
tank vibrations with an acceleration sensor attached to the
tank.

Inside the transformer, electrodynamic forces and forces
caused by magnetostriction act on the windings and core,
causing mechanical vibrations. These vibrations are trans-
ferred to the tank surface in two ways:

1) through the transformer oil,
2) through the lid and the base, which are in direct

mechanical contact with the active part.

Loosening the windings and core sheets results in the creation
of harmonic frequencies recorded on the surface of the
transformer tank. Measuring steady state vibrations without
load can provide important information about the condition of
transformer sheets fixing [5]. The direct cause of vibrations
is the phenomenon of magnetostriction, which changes the
geometric dimensions of a magnetic material placed in a
magnetic field. The size of the magnetic field in the core
located inside the winding depends on the winding supply
voltage, and not on the current flowing through the windings.

The vibrations of the transformer structure recorded by
the accelerometer fastened to the tank are a superposition
of the mentioned vibrations of the core and windings. The
latter are subject to electrodynamic forces proportional to
the square of the current flowing through them [6]. The
fundamental harmonic frequency of vibrations is twice the
frequency of the power grid (100 Hz for a 50 Hz power
supply). The analysis of the signal separately in two time
intervals of steady vibrations and transient vibrations (with-
out load) was discussed in [7]. Therefore, when analyzing
the vibration signal of the transformer tank in a steady state
of vibration (negligible current) and assuming a constant

voltage amplitude, diagnostic conclusions will refer solely to
the mechanical condition of the core.

In most cases, VM diagnostics are based on a simple
frequency spectrum analysis, and the diagnostic conclusions
are subjective and depend on the expert’s professional
experience. Transformer diagnostics also includes vibration
measurements of its structure. In general, the vibroacoustic
method consists in the analysis of the recorded signal of the
transformer tank vibration acceleration. Relative changes in
vibration power can be used as a qualitative criterion to assess
the condition of the core [8]:

Pr (f ) =
P(f , ft )
P(0, ft )

, for 0 ⩽ f ⩽ ft , (1)

where P(f , ft ) is the power of vibration with frequency
0 ⩽ f ⩽ ft , P(0, ft ) denotes the total vibration power
and the maximum frequency ft = 0.5 · fs is related to the
sampling frequency fs. For a perfect mechanical condition
and perfect vibration measurement conditions, Pr (f ) is as
follows: Pr (f ) = 1 for 0 ⩽ f ⩽ 100 Hz and Pr (f ) = 0 for
100 Hz < f ⩽ ft . For f > 100 Hz for a 50 Hz power grid, the
function’s decay rate will become slower and slower as the
core continues to degrade. This core quality criterion allows
you to assess the core condition.

Fig. 2 presents the amplitude characteristics of the real
transformer and the corresponding relative changes in vibra-
tion power. These are data for a transformer manufactured by
ELTA, type TDR-16000/110 from 1977.

A detector to identify a damaged transformer based on
the relative changes in vibration power was proposed in [9].
The proposed method of vibroacoustic detection of core
damage, as to the principle of performing measurements
(registration of vibration acceleration), does not differ from
the ‘‘classic’’ vibroacoustic diagnosis of transformer units.
However, it must be remembered that vibrations are recorded
when the transformer is operating without load. In this way,
the influence of the load current on the vibration signal
is eliminated. In the course of further proceedings, the
Fourier transform of the recorded signal is determined, and
then the relative changes in the vibration power Pr (f ) are
calculated. The measurement data processed in this way are
further analyzed using the generalized Gaussian distribution
(GGD). Instead of fitting a parametric model through any
optimization method to transformer data, a statistical model
based on transformer data was designed and GGD was
applied as a statistical tool to obtain its parameters. This
detector does not determine the exact type of damage, but
it indicates the probability of a defect, which is extremely
valuable in the diagnosis of transformers. In this way,
unnecessary, in the absence of a defect, very expensive
internal inspection can be avoided. Core defect detection is
performed on the basis of comparative analysis, therefore it
is required to build a database, which is a set of Pr (f ) of many
transformers with the same power and similar design features.

Diagnostic conclusions resulting from the use of the
vibroacoustic method cannot be treated as conclusively
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FIGURE 2. Frequency amplitude spectra (a) and relative changes of vibration power Pr (f ) (b) of the real transformer.

determining the poor technical condition of the transformer.
They indicate the likelihood of developing core defects.
Several methods are used in parallel to diagnose transformer
units (physical and chemical analysis of transformer oil,
measurements of electrical parameters, FRA frequency
response analysis, etc.). Only the results of all these studies
lead to reliable final conclusions.

The article analyzes the statistical parameters of the
detector model on its output values. Ten 16 MVA power
transformers with different operating times and degrees of
wear and one damaged are considered. The transformer
marked as damaged was in operation the longest: it was
produced in 1975. According to the operation history of
this unit, it failed several times as a result of overloads.
The technical condition of all considered transformers was
verified by other diagnostic methods:

• Frequency Response Analysis,
• gas chromatography,
• measurements of furans contents,
• measurements of water contents,
• tests of basic electrical properties: dielectric losses coef-
ficient (tan δ), volume resistivity, and dielectric strength.

The vibroacoustic diagnosis process itself is described in
detail in a number of publications. Fig. 1 shows the course
of the experiment, i.e. recording the acceleration of the tank
vibrations when the transformer unit is operating without
load. The subject of the article is the original concept of
analyzing the recorded signal in order to formulate diagnostic
conclusions.

The article is organized in the following manner. Firstly,
GGD is recalled in Section II. Next, the GGD vibroacoustic
detector is described in Section III. In the next Section IV, the
detector is analyzed and Section V concludes the paper.

II. GENERALIZED GAUSSIAN DISTRIBUTION
One statistical model that has captured the interest of
scientists is the generalized Gaussian distribution. GGD

is often used to characterize the statistical behavior of a
multimedia signal. The different types of signals can be
modeled in image and signal processing applications using
this probability distribution. GGD also appears in the liter-
ature under other names: the exponential power distribution
(EPD), the generalized error distribution (GED), the Subbotin
distribution and the generalized normal distribution (GND).

The probability density function of the continuous random
variable of GGD is [10]

f (x) =
λ(p, σ ) · p

2 · 0( 1p )
e−[λ(p,σ )·|x|]p , (2)

where p is the shape parameter, λ is connected to the variance
of the distribution

λ(p, σ ) =
1
σ

0
(
3
p

)
0
(
1
p

)
0.5

(3)

and where σ is the standard deviation of the distribution and
0(z) =

∫
∞

0 tz−1e−tdt, z > 0 is the gamma function [11].
GGD covers various other distributions ranging from super-
Gaussian, Gaussian to sub-Gaussian. The special cases
with the exponents p = 2 and p = 1 cover the
Gaussian distribution (GD) and the Laplacian distribution
(LD), respectively. The GGD density function becomes a
uniform distribution when p → ∞. For p → 0, f (x)
approaches an impulse function. Other values of the shape
parameter p were considered in [12], [13], and [14]. The
density function of GGD for different exponents is depicted
in Fig. 3.

The most popular method for estimating the shape param-
eter of GGD is the maximum likelihood (ML) method [15].
However, this method is complex and time consuming. The
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FIGURE 3. Density function of GGD with λ = 8 for three selected
exponents p = 0.6, p = 2, and p = 14.

non-linear equation must be solved for p

C
9(1 +

1
p ) + log(p)

p2
+

1
p2

log

(
1
N

N∑
i=1

|xi|p
)

−

∑N
i=1 |xi|p log(|xi|)

p
∑N

i=1 |xi|p
= 0, (4)

where {x1, x2, . . . , xN } is the collection of N i.i.d. zero-mean
random variables and 9(x) =

d
dx log

(
0(x)

)
is the digamma

function [11]. The maximum likelihood estimator for the λ
parameter is [9]

λ =

(
N

p ·
∑N

i=1 |xi|p

) 1
p

. (5)

Other methods for estimating GGD parameters have also
been developed [16], [17], [18].

GGD was considered for different types of random
variables: a complex valued random variable [19], [20], [21],
an augmented quaternion valued random variable [22], [23],
an augmented pure quaternion valued random variable [24].
In the case of a multidimensional variable, the multi-

variate generalized Gaussian distribution (MGGD) is used,
also known as the multivariate exponential power (MEP)
distribution [25], [26]. The problem of parameter estimation
for such a distribution was investigated in [27], [28], and [29].

GGD has been applied in many areas: image com-
pression [10], [30], [31], image binarization [32], [33],
[34], image segmentation [35], image synthesis [36], image
denoising [37], [38], image watermarking [39], [40], medical
imaging [41], stereoscopic images [42], SAR images [43],
radiographic images [44], texture retrieval [45], [46], [47],
texture classification [48], testing adaptive filters [49],
predicting failures of rotating machines [50], probabilistic
classifiers [51], ultra-wide bandwidth (UWB) [52], convolu-
tional neural networks (CNNs) [53] and detecting downhole
faults [54], [55].

FIGURE 4. fW (w) - a symmetric density function for a normally working
transformer and the histogram of a random variable generated with this
density.

III. GGD VIBROACOUSTIC DETECTOR
The procedure for determining the output values of the
detector is described in [9]. Firstly, FFT analysis of the
vibroacoustic signal is performed with the determination of
the relative changes in vibration power as a function of
frequency Pr (f ) and, finally, the statistical properties of the
dataset Pr (f ) is calculated including:

1) A cumulative distribution function dependent on trans-
former data is defined.

2) The random samples are generated with this distribu-
tion.

GGD is selected to approximate the distribution of the
random samples in order to describe the Pr (f ) set. The
parameters of this selected probability density function are
estimated. The detector output values are the λ and p
parameters of the GGD distribution. These two numerical
values form the basis for the classification of the technical
condition of the transformer unit core.

According to the described procedure in [9], Fig. 4 shows
the probability density function for a real transformer, for
which the corresponding relative changes in vibration power
are shown in Fig. 2. Fig. 4 also shows the histogram of
a random variable generated according to the procedure
from [9]. It can be seen that the histogram coincides with the
given probability density function created on the basis of the
transformer data.

This histogram is also shown in Fig. 5, but this time
together with the fitted approximation using GGD is pre-
sented.

Based on the ML estimation, a pair of p = 1.1977 and
λ = 7.6489 values was determined.

IV. ANALYSIS OF THE GGD VIBROACOUSTIC DETECTOR
In the experimental part, in order to analyze the operation of
the algorithm, the influence of the random sample size on the
variance of the detector result was determined. As in [9], ten
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FIGURE 5. Histogram of a normally working transformer and the fitted
GGD.

different normally functioning transformers, damaged and
ideal one were explored. For 12 transformers, the relative
changes of vibration power Pr (f ) were determined, the
corresponding random samples were generated and the ML
method of GGD was applied to each sequence of random
samples to find the parameters p and λ, producing 12 pairs
(p, λ).

In Fig. 6, for one of the correctly operating transformers,
the plot shows the stabilization of the average value µp of the
estimated value of parameter p as the size N of the random
sample increases. The number of random samples N varied
from 5 ·102 to 5 ·104. For each given N , the test was repeated
M = 2000 and the mean value µp and standard deviation σp
were determined. Additionally, in Fig. 6, you can see that asN
increases, the standard deviation σp also decreases. What can
be summarized is that as the random sample size N increases,
the output p of the detector will on average take the value of
µp and the variability of the result will decrease.

A similar behavior is observed at the detector output for
the λ parameter (Fig. 7). For the same transformer, as the
size of the random sample N increases, the mean value µλ of
the estimated value of the λ parameter stabilizes at a certain
level and the standard deviation σλ decreases. Which can be
summed up again, as the random sample sizeN increases, the
output λ of the detector will on average take the value of µλ

and the variability of the result will decrease.
The conclusion is that in the detector based on the ML

method, the greatest possible number of samples N should
be selected. However, this results in an increase in the time
needed to find a solution to the non-linear ML equation (4).

In Table 1, the results of the average estimated µp value
of the parameter p and the average estimated µλ value of
the λ parameter for M = 2000 repetitions and a relatively
large random sample size of N = 5 · 104 are collected. The
values in the table are for 10 normally working transformers
(Tr1-Tr10), a damaged one (Def) and an ideal one (Ideal).

FIGURE 6. The average value µp and standard deviation σp of the
estimated value p as the size N of the random sample increases
compared to the average value µp3 and standard deviation σp3 of the
estimated value p3 for the ML method and a selected transformer.

FIGURE 7. The average value µλ and standard deviation σλ of the
estimated value λ as the size N of the random sample increases
compared to the average value µλ3 and standard deviation σλ3 of the
estimated value λ3 for the ML method and a selected transformer.

TABLE 1. Average values at the detector output of the estimated values p,
p3, λ and λ3 for 10 normally working transformers (Tr1-Tr10), a damaged
one (Def) and an ideal one (Ideal) for N = 5 · 104 and the ML method.

In the case of an ideal transformer, the solution of the
ML equation (4) for the shape parameter p tends to infinity.

45756 VOLUME 12, 2024



R. Krupiński, E. Kornatowski: Analysis of the GGD Vibroacoustic Detector

FIGURE 8. ML function (4) of an ideal transformer.

TABLE 2. Standard deviations at the detector output of the estimated
values p, p3, λ and λ3 for 10 normally working transformers (Tr1-Tr10),
a damaged one (Def) and an ideal one (Ideal) for N = 5 · 104 and the ML
method.

Therefore, in the absence of convergence, the exponent pwas
limited to 30. Fig. 8 shows the ML function as it approaches
0 for increasing p values. As mentioned, this corresponds
to the case when p → ∞ and the GGD density function
becomes a uniform distribution.

Table 2 presents the results of standard deviations σp and
σλ at the detector output for the estimated p and λ parameters
for a relatively large random sample of N = 5 · 104 and
M = 2000. The detector output variances, i.e. σ 2

p and σ 2
λ,

can be reduced by the following procedure. Three times the
output values for the detector (calculations can be performed
in parallel) p1, p2 and p3 and λ1, λ2 and λ3 are determined.
For each set, the final result value of detector p3 (and λ3) is
determined by calculating the median from the values. Based
on Table 2, it can be seen that the σp3 and σλ3 standard
deviations of the p3 and λ3 detector output values decreased
relative to σp and σλ.

Taking into account the values in Table 1, it can be seen
that the average values of the detector output for these two
procedures are close: µp ≈ µp3 and µλ ≈ µλ3. In Figures 6
and 7, you can compare how σp3 and σλ3 change for the

FIGURE 9. The convex hull (ch 5 · 102) covering correctly operating
transformers (·) is separated from the area of the damaged transformer
(+). The ellipses marked (±σpλ) around points (µp, µλ) are formed by the
standard deviations (µp ± σp, µλ ± σλ) for N = 5 · 102.

detector output pair with a variable value of N in relation to
σp and σλ. It should be noted that the determined values of
p3 and λ3 are characterized by a smaller standard deviation.
The next conclusion is that in order to reduce the variance

of the detector output values, several detector output values
should be determined and the median calculated from them.
Again, more solutions to the non-linear equation (4) are then
needed.

In order to examine the separation of areas on the pλ plane
for correctly operating and damaged transformers, depending
on the size of a random sample N , a convex hull was
determined for normally operating transformers. The convex
hull was constructed in such a way that it covers the points
formed by the average values of the detector output (µp, µλ).
The convex hull was additionally increased by the standard
deviations of each point (µp ± σp, µλ ± σλ). These standard
deviations were plotted as ellipses around points (µp, µλ)
for different samples sizes: in Fig. 9 for N = 5 · 102 and
in Fig. 10 for N = 5 · 104. Fig. 9 shows that the convex
hull (ch 5 · 102) designated in this way, covering correctly
operating transformers, is separated from the area of the
damaged transformer (+). The faulty transformer is located
leftmost on the pλ plane with the lowest λ value. The ideal
µp = 30 transformer is located above the area and has been
omitted from the diagram.

In Fig. 10 for a relatively large sample size of N =

5 · 104, the standard deviations σp and σλ have decreased
as shown by the smaller ellipses. In addition, the convex
hull for N = 5 · 104 is contained in the convex hull for
N = 5 · 102. Which shows that increasing the size of
the random sample N increases the separation of the area
containing correctly operating transformers from the area of
the damaged transformer.

The computation can be sped up by reducing the sample
sizeN at the expense of increasing the variance of the detector
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FIGURE 10. The convex hulls (ch 5 · 102 for N = 5 · 102) and (ch 5 · 104 for
N = 5 · 104) covering correctly operating transformers (·) are separated
from the area of the damaged transformer (+). The ellipses marked
(±σpλ) around points (µp, µλ) are formed by the standard deviations
(µp ± σp, µλ ± σλ).

FIGURE 11. Mean values µp of parameter p for the ML method; mean
values µp3 of parameter p3 for the ML3 method; mean values µp of
parameter p for the ApxSm method; mean values µp3 of parameter p3 for
the ApxSm3 method; for small values of N .

output values, but this also comes at the cost of the ML
method being unsolvable. Fig. 11 presents the results of the
estimation of the p parameter for the selected transformer for
small values of N in the range from 51 to 450 and the number
of repetitions M = 5000. No value in the graph means no
convergence of the ML method.

Using the previously described procedure, e.g. three calcu-
lations, omitting the cases of no solution of the ML method
and determining the median from the existing solutions, it is
possible to increase the efficiency of determining the detector
output value (ML3 in Fig. 11), but it is not always possible.
Three repetitions may result in no solution too. Table 3
contains the average values for the p, p3, λ and λ3 parameters
for the considered transformers for N = 51 and M = 5000.
Improvements can be seen for p3 and λ3, but solutions are
still missing.

TABLE 3. Average values at the detector output of the estimated values
p, p3, λ and λ3 for 10 normally working transformers (Tr1-Tr10),
a damaged one (Def) and an ideal one (Ideal) for N = 51 and the ML
method. (-) no solution.

TABLE 4. Average values at the detector output of the estimated values p,
p3, λ and λ3 for 10 normally working transformers (Tr1-Tr10), a damaged
one (Def) and an ideal one (Ideal) for N = 51 and the ApxSm estimator.

By using the approximated fast estimator (ApxSm)
from [18] one can obtain results for such small values of
N . Table 4 shows that values have been determined for all
transformers. This estimator does not require solving a non-
linear equation, so the approximated value can be quickly
determined.

Also for this estimator, by calculating the median
(ApxSm3), e.g. from three estimated p values, it is possible
to reduce the standard deviation of the result value. Fig. 12
shows that the σp3 standard deviation of p3 is smaller for
ApxSm3 than the σp standard deviation for ApxSm for the
range N from 51 to 450 for the damaged transformer.

Table 5 summarizes the σp, σp3, σλ and σλ3 standard
deviations for ApxSm and ApxSm3, which leads to the
conclusion that there is a decrease in the variance at the
detector output for ApxSm3 in relation to ApxSm.

As before, in Fig. 13, the calculated average values at the
detector output (µp, µλ) for N = 51 from Table 4 have been
marked on the pλ plane with ellipses around these points
showing the standard deviations (µp ± σp, µλ ± σλ) from
Table 5.
A convex hull was constructed around these areas for

normally operating transformers. It can be noticed that the
area of the damaged transformer overlapped the convex hull
of normally operating transformers. This means that there
is a possibility that transformers on the border of this area
may be classified in the wrong area. It also means that for a
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FIGURE 12. The average value µp and standard deviation σp of the
estimated value p as the size N of the random sample increases
compared to the average value µp3 and standard deviation σp3 of the
estimated value p3 for the ApxSm estimator and a selected transformer.

TABLE 5. Standard deviations at the detector output of the estimated
values p, p3, λ and λ3 for 10 normally working transformers (Tr1-Tr10),
a damaged one (Def) and an ideal one (Ideal) for N = 51 and the ApxSm
estimator.

FIGURE 13. The convex hull (ch) covering correctly operating
transformers (·) overlapped the area of the damaged transformer (+). The
ellipses marked (±σpλ) around points (µp, µλ) are formed by the
standard deviations (µp ± σp, µλ ± σλ) for N = 51 and the ApxSm
method. (x) - an ideal transformer.

single sample the variance of this estimator is too large. If we
increase the number of trials, e.g. three times as in the case of

FIGURE 14. The convex hull (ch) covering correctly operating
transformers (·) is separated from the area of the damaged transformer
(+). The ellipses marked (±σpλ) around points (µp3, µλ3) are formed by
the standard deviations (µp3 ± σp3, µλ3 ± σλ3) for N = 51 and the
ApxSm3 method. (x) - an ideal transformer.

ApxSm3, the standard deviation of the detector output values
will decrease. This case is shown in Fig. 14. The average
values at the detector output (µp3, µλ3) were plotted there
as well as ellipses around these points showing the standard
deviations (µp3 ± σp3, µλ3 ± σλ3). The area indicating
correctly operating transformers has shrunk and the distance
from the damaged transformer area has increased. Therefore,
for the ApxSm estimator, several trials should be performed
and the median should be taken as the output of the detector.

As a conclusion, also for the ApxSm estimator, in order
to reduce the variance of the detector output values, not just
three but several detector output values should be determined
and the median calculated from them.

The ApxSm estimator was not designed for large values
of p, so for an ideal transformer the shape parameter p was
approximated by a value of about 4.4.

Finally, it is recommended to first determine the p value
quickly using the fast estimator ApxSm, and then use this p
value as a starting point for the ML algorithm to accelerate
convergence.

V. CONCLUSION
The article used a method of detecting defects in the
mechanical structure of a power transformer core. The
diagnostic process was based on a vibroacoustic study of tank
vibrations in a steady state, without load, and a statistical
model of GGD distribution. The calculation results related to
transformers of equal power of 16 MVA with different usage
periods and degrees of wear were presented.

The article has shown the influence of the variance of
the maximum likelihood estimator of the GGD distribution
on the pair (λ, p) constituting the output of the detector
of power transformer core damage, where the reduction of
the variance value is obtained by increasing the number of
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random samples of the detector. The reduction of the variance
of the output values can also be obtained by repeating, for
example, three times the calculations and determining the
median as the result value.

Speeding up the calculations can be achieved by using the
approximated fast estimator [18] of GGD, but it is necessary
to repeat the calculations several times and determine the
median as the output value in order to reduce the variance
of the output values.

An area covering correctly operating transformers has been
defined, taking into account the standard deviation of the
estimated values of λ and p, which has a clear separation from
the area of the damaged transformer.

Imaging on the (λ, p) plane of many confirmed (preferably
by internal inspection) cases of units that are functional and
damaged to varying degrees is the subject of further research
by the authors. This work presents the possibilities of using
the GGD tool to detect possibly developing core defects. The
basis of the detector’s operation is comparative analysis with
units of known technical condition, confirmed by diagnosis
using other methods.
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