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ABSTRACT Automatic detection of pitting on Ball Screw Drive (BSD) is essential to ensure normal
production activities. However, the scarcity of defective samples and precisely labeled data poses a
significant challenge. To address this, we propose an efficient double self-supervised model that operates
at both the image and pixel levels, aiming to construct a high-performance model trained with defect-free
data for detecting unknown defects in BSD images. By incorporating global and local information and
extracting features at multiple hierarchical levels, the model’s generalization performance is enhanced. The
image-level self-supervised representation is first learned by classifying normal images from the PasteNoise,
a data augmentation approach by pasting noise patches at random locations in normal images. Meanwhile,
the pixel-level self-supervised representation is learned by segmenting the noise patch to locate abnormal
regions. Then, we introduce a novel feature masking strategy in a masking and prediction task for accurate
defect localization. In addition, we use Histogram of Oriented Gradients (HOG) features with local contrast
normalization as prediction targets to capture local shapes and appearances to improve the robustness of the
model. The proposed method achieves competitive receiver operating characteristic curves of 97.42 (image-
level) and 94.57 (pixel-level) on the BSD dataset. In experiments on the MVTec AD, the proposed model
shows good performance, indicating the broad adaptability of our approach.

INDEX TERMS Convolutional neural network, defect detection, deep learning, histogram of oriented
gradients, self-supervised learning.

I. INTRODUCTION
Ball screw drive is a commonly used mechanical device
for rotational motion transmission [1], mainly consisting
of a ball screw, guide rail, and drive mechanism. It is
also one of the components most susceptible to wear. Over
time, the rolling elements induce material fatigue on the
spindle, ultimately leading to small wear on the spindle’s
surface, called pitting (Figure 1). These pittings can lead to
high roughness of machined parts and unstable processing
accuracy. Traditional methods rely mainly on manual
inspection, which is inefficient and vulnerable to human
interference. At the same time, mechanical wear is a gradual
process. The conventional force signal, ultrasonic signal,
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FIGURE 1. Examples of spindle pittings.

vibration signal, current signal, and acoustic emission signal
are indirect signals that are not sensitive to minor wear.
Recently, BSD images taken by observing holes are used for
defect detection. The new approach is convenient, low-cost,
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and online. Subsequently, the automatic detection system
based on BSD images gradually became a research focus.

In recent years, computer vision has achieved remarkable
results in many automatic detections [2], [3], [4]. Deep
learning methods, especially Convolutional Neural Networks
(CNN), frequently appear in industrial production applica-
tions [5], [6]. However, in highly automated production sce-
narios, where the yield rate of products is particularly high,
collecting defect samples is time-consuming. In addition,
since defects are generated by uncontrolled factors in the
production process, the forms of defects are various, and it
is difficult to collect complete defective samples of various
forms.

To reduce overdependence on data annotations, many
self-supervised methods solving different proxy tasks have
been widely studied [7], [8], [9], [10]. DeVries and Tay-
lor [11] randomly cut areas of input images to reduce overfit-
ting and improve the generalization ability of convolutional
neural networks. Li et al. [9] propose a data augmentation
strategy, which cuts image patches and then pastes them
to random locations in the image to simulate real defects,
but the trimmed patches are only a rough approximation
of real defects. Pittings in the BSD [12] inspection are
typically irregular and subtle(Figure 2), which is a challenge
for the detection task. The differences in pitting on BSD
between normal and anomaly patterns are often fine-grained
as defective areasmight be small and subtle in high-resolution
images. However, most self-supervised methods have poor
generalization due to a focus on object-centered natural
images. Thus, it is essential for self-supervised representation
learning to define an appropriate pretext task in pitting
detection.

FIGURE 2. The initial pitting area is small, and compared to the
high-resolution BSD image, the pitting is still less evident after
magnification of 9 times.

In this work, we first construct a self-supervised framework
that learns image representations by distinguishing anomaly
data from normal data at image-level. We propose a

novel proxy classification task that distinguishes between
normal data and data augmented by PasteNoise. PasteNoise
augmented samples are generated using a Perlin noise gener-
ator [13] along with an anomaly source image, which remains
unrelated to the input image. Compared with common
pseudo anomaly patches, such as rectangles or polygons, the
texture of the noise patch is more natural, and the shape
transformation is more diverse. Although we cannot obtain
real defects, experiments show that representations learned
by detecting noise patches generalize well to detecting real
defects.

Moreover, masking the input image is one of the most
popular augmentations used in transformer-based autoen-
coders [14], [15]. Self-supervised learning with masking
shows more scalability when combined with ViT [15],
[16]. However, self-supervised learning networks with naive
masking do not work well in CNNs because masked inputs
generate parasitic edges and distort the balance between
global and local features [17]. Inspired by the focal mask [18],
we introduce a new mask module, which avoids distorting
the balance among features. High-level features are randomly
masked to overcome the parasitic edge problem.We construct
the second self-supervised framework by introducing the
masking method into the convolutional network to improve
the performance in detecting subtle defects. We specifically
select HOG features with local contrast normalization and
cheap computational overhead as the predictive target at
pixel-level, further improving the robustness of the model.
The self-supervised learning network with masking makes
the model learn to find subtle differences between normal and
defective images and generalizes better to real defects.

The image-level self-supervised task and the pixel-
level self-supervised task are both important methods in
unsupervised learning. The image-level task contributes to
learning image-level representation and data augmentation,
while the pixel-level task focuses on image segmentation
and pixel-level annotation, allowing models to achieve
more fine-grained image understanding. Two self-supervised
learning strategies play a crucial role in addressing data
annotation challenges, improving model generalization, and
enhancing robustness. We integrate both into a unified
network model, enabling the model to learn multi-level
feature representations and comprehensively capture the
semantic and detailed information in images. The model
combines global and local information for a thorough and
accurate understanding of images, effectively adapting to data
from various domains or tasks.

The main contributions of our study are as follows:
1) We propose a double self-supervised learning detection

model for BSD defect detection. At image-level, we utilize
data augmentation to construct a proxy task, which facilitates
learning self-supervised representations by distinguishing
data with anomaly patterns from normal data. At pixel-
level, we design a new masking feature pattern for the
self-supervised training strategy to improve the model
generalization ability. After masking the high-level features,
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the network is guided to learn the detail representations of the
image by predicting HOG features.

2) We propose a novel data augmentation method called
PasteNoise that creates visually coherent anomaly patches
with varying degrees of detail and smoothness. Experiments
show the effectiveness of PasteNoise in detecting unknown
defects.

3) Our model achieves 97.42 image-level detection AUC
and 94.57 pixel-level localization AUC on BSD data, out-
performing current state-of-the-art models and meeting the
requirements of industrial scenarios. Experiments on MVTec
AD show that our approach achieves SOTA performance,
confirming the proposed method’s generalizability.

The structure of the remaining sections in this paper is
as follows. The latest research on defect detection and data
augmentation is stated in Section II. The proposed network
model is introduced in Section III. Extensive experiments
and analysis are conducted in Section IV. Finally, Section V
provides the conclusion for the article.

II. RELATED WORKS
A. DEFECT DETECTION METHODS
In the field of industrial production, machine learning has
been applied to analyze industrial images for defect detection.
Background subtraction [19] is a popular defect detection
method. The background is subtracted from the image while
preserving defects and random noise [20]. However, these
methods are susceptible to the position and noise of the
image. In recent years, deep learning has developed rapidly
in computer visual fields. Since the first CNNLeNet [21] was
proposed, several excellent networks have been designed,
such as Alex [22], VGG [23], Inception [24], ResNet [25],
etc. The remarkable achievements of CNNs in various
computer vision tasks have led to their gradual application in
the field of defect detection. In [26], bilinear class activation
maps are utilized to optimize the detect defection model.
Cross-domain and domain adaptation methods are adopted
to detect ball screw faults [27].
Although computer vision has been successfully applied

in defect detection, most of the work is limited by training
datasets. Insufficient diverse annotated data and an imbalance
between normal and defective samples can cause the model’s
performance to decline when facing unknown scenarios or
variations. To mitigate reliance on the dataset, anomaly
detection, trained solely on normal images, is widely used in
defect detection [9], [10]. Reconstruction is themost common
method for anomaly detection. However, generative adversar-
ial networks sometimes construct anomaly samples that are
very similar to normal samples, which affects the network’s
ability to distinguish anomaly samples. By reconstructing
the masked filtering, Ristea et al. [7] use pretext tasks
to learn object representations in self-supervised learning.
Li et al. [9] obtain deep representations by reconstructing
randomly pasted parts. Cao et al. [28] optimizes the
feature distributions of normal and abnormal data separately,

effectively alleviating the problem of overfitting abnormal
features. Due to imprecise boundary descriptions, anomaly
scores may unexpectedly exhibit low values [28]. To alleviate
excessive generalization of anomalies, synthetic anomalies
are introduced in Draem [10], CutPaste [9], and DAF [29].
Unlike these methods, the proposed dual self-supervised
model incorporates two self-supervised tasks, extracting
features from different scales and perspectives. Multi-level
feature representations are enabled to be learned by the
model and anomalies are distinguished more accurately from
normal samples. Additionally, we overlay noise patches as
an anomaly on the normal image. Various defect features
are extracted in training by randomly masking defective
patches on images, and normal image representations are
learned simultaneously. Our patch-based model performs
better, as shown in Section IV-D.

B. DATA AUGMENTATIONS
Defect detection methods synergize with data augmentations
to improve model robustness by generating diverse abnormal
samples. Data augmentation is a critical way to avoid
model overfitting. When the data set has some apparent
characteristics, such as the images being basically taken in the
same scene, employing technologies like Cutout [11] and its
variants [9], [30], [31], [32] can aid the model in avoiding the
learning of irrelevant information unrelated to the target task.
Cutout [11] introduces irregularities by randomly masking
out some rectangular portions of an input image with zero
or other uniform values. In Random Erasing [31], the length
and width of the erased area and the replacement value of
the pixel value in the area are random. In CutMix [30],
a new training sample is created by combining two or more
input images in such a way that parts of each image are
visible in the combined image. Mixup [32] works by taking
a weighted average of the two images according to a certain
ratio. CutPaste [9] is a simple data augmentation method that
randomly cuts a patch and pastes it at a random position of
the original image.

In anomaly detection, self-supervised networks learn the
irregularities introduced by data augmentations to generalize
the representation of defects. In this work, we learn
representations by classifying normal data from PasteNoise
during training, which is a straightforward and practical
data augmentation strategy. PasteNoise is used to generate
more natural and diverse abnormal samples for training. The
model’s generalization capability is enhanced, resulting in
precise recognition of unseen anomalies in detection.

III. METHOD
In this section, we introduce a double self-supervised learning
model combined with PasteNoise data augmentation and a
mask-and-predict task, as shown in Figure 3. The backbone
network is modified based on the lightweight ResNet-18 [25]
with 18 weight layers, including 17 convolutional layers
and a fully connected layer. Feature maps are extracted
by 17 convolutional layers, as shown in Table 1, and
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FIGURE 3. The overview of the double self-supervised model architecture. Anomaly images generated by PasteNoise, along with input
images, are fed into a Convolutional Neural Network (CNN). The extracted feature maps are directed into two branches. (a)Through a
Multi-Layer Perceptron (MLP) and a Fully Connected layer (FC), image-level classification predictions are generated. Our model acquires
high-level semantic information within the images by minimizing the prediction loss LCE . (b) Following the masking process in the Masked
Split Convolution Module (MSCM), a Channel Attention Module (CAM) is utilized to scale the channel weights. Subsequently, an HOG
decoder maps the feature maps back to a one-dimensional vector representing Histogram of Oriented Gradients (HOG). By minimizing the
similarity loss LMSE between the extracted HOG features from the input image.

TABLE 1. Architecture of backbone network.

then they enter two streams of the network. One stream
is a 3-layer multilayer perceptron (MLP) projection head
and a fully connected layer with the cross-entropy loss
(LCE ), which is used to measure the classification loss in
self-supervised learning with PasteNoise. The other stream
sequentially passes through the masked split convolution
module (MSCM), channel attention module (CAM), and
HOG decoder. At last, our network is equipped with a

mean-squared error loss (LMSE ) that minimizes the recon-
struction error between the original HOG and the predicted
feature.

Next, the network structure is explained in detail from
the perspective of two self-supervised tasks. Self-supervised
learning with PasteNoise is described in section III-A.
Self-supervised learning with HOG and masked features is
introduced in section III-B. Additionally, we give a brief
description of the anomaly score in section III-C.

A. SELF-SUPERVISED LEARNING WITH PASTENOISE
In this section, we present a novel pretext task for learning
self-supervised representations by predicting PasteNoise
augmentation and constructing a one-class classifier.

We insert anMLP projector between the backbone network
and the classifier for better transferability [33]. Therefore, the
image-level self-supervised learning sub-network includes
a feature extractor f (·), an MLP projector g(·), and a
classifier W . Given the input image x, the outputs Fx = f (x)
of CNN is a 512-dimensional 8×8 feature map. Fx is mapped
into a projection vector g = g(Fx) by an MLP. The MLP
consists of two fully connected layers. In the MLP projector,
the hidden feature dimension is set to 512. Input images
consist of the original image x and the image augmented with
PasteNoise. The objective function for the self-supervised
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task is defined as:

Fx = f (x,P N (x)) (1)

LCE = BCE (W · g (Fx) , (0, 1)) (2)

where x is the normal image. PN denotes covering a noise
patch on the normal image. BCE is a binary cross-entropy
function.
PasteNoise: Since the shape of true anomalies is unpre-

dictable, we expect to generate anomalies outside the normal
distribution of characteristics. Following [10], a noise image
with various anomaly shapes is first generated by the Perlin
noise generator [13]. And then a random anomaly map
(Figure 4 Mp) is obtained after binarizing the noise image
by a threshold. The mask map (Figure 4 M ) preserves the
largest masked region from Mp. The anomaly texture source
image (Figure 4 Ie) is selected from an image dataset that is
different from the input image distribution. RandomAugment
[34] is applied by three random augmentation methods
from the set (Autocontrast, Posterize, Solarize, Sharpness,
ChangeBrightness, ChangeColor). Finally, an anomalous
image (Figure 4 Is) is generated, where the mask region is
filled with a linear combination of the augmented image Ie
and an anomaly-free image (Figure 4 I ) with a ratio factor α

randomly chosen between [0.5,1]. The above operation can
be formulated as follows:

Is = (1 −M ) ⊙ I + α(M ⊙ I ) + (1 − α)(M ⊙ Ie) (3)

Here, ⊙ presents the element-wise multiplication opera-
tion. This algorithm for generating anomalous images has the
following benefits. Random Perlin noise is more irregular and
closer to real anomalous. The diversity of anomaly images is
increased by introducing the hyperparameter α.

B. SELF-SUPERVISED LEARNING WITH HOG AND
MASKED FEATURES
In the second self-supervised learning task, we construct
a mask-and-predict task. This self-supervised sub-network
includes a feature extractor f (·) shared with the classification
task in Section III-A, a masked split convolutional module
ε(·), a channel attention module ϕ(·), and an HOG decoder
h(·). Here we utilize Mean Squared Error (MSE) loss to
minimize the distance between the original HOG features and
the predicted HOG as follows:

Hx = h (ϕ (ε (Fx))) (4)

LMSE = MSE (Hx , H (x,PN (x))) (5)

where x is a normal data. Fx is expressed by Equation 1.
Hx presents the predicted HOG. H means extracting HOG
features from images. MSE is an MSE loss function.

Next, we will show MSCM, CAM, and HOG decoder in
detail.

1) MASKED SPLIT CONVOLUTION MODULE (MSCM)
CNN is widely utilized in various computer vision tasks.
In CNN training, image features are continually abstracted

from low to high levels. However, as Sabour et al. [35]
stated, CNN lacks the global arrangement ability for local
features. To address this, we employ MSCM, aiming to
leverage contextual information to predict masked feature
information. This compels the model to learn the global
structure of local features for high-precision reconstruction
results. Specifically, MSCM conducts expansion, split, con-
volution, and fusion operations on the feature maps extracted
by the CNN network. During training, the model learns to
reconstruct the masked information, while providing useful
features to locate and understand anomalies.

We show the MSCMmodule in Figure 5. The input feature
Y ∈ Rw×h×c is expanded, and the dilation factor is d , where
c is the number of input channels, and w and h are the width
and height of the input feature map, respectively.

We aim to predict the spatial location of input feature Y .
Therefore, we add d zero pixels around the input feature.
The feature map is expanded to (w+ 2d) × (h+ 2d). Four
sub-feature maps of size w × h are taken from four vertices,
Ki ∈ Rw×h×c, ∀i ∈ {1, 2, 3, 4}. Convolution operations
are performed on these sub-feature maps to learn the input
spatial location information by predicting themasked portion.
Because of the same size, the spatial dimension of the module
output feature is the same as the input feature. In the MSCM,
the configurable super-parameter is only the expansion rate d ,
which is set to 2. Subsequently, we express MSCM with the
following formulas:

Ki = Si
[
Fpad(Y )

]
(6)

Yout = σ

4∑
i=1

F (Ki) (7)

where Fpad and Si represent padding and splitting operations,
respectively. F(·) is convolution, and σ denotes the sigmoid
activation function.

2) CHANNEL ATTENTION MODULE (CAM)
The output features of the Mask Splitting Convolution Mod-
ule are partially masked, which may impact the activation
ratio between channels. To enhance the modeling ability
of MSCM and find the importance of different channels,
we introduce the SE module [36] into the network. SE is a
channel attention module (CAM), and the structure is shown
in Figure 6.
CAM recalibrates the previously obtained features through

three operations, Squeeze, Excitation, and Reweight. The
Squeeze operation is to perform feature compression along
the spatial dimension, turning each two-dimensional feature
channel into a real number, using a global average pooling
completed. The second is the Excitation operation, a mecha-
nism similar to gates in recurrent neural networks. Weights
are generated for each feature channel via a parameter w,
which is learned to explicitly model the correlation between
feature channels. The scale factor s ∈ R1×1×c is the core of
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FIGURE 4. Simulated PasteNoise anomaly generation process. The binary anomaly mask Mp is generated from binarized
Perlin noise. Mask M preserves the largest masked area from Mp. The anomalous region is sampled from Ie and placed on
the anomaly-free image I to generate the anomalous image Is.

FIGURE 5. Masked split convolution module (MSCM).

CAM and can be expressed by Equation 8.

s = σ (W2 · δ (W1 · Z )) (8)

where δ represents the ReLU function, σ refers to the sigmoid
function, and Z ∈ Rh×w×c is the input descriptor. W1 ∈

R(c/r)×c and W2 ∈ Rc×(c/r) denote the weights of two fully
connected layers, a dimensionality reduction layer with a
reduction ratio r and a dimensionality increasing layer. The
last is a Reweight operation, which weights s to the previous
features by multiplying channel by channel, rescaling the
original features in the channel dimension.

3) HOG DECODER
We introduce the HOG decoder to perform the inverse
operation of encoding, extracting HOG features from the
feature map, aligning with our prediction target. The
backbone network employed in this paper is ResNet18 [25],

TABLE 2. Architecture of HOG decoder.

featuring a small number of layers and relatively few
parameters. Consequently, we construct a simple regression
unit composed of two convolution layers and regress the
feature image to a one-dimensional vector representing
HOG in Table 2. These parameters of the regression unit
are continuously corrected by the HOG loss function as
Equation 5.

C. ANOMALY SCORE
The Mahalanobis distance [37] can be used for anomaly
detection, which needs to calculate the boundary threshold
from the data center with normal data and then determine
the point is an anomaly if it is a point from the center
of the data set that exceeds the threshold. Similar to [38],
we compute the Mahalanobis distance as the anomaly score.
Mahalanobis distance is an effective method for calculating
the similarity between two unknown sample sets. Unlike
Euclidean distance, it considers the relationship between
various properties and is scale-independent. For a given test
datum x, the Mahalanobis distance is defined as follows:

M (x) =

√
(x− µ)T S−1(x− µ) (9)

where µ and S−1 are the vector mean and covariance matrix,
respectively, learned from the training data.
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FIGURE 6. Architecture of the channel attention module (CAM).

For each sample, the anomaly score can be obtained by
Equation 9. If the anomaly score exceeds the threshold θ , the
pixel is classified as an anomaly point. In the experimental
section, the Receiver Operating Characteristic (ROC) [39]
metric is computed by varying the threshold θ .

IV. EXPERIMENTS
The experimental setup is first described in this section,
including the datasets and experimental details. Then,
we demonstrate the effectiveness of our approach on the BSD
dataset and the MVTec AD dataset separately. We compare
our approach with several state-of-the-art models. Finally,
various aspects of the proposed method are explored through
ablation experiments.

A. EXPERIMENTAL SETUP
BSD dataset [12]: This dataset comprises 1,104 images,
including 710 normal images and 394 images with defects.
These images are recorded by a camera system, which is
a standard Raspberry Pi V2 microcontroller camera. The
original photos are 1130 × 460 and a small number of
about 2000×1000. Finally, 631 normal images are randomly
divided into the training set. The rest 79 normal images and
394 defective images form the test set.
MVTec AD dataset [39]: The MVTec AD dataset is aimed

at anomaly detection, which provides multi-object and multi-
defect real-world images. It contains 5,354 color images
divided into five texture categories and ten object categories.
Each category includes a set of training images without
defects and a set of images with various defects as well as
defect-free images. For the MVTec AD dataset, the training
set comprises 3,629 images, all of which are normal images.
In the test set, there are 1,725 images, including 467 normal
images and 1,258 abnormal images.
Evaluation Metrics: Following prior works, we in-depth

study model performance from both detection and local-
ization perspectives. For anomaly detection, the area under
the receiver operation characteristic (AUC) is taken as the
evaluation metric. For anomaly localization, AUC is selected
to evaluate the pixel-level localization result.
Experimental Details:These experiments are conducted on

the workstation with two INTEL XEON E5-2678 CPUs and
two GeForce RTX 2080S GPUs (8GB). We implement our

models in Python 3.7 and PyTorch 1.6. All images are resized
to 256×256. We adopt ResNet-18 [25] as a backbone in our
model. In experiments, we use the SGD optimizer with a base
learning rate of 0.03, the momentum of 0.9, and weight decay
of 0.00003. We train 800 epochs with a batch size of 32.

TABLE 3. Detection and localization performances on BSD data. For
comparison, we report image-level detection and pixel-level localization
AUCs of CutPaste [9], and SSPCAB [7].

B. DEFECT DETECTION ON BSD DATASET
We conduct anomaly detection and localization experiments
leveraging our representations trained with a double self-
supervised model. We use visual heatmaps to highlight the
region-predicted anomaly for accurate localization of defects.

We compare with two recent works, including CutPaste [9]
and SSPCAB [7]. Using the same backbone network
(ResNet18) helps eliminate the impact of differences in net-
work structures, ensuring a fair comparison. Identical basic
configurations, including hyperparameters, learning rates,
optimizers, etc., contribute to the reliability and repeatability
of the comparison. The CutPaste [9] method shows high per-
formance in image anomaly detection. It utilizes a technique
of cutting images and pasting them into different positions to
construct negative samples. However, such operations may
lead to overfitting, particularly when the model is trained on
smaller datasets. In SSPCAB [7], a self-supervised predictive
module is integrated with masked convolution kernels and
channel attention mechanisms to enhance features. We utilize
two self-supervised learning tasks simultaneously to acquire
comprehensive feature representations across various levels,
encompassing both global and local characteristics. This
strategy enables us to effectively capture both semantic
understanding and intricate details within images.

In Table 3, we report the detection and localization
performance on the BSD dataset. Our method achieves
an image-level detection AUC of 97.42 and a pixel-level
localization AUC of 94.57, outperforming CutPaste [9] and
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TABLE 4. Comparison of image-level detection AUC with state-of-the-art methods on MVTec AD. The best result is bold.

TABLE 5. Comparison of pixel-level localization AUC with state-of-the-art methods on MVTec AD. The best result is bold.

SSPCAB [7]. As shown in Figure 7, the proposed method can
locate the pittings more accurately than other methods. We
note that BSD images have similar backgrounds, fixed local
attributes, high resolution, and relatively stable textures in
corresponding regions of the images, which can be classified
as texture categories. Compared with the texture category on
the MVTec AD dataset, which generally achieves 99+ AUC,
the reduced performance on BSD data could be explained by
contaminated images. The examples can be seen in Figure 8,
where some contaminated regions are close to the anomaly
image distribution. Our method detects anomalous features in
these contaminated regions, which are difficult to distinguish
from real anomaly regions.

C. COMPARISON WITH STATE-OF-THE-ART MODELS ON
MVTEC AD DATASET
Our method is evaluated on the challenging MVTec anomaly
detection dataset. We use image-level AUC for evaluating

FIGURE 7. Visual comparisons with state-of-the-art methods on the BSD
dataset. Rows (a)-(d) represent input images, and results predicted by the
following methods: our proposed method, SSPCAB [7], and CutPaste [9].
The green masks are true anomalous pixels and the red regions are
located by the corresponding method.
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FIGURE 8. The original image contains contaminated areas that are difficult to mark in the ground-truth maps, which
causes a discrepancy between the ground-truth and the predicted mask map.

anomaly detection. At the same time, for localization accu-
racy, the pixel-level AUC is used for anomaly localization.
Anomaly Detection: In Table 4, we report the detection per-

formance compared with state-of-the-art models on MVTec
AD, including patch-level SVDD [41], uninformed students
[40], cut-paste self-supervised learning (CutPaste) [9], self-
supervised predictive convolutional block (SSPCAB) [7],
and CDO [28]. The proposed method outperforms recent
anomaly detection methods, achieving the best AUC in 5 out
of 15 classes and achieving the best average AUC.
Anomaly Localization: Table 5 compares our method

to the recent state-of-the-art on the task of pixel-level
anomaly detection. Our method achieves comparable results
to these well-performing methods, patch-level SVDD [41],
CutPaste [9], PaDiM [42] andCDO [28]with ResNet-18 [25].
The proposed method achieves a significant improvement in
anomaly localization accuracy.

D. ABLATION STUDY
Prediction Target Type: We explore the impact of two
different prediction targets in self-supervised learning with
masked features in Table 6. RGB is an image representation
method based on color channels, suitable for tasks that
involve consideration of color. HOG is a feature descriptor
method based on image gradients, primarily used to capture
texture and shape information in images. It exhibits strong
descriptive capabilities for the edges and contours of objects.
Compared to HOG features, regressing RGB values produces
a slight drop of about -0.5 for image classification. RGB
as a target has a potential downside of over-fitting to
high-frequency details and local statistics, which play an
insignificant role in the interpretation of image content. HOG
contributes to capturing features with strong representation
from high-level semantic specialties and focuses on obtaining
the texture-related representation of images. As a result, HOG
with local-contrast normalization is more robust to overfit
high-frequency details [43].
Double Self-Supervised Learning Tasks: We evaluate the

effect of two self-supervised learning tasks on the BSD
dataset in Table 7. We note that self-supervised learning of
representations with noise patches achieves decent results
alone. Self-supervised learning of spatial representation
with masked features, using HOG as the prediction target,

TABLE 6. ‘‘HOG’’ and ‘‘RGB’’ present HOG features and pixels as
prediction targets in the masked self-supervised task, respectively.

TABLE 7. ‘‘HOG’’ denotes HOG features as prediction targets in the
masked self-supervised task. ‘‘NP’’ means the self-supervised task
with noise patches.

FIGURE 9. Visualization of normal and augmented normal samples.

is also a distillation mode and can obtain a detection
effect (95.16 detection AUC and 93.75 localization AUC).
Interestingly, when these two self-supervised tasks are
integrated into the same backbone network model, a better
detection effect (97.42 detection AUC and 94.57 localization
AUC) is achieved than when used alone. Integrating dual
self-supervised tasks at both image and pixel levels enables
the network to extract multi-level abstract features. This
enhances the model’s robustness to noise or complex
environments, resulting in more reliable and versatile repre-
sentations.
Anomaly Patterns: We study the performance of repre-

sentations trained by patching diverse patches to normal
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FIGURE 10. Visual comparisons of different anomaly patterns. The green masks are true anomalous pixels and the red regions are
located by the corresponding method.

images, such as scar, normal, scar+normal, and noise
patch. Scar patch, which is proposed in [9] for anomaly
detection, is a scar-like thin rectangular box filled with
an image patch. Normal patch denotes the patch that is
cut from the input image. Noise patches generated by the
Berlin noise generator in Section III-A have random and
disorderly features while maintaining a uniform distribution
at a specific scale. Combining with ‘‘Scar’’ enhances the
diversity of synthesized anomalies, which help the model
comprehend and learn to handle unknown anomaly patterns.
With a finer-gained detection task to leverage scar and noise
patch together augmentation, we achieve the best detection
(97.42 AUC) and localization (94.57 AUC) performance.
We show samples from considered augmentations patches
in Figure 9 and report the detection and localization AUCs
in Table 8. As shown in Figure 10, the accurate localization
of defects is achieved by training with the anomaly pattern
‘‘Noise + Scar’’.

TABLE 8. Detect performance trained with various patch combinations.

Different Mask Types: We explored the impact of
other masking methods on our model, including ‘‘No’’,
‘‘Dropout’’, and ‘‘Mask’’. The detection results are shown in
Table 9.We observe that ‘‘MSCM’’ brings about performance
improvements with a 0.78 image-level AUC and a 1.33 pixel-
level AUC. In contrast, ‘‘Dropout’’ is a technique that
randomly zeros elements in the feature maps during the
model training process, aiming to introduce randomness to
prevent overfitting. However, this random zeroing might
lead to incomplete information transmission with limited
training data. In some cases, it performs worse than not
using any feature map masking (i.e., ‘‘No’’). On the other
hand, ‘‘Mask’’ simulates the absence of partial information
by applying a binary mask to the input feature map. However,

TABLE 9. Detection results of different mask types. ‘‘No’’ means not to
mask the feature map. ‘‘Dropout’’ presents to randomly set the elements
in the feature map to zero with a probability of 0.5, ‘‘Mask’’ denotes a
rectangle to mask the feature map, and the masking rate is 50%. ‘‘MSCM’’
is our masking strategy described in Section III-B.

FIGURE 11. Visual comparisons of different mask types. Rows
(a)-(e) represent input images, and results predicted by the following
mask types: MSCM, Mask, No, and Dropout respectively. The green masks
are true anomalous pixels and the red regions are located by the
corresponding method.

the effectiveness of ‘‘Mask’’ may be influenced by the
specific task and data distribution. As shown in Figure 11,
MSCM demonstrates good localization accuracy, whereas
‘‘Dropout’’ shows more errors in predictions.

These masking strategies play a certain role in improving
detection effectiveness, although the effects are relatively
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modest. In future research, we aim to enhance the efficacy
of masking methods by adjusting parameters, introducing
new techniques, or combining them with other advanced
approaches.

V. CONCLUSION
In this paper, we propose a double self-supervised model
for BSD defect detection. A noise generator is utilized
to generate synthetic abnormal images with random and
disordered characteristics. The diversity of training samples is
enhanced. Then, self-supervised proxy tasks are constructed
at both the image and pixel levels. These tasks have
a positive effect on solving the problem of difficult or
expensive data labeling and improving the performance of
the model on vision tasks. Pitting defects on BSD surfaces
can be effectively identified in complex production scenar-
ios (97.42 image-level AUC and 94.57 pixel-level AUC).
The proposed model outperforms state-of-the-art anomaly
detection models on real BSD datasets by +2.0 image-
level AUC and +0.56 pixel-level AUC. The proposed model
is optimized from multiple perspectives (textured natural
PasteNoise, multi-view feature representation optimization)
for improving network performance. The self-supervised
learning model for defect detection is an effective method
in industrial production, improving detection accuracy and
reducing reliance on manual labeling or defect data.

In practical applications, the limitations of the proposed
method include the following several aspects. Firstly, the
proposed model focuses on classification and localiza-
tion tasks, and segmentation accuracy needs improvement.
In future work, it is essential to further research and optimize
defect pixel-level segmentation tasks. This involves adjusting
the network architecture to extract features for inferring
defect positions and utilizing defect features (size, shape,
color) to better differentiate specific categories. Secondly,
it is observed that the accuracy of locating small and
inconspicuous defects is lower in complex backgrounds.
Further research on the precise localization of subtle and
inconspicuous anomalies should also be conducted in future
work.
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