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ABSTRACT Time-varying problems are prevalent in engineering, presenting a significant challenge due
to the fluctuations in parameters and goals at different time points. The zeroing neural network (ZNN),
a specialized form of recurrent neural network (RNN) developed by Zhang et al., has gained attention for
its rapid convergence speed and robustness making it a valuable tool for real-time solving of diverse time-
varying problems. This review article explores the practical applications of ZNN across various domains in
the past two decades, specifically focusing on robot manipulator path tracking, motion planning, and chaotic
systems. The comprehensive scope of this review is essential for researchers and beginners looking to grasp
the efficacy of ZNN in addressing practical challenges in diverse fields.

INDEX TERMS Time-varying problems, zeroing neural network (ZNN), robustness, robot manipulator.

I. INTRODUCTION
Time-varying problems are characterized by changes in
their attributes and adjustments at different time points.
These problems are subject to temporal influences, resulting
in variations in constraints, parameters, and objectives.
Addressing these problems necessitates considering the tem-
poral factor and may require adaptively adjusting solutions to
accommodate different time points. Time-varying problems
are widespread in fields such as engineering, economics, and
ecology [1], [2], [3], among others. However, solving these
time-varying problems presents numerous challenges due
to their inherent complexity and dynamic nature. The real-
time generation of accurate results emerges as the primary
challenge.

The rapid development of neural networks has led to
their widespread application across various fields, with out-
standing performance observed in addressing static problems,
including computer vision [4], natural language processing
[5], and speech recognition [6]. However, these networks
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exhibit limitations in addressing time-varying problems.
To tackle this, in 2001, Zhang and colleagues officially
introduced a specific type of recurrent neural network (RNN)
known as the zeroing neural network (ZNN). With further
research into the ZNN model, an increasing number of
ZNN variant models have emerged [7], [8], [9], [10], [11],
demonstrating superior performance compared to the original
model. Particularly noteworthy are two key advancements:
(1) Jin et al. introduced the integration-enhanced Zhang
neural network (IEZNN) model in 2016 [12], showcasing
robust noise resistance, and (2) Liao et al. proposed the
complex noise-resistant zeroing neural network (CNRZNN)
in 2022, which further enhanced the network’s noise
resistance, performing well against linear noise. At the
same time [13], The ongoing research and the introduction
of diverse nonlinear activation functions have notably
enhanced the convergence speed of ZNN-related models
[14], encompassing Li activation functions [7], power-sum
activation functions [15], power-sigmoid activation functions
[16], hyperbolic sine activation functions [17], sign-bi-power
activation functions [18], NF1 and NF2 activation functions
[19], FAESAF and FASSAF activation functions [20] and so
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on. Notably, ZNN’s ability to employ the time derivative of
time-varying parameters to effectively track solutions stands
out as a crucial feature. This characteristic allows ZNN to
achieve automatic equilibrium based on the principle of error
reduction, drawing state values closer to the system’s zero or
equilibrium points. Additionally, the error function in ZNN
replaces the role of gradients in gradient neural networks
and does not rely on specific cost functions. Prior research
has indicated ZNN’s advantages in solving time-varying
problems, indicating excellent stability and convergence. It is
these capabilities that enable ZNN to excel in addressing
time-varying problems, such as the inverse of time-varying
matrix [21], [22], [23], [24], [25] and the time-varying matrix
equation [26], [27], [28], [29], [30], [31], [32], [33].
Due to its exceptional performance in addressing time-

varying problems, the utilization of ZNN has become
widespread across various fields, including robotics [34],
[35], [36], [37], chaotic systems [38], image processing [39],
mathematics [40], [41], [42], [43], [44], [45], andmore.Many
scenarios encountered in these domains involve time-varying
and dynamic problems. Specifically, in the field of robotics,
tasks such as path tracking [1], [46] and motion planning
[47], [48] in robotic arms represent significant examples
of time-varying problems. These activities necessitate high
noise immunity in the system. However, as ZNN research
has progressed, the noise immunity of new ZNN models has
markedly improved to meet the demands of these application
scenarios effectively. Therefore, it is essential to present
a comprehensive overview of ZNN applications in various
fields.

The comprehensive review of the relevant ZNN models
for solving time-varying problems is detailed in [49] and
[50]. Based on this, the current article offers an overview and
assessment of the specific applications of ZNN in addressing
time-varying problems. The remaining content will be orga-
nized into four sections. Section II and Section III provide
comprehensive summaries of the applications of ZNN in
manipulator path tracking and manipulator motion planning,
respectively. Additionally, a brief analysis of the application
process will be provided. Moving on to Section IV, an in-
depth review of the remarkable performance of ZNN in
chaotic systems will be presented, along with a concise expla-
nation of various chaotic systems. Section V will provide
a succinct summary of the applications of ZNN in other
fields, encompassing topics such as pendulum tracking of IPC
systems and image processing. Lastly, Section VI will offer
a comprehensive summary of the entire article, consolidating
and reinforcing the key findings and contributions.

II. APPLICATION IN ROBOT MANIPULATOR PATH
TRACKING
The utilization and implementation of ZNN models in
robotics revolve around addressing a wide range of time-
varying problems within the field. Path tracking stands out
as a notable domain to apply these models.

FIGURE 1. 3-D model of a mobile robot manipulator.

Robot manipulator path tracking refers to the precise
tracking and execution of predefined paths or motions by
a robotic arm through the utilization of computer vision
and control algorithms. This technology holds significant
importance in a wide range of practical applications across
industries [51], [52], military organizations [53], and public
services [54].

As the scope of application scenarios continues to expand,
the demands for robustness and accuracy in robotic arm
path tracking have become increasingly stringent. Notably,
in domains such as precision manufacturing, medical surgery,
and material handling, the ability to accurately track paths
is pivotal in ensuring product quality, surgical precision, and
efficientmaterial handling. Consequently, the development of
effective path tracking algorithms capable of handling diverse
forms of interference and noise while maintaining a high level
of accuracy is of utmost importance

Robot manipulators encompass various types, such as
mobile manipulators [55], dual manipulators [36], redundant-
manipulator [56] and so on. Despite their differences, these
manipulators encounter similar challenges when it comes
to path tracking, primarily revolving around the inverse
kinematics problem. To illustrate the applications of ZNN in
both continuous-time and discrete-time scenarios, this section
will focus onmobile manipulators as a primary representative
example.

A. CONTINUOUS TIME ZNN IN PATH TRACKING
The mobile manipulator represents a frequently encountered
type of manipulator, featuring both a mobile platform
and a fixed manipulator securely affixed to the platform
(Figure 1). While the forward kinematics problem for all
manipulators remains relatively straightforward and can
be resolved analytically, attaining an accurate solution for
the inverse kinematics problem, particularly in real-time
situations, presents inherent challenges [57], [58]. In general,
the forward kinematic equations for robot manipulators,
at both the position level and the velocity level, can be
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expressed as follows:

r(t) = f (θ (t)),

ṙ(t) = J (θ (t))θ̇ (t), (1)

where, θ (t) and θ̇ (t) denote the joint position vector and the
joint velocity vector, respectively. Additionally, r(t) signifies
the position vector of the end-effector relative to the world
coordinate system, and f (·) denotes a smooth nonlinear
mapping function, J (θ (t)) is defined as J (θ (t)) = ∂(θ (t))/∂θ .

To address the accurate computation of time-varying
inverse kinematics for mobile robots, in 2014, Xiao et al.
proposed the utilization of a ZNN model [59]. They
theoretically demonstrated that the ZNNmodel exponentially
converges globally to the solution of the inverse kinematics
problem for mobile manipulators.

The error function for the robotic arm path tracking can be
obtained from reference [59]:

E(t) = rw − r(t), (2)

where rw(t) is desired path to be tracked.
The design equation for the original ZNN model can be

obtained from reference [59]:

Ė(t) = −γE(t), (3)

where design parameter γ > 0. By combining equations (1),
(2) and (3), we can derive the ZNN model for solving the
time-varying inverse kinematics problem in wheeled mobile
manipulators:

J (θ (t))θ̇ = ṙw(t) + γ (rw(t) − f (θ (t))), (4)

Based on the final model (4), extensive experiments
were conducted to evaluate its performance. The results
demonstrate that the ZNN method offers higher accuracy in
solving the inverse kinematics problem of wheeled mobile
manipulators compared to the conventional GNN approach.
Specifically, the solution accuracy of the ZNN model is
approximately 1000 times greater than that of the GNN
solutionwhen γ=1.Moreover, as the value of γ increases, the
accuracy of the ZNN model solution continues to improve.
This advantage of the ZNN method stems from its predictive
nature, whereas the GNN method belongs to a tracking
approach. The superiority of ZNN in solving such problems
is evident through these findings.

Despite the notable success of ZNN models in addressing
the inverse kinematics problem of manipulators, the contin-
uous development of ZNN has led to the proposal of new
models that exhibit faster convergence speed and greater
noise resistance. In 2017, Xiao et al. introduced a novel ZNN
model called the finite-time Zhang neural network (FTZNN),
which significantly accelerated the convergence rate and was
theoretically and analytically proven to achieve convergence
in finite time. This advancement serves to substantially
enhance the accuracy of solutions for the inverse kinematics
problem in manipulators [60].

From reference [60], we can derive the design equation of
FTZNN as:

Ė(t) = −γ (k1E(t) + k2Eq/p(t)), (5)

where the design parameters p and q represent positive
odd integers satisfying p > q, while k1 and k2 are both
positive values. As defined earlier, γ maintains its previous
definition. In [60], it is theoretically established that this
design equation offers advantages over the traditional ZNN
design equation(3).

Simultaneous solution of equations (1) and (5) yields the
model for solving the inverse kinematics problem in wheeled
mobile manipulators using the FTZNN approach [60]:

J (θ (t))θ̇ = ṙw(t) + β1(rw(t) − f (θ (t)))

+ β2(rw(t) − f (θ (t)))p/q, (6)

where β1 = γ k1 > 0, β2 = γ k2 > 0.
In the simulation experiment conducted in [60], the

tracking of an elliptic trajectory utilizing only the end-
effector position was performed. Remarkably, the experiment
achieved exceptional results with an error of less than
3×10−5 m when β1 = β2 = 1. This outcome effectively
illustrates the feasibility of the model (6) and underscores
the superiority of the FTZNN approach in solving the inverse
kinematics problem for wheeled mobile manipulators.

Given the significant presence of noise interference in
practical applications, there is an increasing demand for noise
resistance during the path tracking process of manipulators
[61]. To meet this demand, Chen et al. proposed the
robust zeroing neural dynamics (RZND) model in 2018
[62], specifically designed to address the inverse kinematics
problem in wheeled mobile manipulators. This model
exhibits remarkable noise resistance capabilities, effectively
countering four common types of time-varying noise. With
its exceptional noise resistance, the implementation of this
model significantly enhances the stability of wheeled mobile
manipulators in real-world applications.

From reference [62], we can derive the design equation of
RZND as:

Ė(t) = −γE(t) − λ

∫ t

0
E(τ )dτ,

where design parameters γ > 0 and λ > 0
The dynamic equation of the RZND model for time-

varying inverse kinematics problem of wheeled mobile
manipulators as follows:

J (θ (t))θ̇ = ṙw(t) + γ (rw(t) − f (θ (t)))

+ λ

∫ t

0
rw(τ ) − f (θ (τ ))dτ. (7)

The block diagram of the RZND model (7), which
addresses the tracking control problem of mobile robot
manipulators under the influence of external disturbances,
is depicted in Figure 2.
Based on the simulation results reported in [62], the

position error of the end-effector during path tracking tasks

51348 VOLUME 12, 2024



T. Wang et al.: Applications of Zeroing Neural Networks: A Survey

FIGURE 2. Block diagram represents the STZNN model integrating
external disturbances to address the tracking control problem of mobile
robot manipulators. In this context, J†(t) signifies the pre-multiplication
operators by the pseudoinverse matrix J†(t) .

converges to 0 when subjected to linear noise, sinusoidal
noise, exponential decay noise, and continuous bounded
random noise. This observation confirms the outstanding
inherent anti-interference performance of the proposed
RZND model (7), making it well-suited for path tracking
applications in wheeled mobile manipulators that experience
time-varying disturbances.

In the previously mentioned utilization of the FTZNN(6)
and RZND(7) models for solving the inverse kinematics
problem in mobile manipulators, improvements were intro-
duced to the original ZNN model in two pivotal areas: finite-
time convergence and noise immunity. As the application
scenarios of manipulators continue to advance, enhancing
the convergence performance and robustness of the inverse
kinematics problem in manipulators has become a significant
research focus. In line with this objective, in 2020, Chen
et al. proposed the STZNN model, which leverages the
supertwisting (ST) algorithm for tracking control in mobile
robots [63]. Remarkably, this model facilitates rapid and
robust control processes, effectively meeting the practical
application requirements of mobile manipulators. From
reference [63], we can derive the design equation of STZNN
as:

Ė(t) = −2kψpE(t) − k2
∫ t

0
sign(E(τ ))dτ,

with the i th element of vector mapping ψp(·) depicted in:

ψ
p
i (Ei(t)) =


|Ei(t)|p,
0,
−|Ei(t)|p,

Ei(t) > 0,
Ei(t) = 0,
Ei(t) < 0,

where k is the design parameters. In addition, p = 1/2 is set.
The dynamic model applied to the mobile manipulator is

depicted below and the block diagram shown in Figure 2
clearly presents the main principle of the control strategy:

J (θ (t))θ̇ = ṙw(t) + 2kψp(rw(t) − f (θ (t)))

+ k2
∫ t

0
sign(rw(τ ) − f (θ (τ )))dτ. (8)

Chen and colleagues [63] conducted a comparison between
the CZNN model [64] and existing models, showing that

the CZNN model demonstrates exponential convergence
in undisturbed conditions but may experience steady-state
errors in the presence of disturbances. They highlighted the
limitations of current models, such as indefinite prolongation
of convergence time and relatively insufficient analysis
of stability and asymptotic convergence, underscoring the
significance of convergence performance and robustness in
complex environments. Subsequently, they presented the
design process of the STZNN model and its innovative
approach in simultaneously improving convergence time
characteristics and robustness when addressing the path
tracking issue in mobile robot manipulators. The STZNN
model was also emphasized for its thorough theoretical
analysis, showing global stability, finite-time convergence
capability, and robustness.

In the applications of M-shaped path-tracking and
Lissajous-shaped path-tracking, extensive testing and com-
parison with the CZNN model confirmed the effectiveness
and practical potential of the STZNN model in addressing
the path tracking issue for mobile robot manipulators.
The STZNN model demonstrated significant advantages in
path tracking control, especially in terms of convergence
performance and robustness, surpassing conventional models
like the CZNN model.

This innovative theoretical analysis and practical testing
provide robust support and evidence for the application of the
STZNNmodel in addressing the path tracking issue of mobile
robot manipulators.

With the continuous advancements in ZNN models,
an increasing number of models have emerged to address the
inverse kinematics problem in wheeled mobile manipulators,
leading to the maturation of path tracking applications
in these manipulators. For instance, in 2020, Jin et al.
introduced an interference-tolerant fast convergence zeroing
neural network (ITFCZNN) that employs a novel activation
function (NAF) [65]. Through experimental verification,
the applicability and feasibility of ITFCZNN in path
tracking for wheeled manipulators under interference and
noise conditions were substantiated. In 2021, Chen et al.
proposed a unified framework of ZNN that incorporated a
novel neural-network-based model [66]. By leveraging the
Lagrange method, this model converted the time-dependent
nonlinear optimization problem, which includes multiple
types of constraints, into a time-dependent equality system.
Termed the multi-constrained ZNN (MZNN), this model
inherently exhibits the effectiveness of exponential con-
vergence by utilizing time-derivative information. Through
nonlinear optimization control applications in mobile robots,
it was convincingly demonstrated that MZNN possesses
the physical validity required for controlling mobile robots
with performance index optimization and multiple physical
limit constraints. In 2022, Luo et al. proposed a new
hyperbolic tangent varying-parameter ZNNs (HTVP-ZNNs)
with time-varying DCPs (designed convergence parameters)
and a robust HTVP-ZNNs (HTVPR-ZNNs) [67], which
exhibited excellent performance in trajectory tracking tasks
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of the robot. In 2023, Lan et al. devised a non-linear
activation function and leveraged it to propose a non-linearly
activated ZNN (NAZNN) model [68]. The application of this
NAZNN model in addressing the trajectory tracking fault
problem of a manipulator effectively yielded positive results,
as demonstrated through experimental analysis.

B. DISCRETE TIME ZNN IN PATH TRACKING
Previous studies have shown that continuous time ZNN
models are highly effective in the field of manipulator path
tracking. However, the direct implementation of continuous
time ZNN models on digital computers poses challenges due
to the need for a stable sampling interval (τ ) throughout
the computation process [69], [70]. Moreover, continuous-
time ZNN models assume instantaneous communication and
response among neurons, but this is not feasible in digital
circuits due to inherent sampling gaps and unavoidable time
delays.Consequently, researchers have developed discrete
ZNNmodels that have yielded favorable results in the domain
of manipulator path tracking.

In order to improve the applicability of the discrete-
time ZNN model in manipulator path tracking, in 2014 Jin
and colleagues first proposed and investigated a Taylor-
type numerical differentiation formula. Subsequently, they
introduced the T-ZNN-K model and T-ZNN-U model [71],
which were shown to have a residual error of O(τ3). This
model exhibited outstanding performance in manipulator
path tracking.

From reference [71], we can derive the design equation of
T-ZNN-U as:

Xk+1 = −Xk (
11
6
Ak − 3Ak−1 +

3
2
Ak−2 −

1
3
Ak−3)Xk

− h(XkAkXk − Xk ) +
3
2
Xk − Xk−1 +

1
2
Xk−2, (9)

where step-size h = τγ > 0.In the context of the
inverse kinematics problem in robotic arms,the analytical
solution to the inverse-kinematic problem is equation(1),
where J†(θ (t)) is the pseudoinverse of time-varying Jacobian
matrix. We need to obtain J†(θ (t)) in real time t for the
control of the robot. Defining Ak = J (θ (kτ )) and exploit the
aforementioned ZNN models (9) to solve J†(θ (t)).
In the experiment, Jin et al. found that the discrete ZNN

model, generated using Newton’s iteration method for path
tracking of a five-link planar robot manipulator, produced
a maximum position error approximately 10 times larger
than that of the T-ZNN-U model [71]. Additionally, in 2016,
Liao et al. compared the position error generated by the
T-ZNN-U model with that of the discrete ZNN model,
which was created using Euler’s method for manipulator
path tracking. The results indicated that the T-ZNN-U model
exhibited the smallest error [72], thereby further highlighting
the superiority of the T-ZNN-U model proposed by Jin et al.
in the application of manipulator tracking.

Sun et al. aimed to enhance the accuracy of manipulator
path tracking. They introduced a high accuracy first-order

derivative approximation formula for discretization, and
subsequently developed two models: HADTZTM-K (high
accuracy discrete-time zeroing-type model with known
derivative information) and HADTZTM-U (high accuracy
discrete-time zeroing-type model with unknown derivative
information) [73]. These models were applied to the path-
tracking of a four-link planar manipulator, yielding favorable
outcomes.

From reference [73], we can derive the design equation of
HADTZTM-K as:

Xk+1 =
5
24
Xk +

1
2
Xk−1 +

1
4
Xk−2 +

1
6
Xk−3 −

1
8
Xk−4

+ 2A+

k (τ Ḃk − τ ȦkXk − h(AkXk − Bk )), (10)

And the HADTZTM-U is:

Xk+1 =
5
24
Xk +

1
2
Xk−1 +

1
4
Xk−2 +

1
6
Xk−3

−
1
8
Xk−4 + 2A+

k (
25
12
Bk − 4Bk−1 + 3Bk−2

−
4
3
Bk−3 +

1
4
Bk−4 − (

25
12
Ak − 4Ak−1

+ 3Ak−2 −
4
3
Ak−3 +

1
4
Ak−4)Xk

− h(AkXk − Bk )), (11)

where step size h = γ τ > 0, and τ denotes the sampling gap.
It is worth noting that the path-tracking problem of a planar
manipulator bears resemblance to that of wheeled mobile
manipulators, with both being amenable to formulation using
formula (4), so theAk+1 = J (θ (tk+1)) andBk+1 = ṙw(tk+1)+
γ (rw(tk+1) − f (θ (tk+1))).
In [73], the authors utilized the proposed HADTZTM-

K (10) and HADTZTM-U (11) models to enable three-
leaf-clover path tracking for a four-link planar manipulator.
Initially, the superior performance of the proposed
HADTZTM-K model was validated under various parameter
h settings through numerical simulations. When compared to
DTZTM and DTETM, the HADTZTM-K model exhibited
reduced positional error, with the maximum positional error
being approximately 2.87 times smaller than that of DTZTM.
Furthermore, it was observed that the positional error of
the DTZTM model decreased with increasing parameter
h, though the minimum positional error remained approx-
imately 1.2-1.3 times larger than that of HADTZTM-K.
Finally, the effectiveness of HADTZTM-K in path tracking
was confirmed through additional numerical simulations,
illustrating its ability to achieve minimal positional error.
The application of discrete-time ZNN models in path-

tracking problems has become increasingly significant with
rapid development. In 2021, Liu et al. introduced a novel
Taylor-type difference rule with an error pattern of o(τ 4),
and subsequently proposed the FDNTZNN model (a high
accuracy noise-tolerant five-step discrete-time zeroing neural
network) [74]. This model exhibited exceptional accuracy in
manipulator path tracking.
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From the [74], we can infer that the FD-NTZNN-k model
is:

Xk+1 = 2A−1
k (−τ (

25
12
Ak − 4Ak−1 + 3Ak−2 −

4
3
Ak−3

+
1
4
Ak−4)Xk − h(AkXk − I ) − h1Jk ) + 2τηk

+
5
24
Xk +

1
2
Xk−1 +

1
4
Xk−2) +

1
6
Xk−3 −

1
8
Xk−4,

Jk+1 = 2τ (AkXk − I ) +
5
24
Jk +

1
2
Jk−1 +

1
4
Jk−2

+
1
6
Jk−3 −

1
8
Jk−4,

where τ is sampling time, h = τγ > 0 signifies the step size,
h1 = τλ > 0, η is unknown noises and similar to formula (9)
Ak = J (θ (kτ )).
In [74], Jin et al. employed the FDNTZNN model in

the path tracking of a two-link planar manipulator. They
conducted a comparative analysis between the FDNTZNN
model and the EDNTZNN model (euler-type discrete-time
noise-tolerant), considering error in different noise scenarios
ranging from no noise to constant, linear, and random noise.
The FDNTZNN model exhibited the lowest maximal steady-
state residual errors, indicating the superiority of FDZNN in
its application to manipulator path tracking.

In 2023, Wu and colleagues integrated the ZND (zeroing
neural dynamics) model with the GND (gradient neural
dynamics) model to develop the CGZND (continuous
gradient-zeroing neural dynamics) model. Subsequently,
they developed the order-6 discrete gradient-zeroing neu-
ral dynamics (O6-DGZND) algorithm, aiming for easy
implementation in computer systems and digital hardware.
The algorithm was designed by simultaneously combining
the order-6 Zhang time discretization (O6-ZTD) formula and
the order-6 extrapolation (O6-E) formula [75]. This algorithm
was successfully employed to track the movement of a UR10
manipulator

From the [75], we can obtain that the O6-DGZND model
is:

Z0 = Z (0),

Zk+1 = −
h
b0

(ZkAkAHk − I )AkAHk −
τ

b0
Zk (ȦkAHk

+Ak ȦHk )Zk −
1
b0

9∑
i=1

biZk+1−i

ÃHk+1 = 6AHk − 15AHk−1 + 20AHk−2 − 15AHk−3 + 6AHk−4

−AHk−5,

Xk+1 = ÃHk+1Zk+1,

(12)

where Zk = (AkAHk )
−1,the coefficients bi with i =

0, 1, . . . , 9 are set as the first row of Table 1 in [76], h = τγ

denotes the step length, ÃHk+1 is the approximation of matrix
AHk+1 and similar to formula (9) Ak = J (θ (kτ )).

The O6-DGZND algorithm demonstrates exceptional
accuracy in the task of manipulator tracking. This high
accuracy is primarily attributed to the truncation error of the

FIGURE 3. Overall framework for the manipulator motion planning.

O6-DGZND algorithm (12), which is o(τ 6). The introduc-
tion of the O6-DGZND algorithm represents a significant
advancement in the utilization of ZNN for manipulator path
tracking

III. APPLICATION IN ROBOT MANIPULATOR MOTION
PLANNING
Robotic manipulators have become increasingly prevalent
in various applications, excelling not only in completing
path tracking tasks but also in performing motion planning
functions [77], [78], [79], [80], [81], [82]. Motion planning
involves the formulation of a robot’s motion path and action
sequence, entailing movement and operation in complex
environments while considering multiple constraints and
goals to ensure the safe and efficient completion of tasks. This
demands advanced real-time data processing capabilities.
ZNN demonstrates exceptional proficiency in addressing
time-varying problems, empowering robots to dynamically
integrate environmental changes and time-varying constraints
for optimal action planning. This adaptability becomes
crucial in complex robotic tasks, demanding agile decision-
making and efficient resource allocation. Redundant robot
manipulators play a crucial role in motion planning tasks
due to their higher degrees of freedom (DOF) compared
to the workspace, rendering them relatively flexible [56].
In the case of an end-effector tracking task, redundant
robot manipulators offer numerous solutions, but additional
constraints, including repetitive motion control, obstacle
avoidance, and manipulability optimization, can effectively
limit their movement [83]. With these constraints, motion
planning for redundant robot manipulators can be effectively
realized using ZNN models, ensuring precise task execu-
tion(refer to Figure 3).

In 2016, Jin et al. introduced the modified zhang neural
network (MZNN) model to address time-varying quadratic
programming problems. Their experimental findings demon-
strated that the utilization of MZNN effectively resolves the
joint-drift phenomenon in robot manipulator path tracking
tasks when dealing with measurement noise [84]. Sub-
sequently, in 2017, Jin et al. proposed and investigated
a parallel minimization method for fault-tolerant motion
planning of redundant manipulators at various levels [37].
This approach incorporates physical constraints in joint
space while accounting for robot kinematics and dynamics.
The method transforms into a quadratic programming
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problem with equality constraints and is resolved utilizing
a discrete-time recurrent neural network. Finally, simulation
experiments were conducted on a six-bar planar redundant
robot to validate the viability of the approach.

The physically-constrained redundant robot manipulators
can be formulated into the following standard QP in terms of
joint-acceleration level can be obtained from [37]:

minimize α(θ̈TW θ̈/2 + pTθ̈ ) + βτTτ/2

subject to J (θ )θ̈ = b,

η−
≤ θ̈ ≤ η+, (13)

where α ∈ (0, 1) and β ∈ (0, 1) are the weighting factors
with α + β = 1, W = I , p = (µ + νθ̇ ) + µν(θ − θ (0))
with µ > 0 and ν > 0, τ = H θ̈ + cτ (θ̇ , θ) + gτ (θ ), b =

r̈a + Kv(ṙd − J (θ )θ̇ ) + Kp(rd − f (θ )) and η− and η+ are the
new bound constraint of joint acceleration [85], [86].
In addition,Kp andKv are positive-definite symmetric gain

matrices for position-error and velocity-error feedbacks, H
denotes the inertia matrix, cτ denotes the Coriolis/centrifugal
force vector and gτ denotes the gravitational force vector.

And from [37] we can get the discrete-time recurrent neural
networkfor solving online the QP problem.

uk+1
= uk −

∥e(uk )∥22
∥(MT + I )e(uk )∥22

(MT
+ I )e(uk ), (14)

the specific symbol meanings in equation (14) are explained
in detail in the reference [37].

The author in [37] conducted motion planning for square
path tracking by constraining the motion of a six-link planar
redundant robot, employing an enhanced ZNN model for
iterative computation, yielding favorable outcomes. During
the simulation experiment, the six-link planar redundant
robot adeptly accomplished the task even with the first five
joints being faulty from on t = 15s, indisputably showcasing
the ZNN model’s superiority in robot manipulator motion
planning.

In 2018, Zhang et al. introduced a new varying-parameter
convergent-differential neural network (VP-CDNN) derived
from ZNN, effectively resolving the issues of joint-angular-
drift in redundant robotmanipulators. Thismodel was applied
using a six-degree-of-freedom (DOF) Kinova Jaco2 robot
[87].

The feedback considered joint-angular-drift-free
(FC-JADF) scheme of a redundant robot manipulator [87]
is expressed as follows:

minimize θ̇TW θ̇/2 + cTθ̇

subject to J (θ )θ̇ = b,

where the definition of θ̇ and J (θ ) are similar to equation(1),
W = ∥θ(t)− θ (0)∥22 and b = ṙ+K (r− f (θ )),K is a positive-
definite symmetric feedback-gain matrix.

The implicit-dynamic equation for the redundant robot
manipulator [87] is as follows:

A(t)ẏ(t) = −Ȧ(t)y(t) − (γ + tγ )8(A(t)y(t) − g(t)) + ġ(t),

where

A(t) =

[
W (t) JT(θ (t))
J (θ (t)) 0

]
,

y(t) =

[
θ̇ (t)
λ(t)

]
, g(t) =

[
−c(t)
b(t)

]
,

In addition, λ(t) is a vector of Lagrange multiplier, γ > 0 is
a scalar-valued parameter.

Through the execution of starfish-path tracking and
cardioid-path tracking tasks on a six-degree-of-freedom
(DOF) Kinova Jaco2 robot [87], and subsequent comparison
of the outcomes between joint-angular-drift and joint-
angular-drift-free scenarios, it can be inferred that VP-CDNN
effectively mitigates the joint-angular-drift issue in redundant
robot manipulators.

In 2021, Yang et al. introduced a concise continuous
ZNN (CZNN) which was subsequently discretized using
two discrete formulas to yield two concise discrete ZNN
(DZNN) controllers [88]. These controllers were then applied
to the end-effector tracking task involving obstacle avoidance
for redundant manipulators. The findings demonstrated the
effectiveness of DZNN in motion planning for obstacle
avoidance.

From reference [88] we can obtain the obstacle avoidance
formulation at velocity level:

2(pc,i(t) − po(t))TJc,i(θ (t))θ̇ (t) − 2ϕi(t)ϕ̇i(t) =

− γ ((pc,i(t) − po(t))T(pc,i(t) − po(t)) − d2i − ϕ2i (t))

+ 2(pc,i(t) − po(t))Tṗo(t),

where po is position of obstacle, pc,i is position of the ith
critical point, Jc,i(θ (t)) = ∂c,i(t)/∂θ (t) denotes the Jacobian
matrix for the critical point in the ith link, di is safe distance
between obstacle and the ith link, ϕi is additional variable, γ
is ZNN design parameter.

From reference [88], we can derive the second-
order DZNN (SDZNN)(15) and the third-order DZNN
(TDZNN)(16) as:

ωk+1 = ωk + τ ω̇k , (15)

ωk+1 = ωk +
3τ
2
ω̇k −

τ

2
ω̇k−1, (16)

where τ being the sampling gap.
The six-degree-of-freedomUR5manipulator was employed

to trace the end effector along a three-ring path under the
control of equation(15) and equation(16). The evaluation
encompassed static, vertically moving, and 3-D moving
obstacles. The application of the SDZNN and TDZNN
controllers for manipulator control notably averted collisions
with the obstacles, in contrast to the traditional SDPI
controller, which resulted in collisions [88]. These findings
distinctly underscore the superior efficacy of the ZNN model
in resolving issues related to manipulator motion planning.

In 2021, Yang et al. introduced a 6-step discretiza-
tion formula and a 4-step backward difference formula
to create a 6-step DZNN (6SDZNN) model [89]. When
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compared to the standard discrete zeroing neural net-
work (DZNN) model, the 6SDZNN model demonstrates
improved accuracy and enhanced capability in address-
ing the issue of repetitive motion control in redundant
manipulators.

From reference [89] the repetitive motion control scheme
is described as:

minimize θ̇Tθ̇/2 + λ(θ (t) − θ (0))Tθ̇ (t)

subject to J (θ )θ̇ = ṙw − λ(r(t) − rw(t)),

where the symbols in question have the same definitions as
those in equation(1) and equation(13).
And the 6SDZNN model is:

Xk+1 = −
58
93
Xk +

71
62
Xk−1 +

29
31
Xk−2

−
32
93
Xk−3 −

7
31
Xk−4 +

7
62
Xk−5

−
82
31
A−1
k (ÂkXk + b̂k + hAkXk + hbk ), (17)

where the specific symbol meanings in equation(17) are
explained in detail in the reference [89].

A physical experiment was conducted in the literature [89]
to showcase the effectiveness of the 6SDZNN model(17) in
addressing repetitive motion control issues. The experiment
involved utilizing the Kinova Jaco2 manipulator to execute
repetitive trajectory tracking similar to lung-like path move-
ments. Notably, the experimental outcomes revealed minimal
error in the images obtained after employing the 6SDZNN for
three cycles of trajectory tracking, whereas substantial errors
were evident in the images generated using other models.
These findings distinctly underscore the superior capability
of the ZNN model in resolving repetitive motion control
problems.

In 2022, Qiu et al. proposed a groundbreaking veloc-
ity layer weighted multicriteria optimization (VLWMCO)
scheme, showcasing its superiority over conventional meth-
ods for roboticmanipulators dealingwithmultiple constraints
[80]. Subsequently, the VLWMCO scheme was reformulated
as a dynamic quadratic programming problem and then
solved using a novel DZNN model and the precision-based
six-step extrapolated-backward discretization (6SEBD) rule.
Its efficacy was validated through the end-effector tracking
of the eight-petal flower path employing the six-degree-of-
freedom Kinova Jaco2 manipulator.
From the [80] VLWMCO scheme can be mathematically

formulated as:

minimize φ(θ̇ (t), θ(t), t)

subject to J (θ )θ̇ = s(t)

θ− ⩽ θ (t) ⩽ θ+

θ− ⩽ θ̇ (t) ⩽ θ+, (18)

where the specific symbol meanings in equation(18) are
explained in detail in the reference [80].

Conventional robot manipulator motion control schemes
typically accommodate single or dual optimization require-
ments [78], [90], [91], [92]. In contrast, the VLWMCO
scheme proposed by Qiu et al. can fulfill multiple opti-
mization needs, such as minimum kinetic energy, repetitive
motion planning, and infinity-norm velocity minimization.
This effectively attends to the pertinent demands for robot
manipulator motion planning in practical applications.

And the novel 6SEBD-based DZNN model with a
truncation error of o(τ 7) is obtained as:

Xk+1 =
360
147

Xk −
150
49

Xk−1 +
400
147

Xk−2 −
75
49
Xk−3

+
72
147

Xk−4 −
10
147

Xk−5 +
20τ
49

(6Ẋk − 15Ẋk−1

+ 20Ẋk−2 − 15Ẋk−3 + 6Ẋk−4 − Ẋk−5). (19)

In the literature [80], the performance of using the
conventional INVM scheme and the resultant DZNN model,
compared with using the VLWMCO scheme and the 6SEBD-
based DZNN model, for end-effector tracking of the eight-
petal flower path was experimentally compared. The results
showed that using the conventional Infinity-norm velocity
minimization scheme resulted in the actual trajectory of
the end effector gradually deviating from the expected
path during task execution, and undesirable joint angle
drift occurred. Using the VLWMCO scheme effectively
eliminated the undesirable joint angle drift, final joint
velocity non-zero, and joint velocity discontinuity, which
fully demonstrates the effectiveness of ZNN in solving robot
manipulator motion planning.

In 2022, Tan et al. introduced a closed-loop control system
based on the damping zeroing neural network (DampZNN) to
achieve unified kinematic control for both redundant robots
and continuum robots with unknown kinematics. This control
system comprises twoDampZNNs, utilized for estimating the
unknown kinematic model and solving the inverse kinematics
problem, respectively [93]. Subsequently, experiments were
carried out on diverse platforms and robots to validate its
efficacy.

The kinematic equation of a robot manipulator can be
inferred from equation(1), and rom the [93] we can get
DampZNN:

θ̇ (t) = J̃−1
dp (t)(ṙw(t) + γ4(rw(t) − r(t))),

where J̃−1
dp (t) is the inverse solution including damping factor

λ, 4(·) is the element-wise activation function array.
Tan et al. performed three sets of experiments to confirm

the superior performance of DampZNN, conducting tests
on the redundant robot in V-REP, KINOVA JACO Gen2
Robot, and continuum robot. The results indicated that when
a human operator guided the HIP along a specific path, the
robot’s bell-shaped effector followed the same trajectory with
minor error, unequivocally establishing the effectiveness of
DampZNN in teleoperation systems for both redundant and
continuum robots.
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Qiu et al. introduced a fuzzy-enhanced robust discretized
zeroing neural network (FER-DZNN) model designed
to address future multiconstrained nonlinear optimization
(FMCNO) problems [94]. They applied this model to
the motion planning of the UR5 manipulator, yielding
outstanding results and showcasing the superiority of ZNN-
related models in solving motion planning problems for
manipulators.

The future multi-constrained nonlinear optimization
(FMCNO) problem is described as below:

minimize ψ(xk + 1, tk+1)

subject to Qk+1xk+1 = qk+1

Rk+1xk+1 ⩽ rk+1

dk+1 ⩽ xk+1 ⩽ pk+1. (20)

The motion control problem of the UR5 manipulator
with multiple constraints can be considered as a specific
instance of the FMCNO problem (20). In this formulation,
the objective function, coefficient matrices, and vectors of
constraints are provided as follows [94]:

ψ(xk , tk ) =
1
2
xTk xk + ς̄ (θk − θ0)Txk ,

Qk = J (θk ), qk = żd,k + ς̃ (zd,k − zk ),

Rk =

[
ℓ1x6

−ℓ1x6

]
, rk =

[
4k+

−4k−

]
,

dk = θ̇−
− θ̇−

⊙ exp(ς̂ (θk − θ−) ⊘ (ς̆θ−)),

pk = θ̇+
− θ̇+

⊙ exp(ς̂ (θk − θ+) ⊘ (ς̆θ+)),

where the definition of θ̇ and J (θ ) are similar to equation(1),
zd,k is the end-effector desired path, żd,k is the end-effector
position vector, ς̄ , ς̃ , ς̂ , ς̆ are four positive parameters, θ±

and θ± denote the upper and lower bounds of θk and θ̇k ,
respectively, 4k± denote the upper and lower bounds of the
sum of the six joint velocities.

The FER-CZNN model is described as below:

uk+1 = uk −
1
2
uk−1 +

1
2
uk−2 +

1261
480

ζ u̇k −
289
80
ζ u̇k−1

+
79
20
ζ u̇k−2 −

437
240

ζ u̇k−3 +
57
160

ζ u̇k−4. (21)

Based on the comparative analysis [94], it can be concluded
that the FER-DZNN model exceeds the traditional ITR-
DZNN model (without considering the fuzzy factor w) in
addressing the motion control challenges encountered by the
UR5 robotic arm under multiple constraints. The motion
control problem of the UR5 manipulator with multiple
constraints can be categorized as the FMCNO problem. The
FER-DZNNmodel demonstrates exceptional performance in
achieving the motion control task of the UR5 robotic arm,
even in the presence of Gaussian white noise disturbances.
This effectively highlights the remarkable capabilities of
ZNN in robotic arm motion planning.

IV. APPLICATION IN CHAOTIC SYSTEM
Chaotic systems represent a prevalent type of nonlinear
system first identified by Edward Lorenz half a century ago
[95]. Since its discovery, chaotic systems have been the
subject of extensive research and have found widespread
application across diverse fields, such as power systems
[96], financial systems [97], ecosystems [98], and secure
communication [99], [100], [101]. Nevertheless, owing to
their inherent traits of uncertainty, irreproducibility, and
unpredictability, addressing issues related to chaotic systems
has proven to be challenging. The introduction of the ZNN
model has contributed to the effective resolution of problems
associated with chaotic systems.

In 2023, Sondess B. Aoun et al. introduced a new noise-
resistant ZNN model to address the quaternion dynamic
Sylvester equation and showcased its exceptional perfor-
mance in a specific application for controlling the sine
function memristor (SFM) chaotic system [102].

From [102] and [103] we can obtain the SFM chaotic
system:
ẋ1(t) = s(x2(t)),

ẋ2(t) = −
1
3
s(x1(t)) +

1
2
s(x2(t)) −

1
2
η2s(x2(t))s2(x3(t)),

ẋ3(t) = −s(x2(t)) − 0.6s(x3(t)) + ηs(x2(t))s(x3(t)),

(22)

where X (t) = [x1(t), x2(t), x3(t)]T are state variables.
When taking into account uncertainties, noise, and the

controller, Equation (22) can be rephrased as follows:

ẋ1(t) = s(x2(t)) +1f1(x) + h1(t) + u1(t),

ẋ2(t) = −
1
3
s(x1(t)) +

1
2
s(x2(t)) −

1
2
η2s(x2(t))s2(x3(t))

+1f2(x) + h2(t) + u2(t),
ẋ3(t) = −s(x2(t)) − 0.6s(x3(t)) + ηs(x2(t))s(x3(t))

+1f3(x) + h3(t) + u3(t),

(23)

where 1f1(x),1f2(x) and 1f3(x) are uncertainties of the
system, h1(t), h2(t) and h3(t) refer to external disturbances,
u1(t), u2(t) and u3(t) represent the controllers.
The error function for the SFM chaotic system can be

obtained from [102]:

E(t) = X (t), (24)

whereX (t) = [x1(t), x2(t), x3(t), . . . , xn(t)]T is the state
vector of response chaotic system

From [102], the NZNN design formula can be described
as:

Ė(t) = −λE(t) − ζ

∫ t

0
E(τ )dτ,

and the ordinary ZNN(OZNN)design formula can be
described as:

Ė(t) = −λE(t),
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combining the above two formulas with formula (23) and
formula (24),controller of SFM chaotic system is:

U (t) = Ė(t) − F(X (t)), (25)

where F(·) is the nonlinear mapping vector function and
Ẋ (t) = F(X (t))
A comparative study was performed in [102] to assess

the control of the SFM chaotic system using no ZNN
controller, an OZNN controller, and an NZNN controller.
The findings revealed that the SFM chaotic system, when
controlled without a ZNN controller and with an OZNN
controller, failed to converge to the zero point in three-
dimensional space. In contrast, with the NZNN controller,
both states and phases could stabilize to zero simultaneously.
These experimental results fully underscore the exceptional
performance and superiority of the NZNN controller in
regulating the SFM chaotic system.

In 2023, Hua et al. introduced a novel complex ZNN
model, DISZNN, featuring a dual integral structure designed
to inherently mitigate linear noise [104]. This model was suc-
cessfully utilized for controlling chaotic systems, delivering
promising outcomes.

In [104], Hua applied the DISZNN model to the control
of permanent magnet synchronous motor (PMSM) Chaotic
System with Uncertainties and External Disturbance, and we
can know that the controllable PMSM model with external
disturbance and uncertainties can be constructed as:

ẋ1(t) = x3(t)x2(t) − x1(t) + h1(t) +1f1(x) + u1(t),
ẋ2(t) = ϵ1x3(t) − x3(t)x1(t) − x2(t) + h2(t) +1f2(x)

+u2(t),
ẋ3(t) = −ϵ2x3(t) + ϵ2x2(t) + h3(t) +1f3(x) + u3(t),

whereas ϵ1, ϵ2 represent system parameters, the definitions of
the remaining symbols remain consistent with formula (23).
From reference [104], the DISZNN design formula can be

described as:

Ė(t) = −s30

∫ t

0
(
∫ σ

0
E(τ )dτ )dσ − s20

∫ t

0
E(σ )dσ − 3s0E(t),

where s0 represents the design parameter and the error
function are the same as in formula (24).
And the controller based on DISZNN is:

Ė(t) = −s30

∫ t

0
(
∫ σ

0
E(τ )dτ )dσ − s20

∫ t

0
E(σ )dσ − 3s0E(t)

− F(X (t))

In the comparison of the impact of using DISZNN
controller and not using DISZNN controller on PMSM
Chaotic Systemwith Uncertainties and External Disturbance,
the results show that without using DISZNN controller, the
state error of the system can be stabilized, but it is not
zero. However, using DISZNN controller can make the state
error of the system converge to zero. In order to verify
the convergence performance of PMSM Chaotic System
under external disturbance after using DISZNN controller,

Hua used four different levels of external disturbances. The
experimental results show that the controlled PMSM chaotic
system designed based on DISZNNmodel has better external
disturbance suppression ability and faster state variable
convergence ability.
The synchronization of chaotic systems entails compelling

a response chaotic system to track the trajectory of a
master chaotic system using a constructed controller. This
synchronization concept is widely applied in areas such as
secure communication and information processing [105].
In 2023, Jin et al. introduced a time-varying fuzzy parameter
ZNN (TVFPZNN) model aimed at facilitating the synchro-
nization of chaotic systems in the presence of external noise
[106]. A notable feature of the TVFPZNN model is its
utilization of time-varying fuzzy parameters generated by
fuzzy logic systems, and its effectiveness was confirmed
through experimental validation.
In order to verify the outstanding performance of TVF-

PZNN, Jin presented two instances of synchronization
involving Chen chaotic systems and autonomous chaotic
systems with varying fuzzy membership functions, and
subjected to three types of irregular noise.
Reference [106] demonstrates the representation of the

Chen chaotic system as:
ẋ1(t) = a(x2(t) − x1(t)),
ẋ2(t) = dx1(t) − x1(t)x3(t) + cx2(t),
ẋ3(t) = x1(t)x2(t) − bx3(t),

where a = 35, b = 3, c = 12, d = 7.
The master chaotic system affected by external noise

disturbances can be represented as follows:
ẋm1(t) = a(xm2(t) − xm1(t)) +ϖ1(t),
ẋm2(t) = dxm1(t) − xm1(t)xm3(t) + cxm2(t) +ϖ2(t),
ẋm3(t) = xm1(t)xm2(t) − bxm3(t) +ϖ3(t)

The response chaotic system with controller is described
as:

ẋr1(t) = a(xr2(t) − xr1(t)) + µ1(t),
ẋr2(t) = dxr1(t) − xr1(t)xr3(t) + cxr2(t) + µ2(t),
ẋr3(t) = xr1(t)xr2(t) − bxr3(t) + µ3(t)

From reference [106], we can see that the TVFP-ZNN
model is described as:

fm(xm(t)) + ω(t) − fr (xr (t)) − µ(t)

= −(pt+2ζ
+ αpt + p2)9(xm(t) − xr (t)) + ω(t)

where xm(t) = [xm1(t), xm2(t), xm3(t), . . . , xm3(t)]T is
the state vector of master chaotic system and fm(·)
is the nonlinear mapping vector function, xr (t) =

[xr1(t), xr2(t), xr3(t), . . . , xr3(t)]T is the state vector of
response chaotic system and fr (·) is the nonlinear mapping
vector function, ω(t) = [ω1(t), ω2(t), ω3(t), . . . , ωn(t)]T

denotes the time-varying irregular external noise, pt+2ζ
+
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αpt + p2 is fuzzy time-varying parameter, the symbol 9(·)
denotes the nonlinear SBPAF.

In Experiment B [106], a comparative evaluation of the
response of the Chen chaotic system, controlled by the PT-
VR-ZNN [107], AFT-ZNN [108], FPZNN [109], and TVFP-
ZNN models in both noise-free and noisy environments,
was conducted. The findings indicate that all four models
achieve synchronization in noise-free environments, with
only the TVFP-ZNN model demonstrating synchronization
of the Chen chaotic system in noisy environments. The
Chen chaotic system controlled by the proposed TVFP-ZNN
model exhibits the fastest convergence rate and the smallest
error in noise-free conditions, corroborating the exceptional
performance of the TVFP-ZNN model.

In experiment C [106], synchronization of autonomous
chaotic system is considered. autonomous chaotic system can
be described as follows:

ẋ1(t) = p(x2(t) − x1(t)) + x2(t)x3(t),
ẋ2(t) = (r − p)x1(t) − x1(t)x3(t) + rx2(t)
ẋ3(t) = sx2(t)x2(t) − qx3(t),

where a = 35, b = 3, c = 12, d = 7.
Likewise, the master chaotic system with external noise

disturbance can be described as:
ẋm1(t) = p(xm2(t) − xm1(t)) + xm2(t)xm3(t) +ϖ1(t),
ẋm2(t) = (r − p)xm1(t) − xm1(t)xm3(t) + rxm2(t) +ϖ2(t),
ẋm3(t) = sxm2(t)xm2(t) − qxm3(t) +ϖ3(t)

The response chaotic system with controller is described as:
ẋr1(t) = p(xr2(t) − xr1(t)) + xr2(t)xr3(t) + µ1(t),
ẋr2(t) = (r − p)xr1(t) − xr1(t)xr3(t) + rxr2(t) + µ2(t),
ẋr3(t) = sxr2(t)xr2(t) − qxr3(t) + µ3(t)

whereϖ (t) and µ(t) represent the controllers.
The experiment compared the response of the autonomous

chaotic system controlled by the PT-VR-ZNN, AFT-ZNN,
FPZNN, and TVFP-ZNNmodels in noisy environments. The
results demonstrated that the TVFP-ZNN model achieved
synchronization of the Chen Chaotic System despite noise
interference, with residual errors two to three orders of
magnitude smaller compared to the other models. This find-
ing reinforces the superiority of ZNN models in addressing
chaotic system problems.

In 2023, Xiao et al. introduced a ZNN-based sliding
mode control strategy for addressing synchronization issues
in chaotic systems. The study encompassed three primary
objectives: Firstly, they developed an integral sliding man-
ifold based on zeroing neural network. Subsequently, they
devised a superior controller to facilitate synchronization of
chaotic systems within a predetermined timeframe. Finally,
the researchers proposed a novel activation function to
alleviate chattering phenomena, and experimentally validated
the effectiveness of the proposed model [110].

the master chaotic system can be described as follows:
ẋm1(t) = ω1xm2(t) + ω2xm1(t) − 3ω1xm1(t)x2m4(t),
ẋm2(t) = xm1(t) − xm2(t) + xm3(t),
ẋm3(t) = ω3xm2(t) − ω4xm3(t),
ẋm4(t) = xm1(t)

The response chaotic system with controller is described
as:
ẋr1(t) = ω1xr2(t) + ω2xr1(t) − 3ω1xr1(t)x2r4(t) + u1(t),
ẋr2(t) = xr1(t) − xr2(t) + xr3(t) + u2(t),
ẋr3(t) = ω3xr2(t) − ω4xr3(t) + u3(t),
ẋr4(t) = xm1(t) + u4(t),

where ω1 = 10, ω2 = 2, ω3 = −14, ω4 = 0.1.
From reference [110], the ZNN-based integral sliding

manifold is designed as follows:

Sj(t) = Ejς (t) − γ

∫ t

0
𭟋(Ejς )(τ )dτ,

where γ > 0,𭟋(·)represents a nonlinear monotonically
increasing odd function.

The precise details regarding the construction of the
controller can be located in the citation [110].

The experimental comparison led to the conclusion that
the chaotic system, when utilizing the fixed-time sliding
mode control (FTSMC) strategy, outperforms the system
without it in terms of addressing the synchronization of
chaotic systems. The response system employing the FTSMC
strategy demonstrates superior performance in rapidly track-
ing the drive system’s motion, leading to reduced chattering
and faster convergence to zero residual errors. Additionally,
it exhibits exceptional robustness when subjected to various
perturbations, including constant, Gaussian, mixed harmonic,
and exponential disturbances.

In 2023, Xiao et al. presented a fixed-time robust controller
(FXTRC) based on ZNN [110], addressing the generalized
projective synchronization of a class of chaotic systems.
Additionally, they substantiated the fixed-time synchroniza-
tion and robustness of FXTRC in controlling the Generalized
Projective Synchronization of chaotic systems.

Xiao et al. conducted experiments on the synchronization
of chaotic systems using FXTRC for three distinct chaotic
systems: the Lorenz system, Lü system, and Chen system,
in order to validate the superiority of ZNN-based FXTRC in
addressing the synchronization of chaotic systems [110]. Due
to the potential impact of different activation functions on the
model’s convergence performance, LAF [7], SBPAF [111],
and NSBPAF [112] were employed to activate FXTRC.

The master Lorenz system can be described as:
ẋm1(t) = 15(xm2(t) − xm1(t)) + △n1(t),
ẋm2(t) = 21xm1(t) − xm1(t)xm3(t) + 4.8xm2(t) + △n2(t),

ẋm3(t) = xm1(t)xm2(t) −
41
15
xm3(t) + △n3(t),
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The response system is:
ẋr1(t) = 15(xr2(t) − xr1(t)) + u1(t),
ẋr2(t) = 21xr1(t) − xm1(t)xr3(t) + 4.8xr2(t) + 36(xr1(t)

−βxm1(t)) + u2(t),

ẋm3(t) = xm1(t)xr2(t) −
41
15
xr3(t) + u3(t),

where △i(t) stands for additive noise.
The design formula is depicted as:

ėi(t) = −λ9(ei(t)),

where9(·) is a monotone increasing odd activation function.
And from the paper [110], the FXTRC can be designed as

follows:

ui(t) = gi(·) − βfi(·) + λψ(ei(t))

where fi(·) and gi(·) refer to the functions of driver system and
response system respectively.

Through comparing the error trajectories between the
Lorenz master system and Lorenz response system under
various initial conditions, it can be concluded that the
presence of FXTRC results in error trajectories converging
approximately 10 times faster than when FXTRC is not
present. Furthermore, it can be further concluded that
activating FXTRC using NSBPAF yields the best results.

The experimental results for the synchronization of the
Lü system and Chen system align closely with those of the
previous two experiments, thus they will not be reiterated
here.

V. APPLICATIONS IN OTHER FIELDS
With the rapid advancement of ZNN in the last decade,
its impact has been notable across various fields. Aside
from its application in robotics and chaotic systems as
previously mentioned, ZNN has also been utilized in image
information processing [39], [113], [114], multi-dimensional
spectral estimation [69], mathematical ecology [3], pendulum
tracking of IPC systems [115], mobile object localization
[116], [117], [118], and other areas.
In 2013, Cherif et al. introduced a novel fast online motion

estimation method using the Horn and Schunck algorithm,
integrating a recurrent neural network known as Discrete
Zhang neural networks (DZNN) and Simoncelli’s matched-
pair 5-tap filters [113]. Experimental comparisons were made
between this algorithm and a sequential algorithm based on
the Jacobi method using synthetic and real image sequences,
highlighting its accelerated convergence.

The DZNN model can be described as:

Xk+1 = Xk − τXk f (AXk )/h,

where τ = ηh > 0 is the step size, f (·) denote the activation
function-matrix.

In the study, Charif et al. meticulously examined the
outcomes of motion field estimation using DZNN and the
Jacobi method. The results from the experiments revealed

that in the Yosemite image sequence, the Jacobi method
displayed numerous errors after 27 iterations, with an average
angular error of 8.384Â◦. In contrast, our DZNN method
demonstrated superior performance with an average angular
error of 5.763Â◦ within the same number of iterations.
Notably, the Jacobi method necessitated 446 iterations to
achieve this precision, while the DZNNmethod only required
35 iterations, underscoring its faster and more consistent
performance. Furthermore, validation experiments on syn-
thetic and real images reaffirmed the speed and stability
of the DZNN algorithm compared to the Jacobi method.
Moreover, the DZNN method also produced satisfactory
motion estimation results in the Hamburg taxi sequence.
These results from the experiments provide robust evidence
for the applicability of the DZNN method in practical
scenarios.

In 2013, Abderrazak Benchabane and colleagues revisited
the one-dimensional capon estimator in their research. They
illustrated that this approach necessitates matrix inversion.
Furthermore, they expanded the applicability of the method
to two-dimensional and three-dimensional data sequences
[69]. To achieve this, they employed discrete-Time ZNN
for calculating the inverse covariance matrix of the capon
spectrum, and substantiated its superiority through simulation
experiments.

The simulation results cited in the scholarly literature
demonstrate that the application of DZNN for covariance
matrix inversion in spectral estimation has led to substantial
enhancements in both accuracy and speed. Specifically,
in the realm of 3D capon spectral estimation, utilizing
DZNN for covariance matrix inversion has been observed to
expedite convergence and yield spectral plots akin to those
generated by the direct Capon method. Furthermore, when
considering the intricate domain of 2D spectral estimation,
the performance of the Capon method utilizing both direct
and DZNN-based calculations for the correlation matrix
was assessed in the context of the synthetic aperture radar
(SAR) image of the MIG-25 aircraft. It was revealed that
the SAR image obtained through DZNN for the matrix
inversion closely resembled that derived from the direct
Capon method, with significantly reduced computational
time. Additionally, under the specified conditions of N=128,
SNR=10dB, and M=24, the DZNN approach demonstrated
notable advantages in terms of both accuracy and speed.
Notably, specific simulation experiments have highlighted
that the utilization of variable step sizes is a crucial factor
contributing to the accelerated convergence in the online
covariance matrix inversion process through DZNN. Overall,
these simulation results underscore the substantial benefits of
DZNN in the inversion of covariance matrices for spectral
estimation, offering a more precise and expeditious solution
compared to conventional methodologies.

In 2016, experts like Aleksandar Zlateski conducted a
study on diverse aspects of implementing high-performance
neural networks using ZNN on CPU architectures [39].
The study initially focused on parallelizing convolutional
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neural networks on Intel Xeon Phi and multi-core processors,
emphasizing the potential advantages of this approach in
terms of training and inference performance of deep learning
models. Moreover, ZNN exhibited significant outcomes
in tasks such as edge detection and dendritic density
computation, illustrating its extensive potential for diverse
visual tasks. Additionally, an innovative task parallelization
model specifically optimized for ConvNets was proposed.
This model substantially enhanced training efficiency for
large models by reducing memory overhead. These studies
offered a comprehensive exploration of neural network com-
putation optimization, parallel performance, and application
prospects, presenting the extensive potential of ZNN when
applied to CPU architectures.

In 2016, Zhang and colleagues proposed the Z-type
dynamic method as a control approach to address popu-
lation control challenges within the classical predator-prey
Lotka-Volterra model [3]. They introduced a set of Z-type
controllers for simultaneous regulation of prey and predator
populations, along with individually tailored controllers for
each population, and conducted theoretical analysis to ensure
species preservation and ecosystem stability. The investiga-
tion highlighted the exponential convergence performance of
these control laws and effectively affirmed the efficacy of
all three types of Z-type control laws through corresponding
simulation examples. Furthermore, the study delved into
the influence of the Z-type dynamic method on population
control parameter values and addressed practical application
concerns.

Fronm [3], the classical predator-prey LotkaVolterra model
with two exogenous measures can be described as:{

ẋ(t) = x(t)(α − βy(t) − uprey(t)),
ẏ(t) = y(t)(γ x(t) − δ − upred (t)),

where x(t) and y(t) represent the populations of prey and
predator species at time instant t, respectively. The positive
parameters α, β, γ and δ characterize the dynamic interaction
between the two species, while the functions uprey(t) and
upred (t), referred to as exogenous measures, represent the
direct control variables.

The Z-type controller group, which is designed for the
simultaneous control of prey and predator populations and is
expressed in a closed-loop feedback format, can be described
as:

uprey(t) =
1
x(t)

[αx(t) − βx(t)y(t) + λ(x(t) − xd (t))

−ẋd (t))],

upred (t) =
1
y(t)

[γ x(t)y(t) − δy(t) + λ(y(t) − yd (t))

−ẏd (t))].

In the simulation experiments, the Z-type controller group
effectively regulated both predator and prey populations,
causing them to exponentially converge to specified reference
trajectories, thus achieving ecological balance. Additionally,
the Z-type controller for indirect control of the prey

FIGURE 4. Schematic of IPC system.

population demonstrated the capability to steer the prey
population towards the desired state within a short period.
The Z-type controller for indirect control of the predator
population also displayed effective control, ensuring the
stability of the predator population. These results validate
the theoretical analysis and confirm the practicality and
effectiveness of Z-type controllers for population control in
the Lotka-Volterra model.

In 2017, Zhang and colleagues integrated ZNN-based
zeroing dynamics with conventional gradient dynamics to
develop two streamlined zeroing-gradient (ZG) controllers,
known as the z2g0 and z2g1 controllers, for the inverted
pendulum on a cart (IPC) system [115]. The effectiveness
of the ZG controllers was confirmed through simulation
experiments.

The Inverted pendulum on a cart (IPC) system is inherently
unstable, displaying nonlinear and underactuated character-
istics. Zhang et al. investigated the control of pendulum
tracking (including swinging upwards) of the IPC system’s
mathematical model as shown in Figure 4, where (mc, p)
denotes the mass and position of the cart, which can move
freely on a horizontal plane. Additionally, mp represents
the pendulum’s mass concentrated at the ball, θ is the
angle between the vertical line and the pendulum (clockwise
positive), l is the length of the pendulum, g is the gravitational
acceleration constant, b is the viscous friction coefficient of
the cart’s motion, u is the control input of the IPC system,
corresponding to the horizontal force applied to the cart. From
[115],we can obtain the state equations of the IPC system can
be expressed as:



ẋ1 = x2,

ẋ2 =
u− bx2 + mp(lx24 − g cos x3) sin x3

mc + mp sin2 x3
,

ẋ3 = x4,

ẋ4 =
(mc + mp)g sin x3 − (u− bx2 + mplx24 sin x3) cos x3

l(mc + mp sin2 x3)
,

where x1 = p, x2 = ṗ, x3 = θ, x4 = θ̇ are selected as state
variables.
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TABLE 1. Details of the ZNN model and its application scenarios.

The z2g0 controller in the form of u can be described as:

f1 = ÿd + (λ1 + λ2)(ẏd − x4) + λ1λ2(yd − x3),
f2 = l(mc + mp sin2 x3),
f3 = (mc + mp)g sin x3,
f4 = bx2 − mplx24 sin x3,

u = f4 −
f1f2 − f3
cos x3

.

The z2g1controller in the form of u can be described as:

f1 = ÿd + (λ1 + λ2)(ẏd − x4) + λ1λ2(yd − x3),
f2 = l(mc + mp sin2 x3),
f3 = (mc + mp)g sin x3,
f4 = bx2 − mplx24 sin x3,
u̇ = −γ cos x3h = −γ cos x3(cos x3(u− f4)

+(f1f2 − f3)),

The experiment section of the article [115] demonstrated
the effectiveness and superiority of the proposed z2g1
controller in addressing singularity issues, swinging up
the pendulum, and tracking inverted pendulum control.
Moreover, the study also confirmed the robustness of the
proposed ZG controller and design method in the existence
of time delays or disturbances. Additionally, the experiments
illustrated the impact of relatively small values of design
parameters (λ1, λ2, γ ) on the tracking performance of the
z2g1 controller, as well as estimation of power consumption
for the IPC system equipped with the z2g1 controller. Further
comparative results indicated that the z2g1 controller exhib-
ited slightly better performance than the z2g0 controller in
tracking, and alsomaintained some characteristics of the z2g0
controller to a certain extent. Finally, theoretical analysis
demonstrated the convergence performance of the z2g1
controller in control of inverted pendulum. Therefore, based
on the above experimental results and comparative analysis,
the proposed z2g1 controller has shown effectiveness and
feasibility in overcoming singularity problems and achieving
control of inverted pendulum. In 2021, Guo and colleagues
proposed a zeroth-order neural network (ZNN) model to
tackle the problem of dynamic matrix LQ decomposition
[116]. They also demonstrated the applicability of the ZNN
model by using it to localize mobile targets based on the angle
of arrival (AoA) technique.

The LQ decomposition problem of dynamic matrix is
described as follows:

A(t) = L(t)Q(t),

where, the matrix A(t) is a representation of the smooth
dynamicmatrix to undergo decomposition, with L(t) andQ(t)
denoting the lower triangular matrix and orthogonal matrix,
respectively.

ZNN model is described as follows:

W (t)ż(t) = u(t),

where

W (t) =

[
(QT(t) ⊗ In)G In ⊗ L(t)
zeros(n2, n

2
+n
2 ) (QT(t) ⊗ In)P+ In ⊗ QT(t)

]
,

z(t) =

[
vec(L̂(t))
vec(Q(t))

]
, u(t) =

[
vec(λZ1(t) + Ȧ(t))

vec(λZ2(t))

]
,

Guo and colleagues effectively tackled the LQ decompo-
sition problem for dynamic matrices using the ZNN model,
proposing its application in localizing mobile objects based
on the Angle of Arrival (AoA) technique. The experimental
findings showcased the ZNN model’s ability to produce
estimated trajectories closely mirroring the actual paths dur-
ing mobile object localization. Furthermore, the researchers
furnished two simulation examples wherein the ZNN model
was applied to address the LQ decomposition problem for
dynamic matrices, serving to affirm its effectiveness and
establish the reasonableness of the localization outcomes.
Additionally, the experiments evidenced that the ZNN
model more effectively fulfilled real-time computational
requirements. These empirical findings robustly endorse the
utilization of the ZNN model in the localization of mobile
objects and underscore its potential practical value.

VI. CONCLUSION
The study extensively examines the application of the zeroing
neural network (ZNN)model across diverse domains over the
last two decades. These domains include manipulator path
tracking, manipulator motion planning, chaotic systems, and
others as detailed in Table 1. These applications require real-
time data processing with high efficiency, and the capability
of ZNN in tackling time-varying issues positions it as
a frontrunner in these scenarios. The continual evolution
and enhancement of the ZNN model have resulted in
newly introduced ZNN variants showcasing enhanced noise
immunity and faster convergence rates, thereby demon-
strating exceptional performance across various disciplines.
Nevertheless, numerous emerging challenges await effective
resolution.

(1) How to construct a new type of nonlinear activation
function to accelerate the convergence speed of the model,
addressing practical application needs, especially in applica-
tions such as manipulator path tracking and motion planning.

(2) How to enhance the model’s noise resistance, as it is
crucial for the model’s performance in practical applications
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to improve its ability to resist noise and disturbances in the
input data.

(3) How to expand the applicability of the ZNN model to
a wider range of fields and scenarios while maintaining its
efficiency and effectiveness.

Overall, this review paper provides valuable references
for researchers who seek a comprehensive understanding
of ZNN’s applications across various domains, while also
offering assistance for ZNN’s future development in these
fields.
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