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ABSTRACT Nowadays, studies on indoor localization systems based on wireless systems are increasing
widely. Indoor localization is the process of determining the location of objects or people inside a building.
Global Navigation Satellite System (GPS) signals do not provide sufficient location data indoors because
they are interrupted or completely lost in closed areas. For this reason, studies on indoor localization system
design with machine learning and deep learning techniques based on Wi-Fi technology are increasing.
In this study, we propose a method and training strategy that is entirely based on a Convolutional Neural
Network (CNN) and a combined autoencoder that automatically extracts features from Wi-Fi fingerprint
samples. In this model, we coupled an autoencoder and a CNN and we trained them simultaneously.
Thus, we guarantee that the encoder and the CNN are trained simultaneously. The proposed system was
evaluated on the UJIIndoorLoc and Tampere datasets. The experimental results show that the proposed model
performs significantly better than the current state-of-the-art methods in terms of location coordinates (X,
y) localization. In our study, runtime analysis is also presented to show the real-time performance of the

network we proposed.

INDEX TERMS
autoencoder.

I. INTRODUCTION

Nowadays, studies on indoor location-based systems are
in significant demand. Indoor location-based services offer
applications in various areas such as security and monitoring.
Accurately detecting the user’s location in closed situations
can sometimes be vital. Indoor localization systems help by
reducing time loss in reaching users in emergencies. Outdoor
localization systems based on the Global Navigation Satellite
System (GPS) do not provide successful results in indoor
localization due to limited signal transmission. Numerous
approaches for indoor localization systems have been pro-
posed to address these limitations. It works on technologies
such as Wi-Fi, Bluetooth, and Radio Frequency Identification
for indoor localization services. For indoor localization, Wi-
Fi technology is preferred due to its widespread use, low cost,
and wide accessibility.
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Various signal measurements used in Wi-Fi-based indoor
localization include received signal strength (RSSI), time of
arrival (TOA), time difference of arrival (TDOA), and round
trip time (RTT). They are wireless technologies that provide
location estimation by measuring different parameters such
as round trip time, angle of arrival (AOA), and Channel State

Information (CSI). Among these measurements, RSSI is
the more frequently preferred method in indoor localization
systems. In addition, the use of RSSI technology also has
difficulties such as signal variability, noise, and accuracy
problems.

Fingerprint-based methods are methods used to find the
location of a device or user in complex indoor localization
systems. The fingerprint-based method consists of two
stages: in the offline stage, a signal map is created with
the signal strengths received from reference points. In the
online phase, it collects signal strengths from access points
around the user in an unknown location and sends them
to the server that has the signal map. The server estimates
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the user’s location by comparing and analyzing the user’s
signal strength vector with the fingerprints of reference
points [1]. The main challenge in Wi-Fi fingerprint-based
indoor localization is calculating the estimations with high
accuracy and low cost. Many solutions of varying complexity
have been proposed for the indoor localization problem.
In addition, the indoor localization problem is solved by
classifying which floor or building the user is on or estimating
the user’s location in some coordinate system. In this context,
the problem is that the same network achieves high accuracy
with low complexity and low computational cost for both
classification and regression subproblems. Therefore, in our
study, a convolutional neural network with an autoencoder
feature enhancer that solves all these problems is proposed.

Neural networks provide high accuracy and performance

in indoor localization applications due to their ability to adapt
to complex data structures and model nonlinear relationships.
In this study, floor classification and location regression
experiments were conducted on the UJIIndoorLoc [2] dataset,
and location regression experiments were conducted on the
Tampere [3] dataset using a convolutional neural network
model with an autoencoder.

The main contributions of our proposed framework are as

follows:

1. Unlike most of the other studies, our proposed model
is solely based on convolutional networks. When
compared to other studies that use sequential models,
the use of convolutional neural networks reduces
unnecessary complexity. As a result, our proposed
model achieved high success with minimal computa-
tional cost.

2. Due to the sparse nature of fingerprint data, it has
been observed that training the fingerprint data directly
with a convolutional neural network reduces the overall
floor hit rate accuracy. It is known that the autoencoder
structure is frequently used to reduce the size of
the data and to map the data into a more separable
space. In our study, instead of using a pre-trained
autoencoder directly, the approach of training this
structure simultaneously with a convolutional neural
network is proposed. Thus, the two networks were able
to improve each other’s training process by transferring
information between each other. For this purpose,
a combined loss function was defined and used.

3. Some other studies have proposed separate models for
classification and location estimation. With the model
proposed in our study, both floor classification and
Cartesian location estimation were made.

4. One of the other contributions of our study is a
runtime analysis to show the real-time operability of
the proposed method. As a result, it has been shown
that the method works on GPU with a very small time
cost.

This paper is organized as follows: Section II provides a

review of some indoor localization related works. Section III
describes the dataset used in this study and the proposed
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model. Section IV presents experimental results using the
UllIndoorLoc and Tampere datasets. Finally, our study was
concluded in the conclusion section.

Il. RELATED WORKS

In recent years, many approaches have been proposed for
indoor localization systems. Technologies such as Wi-Fi,
Bluetooth, magnetic field sensors, and UWB (Ultra-Wide
Band) are among the popular solutions for indoor location
detection. Various classification and regression algorithms
have been used in the literature for indoor localization with
Wi-Fi existing infrastructure.

Jang et al. proposed localization with a CNN-based
Wi-Fi fingerprint method [4]. In this proposed method,
they achieved a high accuracy classification by combining
building and floor labels. Alitaleshi et al. [5] proposed a
new solution by combining an autoencoder (ELM-AE) and
a two-dimensional CNN model. They performed feature
extraction by reducing the input size with an autoencoder.
They also evaluated the localization performance with CNN.
Additionally, to increase the floor hit rate accuracy, they
augmented the data by adding noisy data to the original
fingerprint map. It is seen that the floor accuracy rate
also increases with the increasing data set. Ahmed Elesavi
and Kim proposed a method based on a recurrent neural
network (RNN) that sequentially estimates coordinates from
a building to find the target location [6]. Nowicki M.
and Wietrzykowski J. apply a deep learning technique to
implement a Stacked Autoencoder (SAE) and multiclass
classifier. Their proposed model was trained as one of
the labels of combined building and floor identifiers [7].
In addition, Sinha and Hwang proposed only a single
localization model using CNN [8].

Incorporating deep learning techniques into indoor local-
ization offers a promising solution to address the limitations
of fingerprint-based localization. Currently, researchers are
actively applying deep learning approaches to enhance indoor
localization accuracy. For example, [9] and [10] used a DNN
for indoor visual localization.

This study [11], proposes a new indoor localization
model using a convolutional neural network-based fingerprint
technology to solve the indoor localization problem. The goal
is to improve Wi-Fi indoor localization by optimizing the data
collection process. There are also indoor location estimation
system studies in the literature [12], [13], and [14].

Song et al. performed floor classification and posi-
tioning error on the UJllndoorLoc dataset by reducing
the dimensionality with the stacked autoencoder [15].
To tackle the multi-floor identification problem, Zhao et al.
[16] proposed a Gradient Boosting Neural network based
model. Their proposed indoor localization model has high
floor hit rate accuracy. [17] developed a model based on
the Wi-Fi Autonomous Block Model for large buildings.
Jia et al. [18] developed an algorithm based on Long Short-
Term Memory Network (LSTM). In the case of a limited
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number of collected reference points in this study, principal
component analysis was used to select the access point,
and Gaussian process regression was used to model the
reference point coordinates and the corresponding received
signal strength values in the training sample set. Kim et al.
[19] proposed an SAE based deep neural networks (DNN)
architecture. Bellavista- Parent, Torres-Sospedra, and Pérez-
Navarro conducted a comprehensive research of the studies
carried out with machine learning methods in Wi-Fi-based
indoor positioning [20]. Ayinla et al. proposed a method
based on SAE and LSTM framework in WiFi fingerprint-
based indoor localization. This method uses SAE to reduce
the dimensions of RSSI samples, while ALSTM is trained to
estimate indoor location by focusing on these features. The
proposed method was evaluated with UJIIndoorloc, Tampere
and UTSIndoorLoc datasets [21].

While autoencoders are trained independently of CNN in
similar studies in the literature, in this study the encoder
was trained simultaneously with CNN. We think that this
approach gives more successful results because the networks
are optimized by connecting them. The proposed model
and certain deep learning-based localization methods are
mentioned in Table 1.

TABLE 1. Different indoor localization studies in the literature.

Loss
Ref. Datasets Technology =~ Method Function
[4] UllindoorLoc ~ Wi-Fi APs CNN Not
dataset mentioned in
the article
[5] UllindoorLoc ~ Wi-Fi APs AE and Mean Squared
dataset CNN Error (MSE)
Tampere and Cross-
dataset entropy
[6] UJlIndoorLoc ~ Wi-Fi APs RNNand MSE
dataset SAE
[7] UlJllndoorLoc ~ Wi-Fi APs SAE Not
dataset mentioned in
the article
[15] UlJlindoorLoc ~ Wi-Fi APs SAE and (MSE)
dataset CNN
Tampere
dataset
[19] UJlIndoorLoc ~ Wi-Fi APs SAE and Binary
dataset DNN Crossentropy
[21] UlJllndoorLoc ~ Wi-Fi APs SAEand MSE
and ALSTM
Tampere
dataset
Our UlJlIndoorLoc ~ Wi-Fi APs AE and Lag+ Leonn
Study dataset CNN
Tampere
dataset

Ill. MATERIALS AND METHODS

This section describes the parts of the proposed localization
architecture. Details of the dataset and model used in the
method are explained respectively. The proposed system
architecture is shown in Fig. 1. During the offline phase,
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Wi-Fi fingerprints are gathered from training reference
points to construct the offline radio map. Subsequently,
after completing the training, the Autoencoder-based CNN
proposed in this study will be deployed for real-time
localization. In the online phase, the pre-processed RSSI
vector collected from the user’s device is input into the model
to predict the target location.

A. DATASET DESCRIPTION
Two different datasets are used for evaluating the perfor-
mance of our proposed model.

The UJlIndoorLoc dataset is a public dataset that contains
Wi-Fi fingerprint and location data collected in a multi-
story university building. The dataset has been used in
many studies on indoor localization. Experimental studies
of the proposed model were carried out using a multi-
building and multi-floor dataset, the UJIIndoorLoc dataset,
which can be downloaded from the accessible UCI Machine
Learning Repository. This dataset covers three-four- or five-
floor buildings within the Universitat Jaume I University
campus. It consists of 19937 and 1111 samples collected from
a total of 520 access points (AP). The data has 529 attributes.
The first 520 attributes provide information about RSS from
these APs and contain values ranging from —104 dBm to
0 dBm. The other parameters are longitude and latitude
of measurement, floor ID, building ID, space ID, relative
position, user ID, phone ID, and the timestamp of the
measurement. The dataset includes training and validation
data. All studies use validation data as test data. In this study,
the validation data of the UJI dataset was used as a test.

The second dataset utilized in this study is the Tampere
dataset, which comprises 4,648 fingerprints meticulously
gathered from 992 Wireless Access Points (WAPs) spanning
across a five-floor edifice situated at the Tampere Univer-
sity of Technology. Within the scope of this review, all
697 training fingerprints were meticulously utilized for the
training phase. Additionally, a curated subset comprising a
total of 3,951 fingerprints was earmarked for utilization as the
test dataset. This ensures a comprehensive evaluation of the
proposed methodologies, thereby enhancing the robustness
and reliability of the findings obtained.

Data preprocessing is one of the basic steps before
applying deep learning algorithms. As part of preprocessing,
the values of the input raw RSS in the dataset range from -110
dBm to 100 dBm. And then normalized the RSS data in the
dataset with equation (1) [0 1] values. X, Xmax represent the
minimum and maximum RSS values.

¥ = X — Xmin )

Xmax — Xmin

B. AUTOENCODER BASED CNN CLASSIFICATION
CNN plays a crucial role in Wi-Fi fingerprint localization
classification. In this study, an autoencoder-based CNN
classifier model is proposed. To address the challenge of
too many zero values in the original data, which hindered
the performance of CNN filters, we aimed to enhance data
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FIGURE 1. System architecture.

quantity and processability by providing normalized data
to the autoencoder. The design intent of the network is
to transform the data into a different dimension using the
autoencoder and extract more meaningful features that we
believe better represent the data. We think these new features
better represent the same data. We set the size of the created
image tensor to be square for easy design of the CNN
architecture. Fig.2 shows the architecture of the proposed
model for indoor localization. The proposed model is a
method that is an autoencoder-based CNN classifier and
regression model. With the encoder, 520 inputs are increased
to 1600, then this data is converted into a 40 x 40 image-like
tensor and given as input to the CNN classifier.

The training process involved combining Autoencoder and
CNN losses. While the autoencoder used Mean Squared Error
(MSE) loss, Loglikelihood was used as the loss function
for the classifier, and MSE was used for x, y localization.
These two losses were combined during training, with the
initial loss calculated using the MSE metric between the
input and predicted output of the Autoencoder. We think that
training the networks by connecting them optimizes both the
autoencoder and CNN parts to give more successful results.
This is an important contribution to our study.

To classify floors using the CNN model, the FloorID tag
was used to identify 5 separate floors in the entire target area.
The proposed CNN model consists of four convolution layers.
The convolution layers with 32,64,128,256 layers in

the model. We used a 3 x 3 filter and stride value of 2 for the
convolution operations. The activation function used in the
hidden layers are the LeakyReLU function. The LogSoftmax
activation function is used in the output layer.

The same CNN model was used to estimate the X,y
regression. The only difference here is the output layer
activation function. The Tanh activation function is used
in the output layer. The model was trained with the
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UllIIndoorLoc train set and tested with the validation set. The
optimal learning rate value was discovered by experimenting
with various learning rate values throughout the training to
properly train the network and get the best results. The most
optimum result was obtained by reducing the learning rate in
certain epochs. A scheduler was used to automatically change
these values. During the training phase, various optimizers
were studied and the optimizer that gave the most successful
results was selected. Using the early stopping strategy, the
training was stopped at the place where we achieved the
most successful results. The method we propose not only
improves performance with five parameters but also adds
speed and real-time operability. Table 2 shows the proposed
model parameters.

TABLE 2. Proposed model parameters.

Parameters Value

Max Epoch 175

Batch Size 128

AE Hidden Layers 2048, 1600, 2048
AE Activation Layers Tanh

AE Optimizer Adam

AE Loss Mean Squared Error (MSE)
CNN Activation Layers LeakyReLU
CNN Optimizer Adam

Loss function L+ Lonn
Initial Learning rate 2e-6
Classfier / Regressor Output Layers LogSoftmax / Tanh
Schedular step_size 20

IV. EXPERIMENTAL RESULTS
In this section, the prediction floor hit rate accuracy of
the trained networks, the loss graph of the model, and
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FIGURE 2. Autoencoder based CNN model for classification and regression.

performance measurements are shown to demonstrate the
capabilities of the model.

precision recall fl-score support

o 0.90 0.92 0.91 132

1 0.95 0.97 0.96 462

2 0.98 0.95 0.96 306

3 0.98 0.98 0.98 172

4 0.97 0.92 0.95 39
accuracy 0.96 1111
MAacro avg 0.96 0.95 0.95 1111
weighted avg 0.96 0.96 0.96 1111

FIGURE 3. UllindoorLoc dataset floor predict classification report.
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FIGURE 4. UlJlindoorLoc dataset classifier model test floor hit rate
accuracy.

A. EVALUATION OF THE PROPOSED MODEL
In this section, we provide the localization results of the
proposed method on the UJIIndoorLoc validation dataset and
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the Tampere test dataset. After the pre-processing which is
described in the section ‘‘Dataset Description”, the proposed
model was trained and tested. As a result of the experiments,
the classification floor hit rate accuracy was 95.58% and the
minimum error in x y localization was 4.55 m. To show the
floor hit rate accuracy and loss performances of the classifier
model over 200 epochs Fig. 4 and 5 are presented. The
loss figure contains results from both training and validation
datasets. It was observed that the validation loss value was
higher than the training loss value until the 140th epoch and
became close to each other after this epoch. When the graphs
are examined, the loss value of the model proposed for the
data set decreases, and the floor hit rate accuracy values
of the model increase as the number of periods increases.
Figs. 4 and 5 show that there was no overfitting situation in the
200 epochs. Fig.6. show the loss of the proposed regression
method for the dataset with 200 epochs of training and
validation sets. As shown in Table 3 and Table 4 we compared
our proposed model with five CNN models in the literature
and achieved higher performance than those reported in the
literature. It shows that the proposed method achieves better
accuracy in floor hit rate and mean localization error.

The classification report obtained by training the model is
shown in Fig. 3. This figure shows the precision, recall, and f1
score results for five-floor identification. Precision measures
how many of the samples the model predicts as positive are
positive. Recall measures how many of the truly positive
examples were correctly predicted by the model. Fl-score
is a metric that evaluates the performance of a classification
model by combining precision and recall metrics.

Fig.7. shows the real-world coordinates in the training
dataset of three multi-floor buildings and the coordinates
estimated by the proposed method. When Fig.7 is examined,
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TABLE 3. UllindoorLoc dataset comparison of deep learning-based
models.

Building o
Ref. and Floor Building Floor MSE
Accurac Accuracy  Accuracy
y
Jang et al. [4] 95.41% - - -
Alitaleshi et al. - - 96.31% 8.34m
[5]
Song et al. [15] - 100% 96.03% 11.78 m
Kim et al. [19] - 99.82% 91.27% 929 m
Aymla et al. - - - 8.28 m
[21]
Our Study - - 95.58% 4.55 m

TABLE 4. Tampere dataset comparison of deep learning-based models.

Ref. MSE
Song et al. [15] 10.88 m
Aymla et al. [21] 9.52m
Our Study 8.13 m
Classifier Model TrainfValidation Loss
4.0+ — Train
Validation
ELE
2.0
2.5
LEXE
15
10 "'.\
R N
0.0 B It it e
o 25 5 75 100 125 150 175

FIGURE 5. UJlindoorLoc dataset classifier model loss during the training
and validation phase.

Regression Model Train/Validation Loss

10 4 } — Train
—— \validation

Loss

(i] 25 50 75 100 125 150 175 200
Epoch

FIGURE 6. UJlindoorLoc dataset regression model loss during the training
phase.

it appears that there is a small margin of error between the
estimated location and the actual location and they are in the
same place.

46064

1le6

*  True Position

4.86500 « Predicted Position
4.86495

4 66490

>

4.86485

4.86480

4.86475 L.

~7700 -7650 ~7600 ~7550 —7500 —7450 —7400 —7350 —7300
X

FIGURE 7. UllindoorLoc dataset predicted and ground truth.

The proposed model aims to combine two key elements,
autoencoder and convolutional neural network (CNN),
to obtain more meaningful features and achieve more
effective results in indoor positioning. With this approach,
more accurate classification and regression results were
achieved.

Regression Model Train Loss

—— Train
0.6
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@
303
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01
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FIGURE 8. Tampere dataset regression model loss during the training
phase.
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FIGURE 9. Tampere dataset regression model test error.

Fig.8. presents the loss visualization encompassing the
outcomes of the training phase conducted on the Tampere
dataset. Fig.9. illustrates the graph depicting test error
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progression. It was noted that the test error exhibited a decline
until reaching 200 epochs, after which it stabilized, remaining
constant thereafter.

All experiments were implemented in Python with the
Pytorch library in Google Colaboratory, and the simulations
were run on a machine with NVIDIA Tesla T4 on Colab
Cloud.

Execution Summary

Category Time Duration (us) ~ Percentage (%)
Average Step Time 205581 100
Kemel 1152 56
Memepy 0 0
Memset o 0

Runtime 0 0
Datal oader 0 o
CPU Exec 13524 65.71
Other 5904 28.69

FIGURE 10. Proposed model execution summary.

B. PERFORMANCE ANALYSIS

One of the other contributions of our study is the runtime
analysis to show the real-time operability of the proposed
method. As a result, it has been shown that the method
works on the GPU with a very small time cost. To use the
runtime analysis of the designed model, the profiler API
of the PyTorch library was used. This analysis is visually
visualized in the TensorBoard setup. The analysis results of
the proposed model are given in Fig.8. As seen in Fig.8§,
the average step time of our model was measured as 20,581
microseconds. Considering the testing period, the proposed
model has a high potential to be used for real-time indoor
localization. In some critical situations, people need to be
located rapidly, especially in areas such as airports, healthcare
facilities, companies and workplaces, conference centers, and
educational institutions. We believe that the short running
time of our model will be useful in real-time applications
requiring emergencies.

V. CONCLUSION

In this study, a solution to the indoor localization problem
with Wi-fi fingerprint in a multi-building and multi-floor
system is proposed. The proposed solution is based on an
autoencoder coupled convolutional neural network model.
Due to the structure of Wi-Fi fingerprint data, using it
directly results in an ineffective solution. For this reason,
more meaningful features were extracted by using Wi-Fi
fingerprint with autoencoder. This data was used as input to
the convolutional neural network. Thus, a compact and high
floor hit rate accuracy for classification and low localization
errors were achieved.

As can be seen from the literature, the problem has been
modeled with many different approaches such as CNN and
LSTM. In wireless network experiments, it has been observed
that convolutional neural networks successfully learn the
relationship between access points. Therefore, this study aims
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to achieve the highest possible floor hit rate accuracy with a
low-complexity network.

In many studies using autoencoders, it has been observed
that the autoencoder network is also trained and combined
with other networks recommended in those studies. Contrary
to these studies, an autoencoder architecture that is trained
simultaneously with a convolutional neural network is
proposed in our model. A combined loss was used for
the model created by combining the autoencoder and the
convolutional neural network. By combining the loss function
defined in the autoencoder with the loss function defined in
the CNN, the networks were trained simultaneously, and high
success was achieved as a result of the tests.

Since the UJIIndoorLoc dataset is the largest and open-
access indoor dataset in the literature, we used this dataset
in our study. Our method successfully classified the floor
information label retrieved from the open-access UJlIndoor-
Loc database. There are two splits in this data set: train and
validation. In certain studies, researched in the literature,
it has been observed that results were obtained by combining
the train and validation data of the UJI data set. In this study,
the original validation data in the data set was used as test
data. This is the case in all other important studies.

When the experimental results were examined, it was seen
that the proposed model was successful with a floor hit rate
of 95.58% and x, y localization error of 4.55 m. In some
studies examined, the mean error in X, y localization for the
UllIndoorLoc data set was generally calculated for a single
building. The mean error in the X, y localization obtained
as a result of the testing of our model was calculated for
three buildings in the UJIIndoorLoc data set. Compared to
the current method examined, our model showed a 45.44%
reduction in x, y localization error compared to the study with
the lowest x, y localization error.

Our methodology proficiently computed the x and y
coordinates for localization, leveraging the openly accessible
Tampere database, achieving optimal performance at the min-
imum error threshold. The average error in x, y localization
obtained as a result of the tests of our model was calculated
for the Tampere data set. The proposed model was successful
with an x, y localization error of 8.13 meters.

Our proposed method not only improves performance with
fewer parameters but also adds speed and real-time operabil-
ity. The method modeled only with CNN has achieved very
high floor hit rate accuracy without other current approaches.
The use of sequential models in solving indoor localization
problems is open to debate. The complexity of these models
is greater than convolutional networks.

Two separate study topics were determined for this study
as future works. First, the autoencoder structure was used
to map the input data to a more meaningful space instead
of dimension reduction. For this reason, in future studies,
instead of an autoencoder, research can be done on an
approach that both makes the data more meaningful and
reduces its size. Secondly, in training, the error function that
trains the autoencoder and the convolutional neural network
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together was adjusted ad-hoc to give the highest accuracy.
Instead, an adaptive error function needs to be investigated.
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