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ABSTRACT Nowadays, video streaming has become a popular form of multimedia for communication
and entertainment. The rapid traffic explosion spurred by the development of emerging video-centric
services such as e-science, virtual reality, and video conference has caused network congestion and the
degradation in quality of experience (QoE), especially in heterogeneous mobile networks. To cope with
that, the development of QoE-efficient video streaming solutions, i.e., HTTP adaptive video streaming,
is critical. In this work, we investigate HTTP adaptive video streaming solutions that are capable of
improving QoE for heterogeneous mobile networks in which the network conditions including bandwidth
are significantly varied. We propose an effective QoE-aware adaptive bitrate video streaming scheme that
integrates a bandwidth prediction based on Gated Recurrent Unit (GRU) neural networks with an adaptive
bitrate selection strategy to wisely determine the suitable quality level for each video chunk. Thanks to the
accurate bandwidth estimation and the adaptation of each video chunk bitrate to the network conditions,
QoE metrics have been enhanced. Numerical experiments have been deployed to verify the performance of
our proposed solution in comparison with that of the notable conventional methods. The attained simulation
results demonstrate that the developed solution is significantly more effective than the conventional methods.
The proposed method obtains a performance increment, in terms of QoE, of up to 19.4% compared to the
conventional ones.

INDEX TERMS Video streaming, adaptive bitrate, HTTP adaptive streaming, quality of experience.

I. INTRODUCTION
Recently, the dominant digital content traffic over the Internet
and mobile networks has been video-on-demand and video
streaming, which is estimated to account for 70% percent of
all mobile data traffic and is forecast to grow more in the near
future [1], [2]. 5G and beyond mobile networks are expected
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to be capable of providing heterogeneous bandwidths and
various service-level agreements. At the same time, users’
demand becomes pickier in terms of video quality and
availability of video services. Due to the abundance of
video sources, users will easily stop consuming the video
if its quality is not as expected [3]. Therefore, to satisfy
users’ expectations, content providers continuously enhance
and deliver higher-quality video. However, there has been a
trade-off between high-quality video expectations and video
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transmission over the network. High-quality video means a
large amount of data to transmit, leading to longer delays
and a higher probability of failure due to degraded network
conditions [4], [5], [6].

To facilitate the video traffic explosion, the concept of
HTTP adaptive streaming (HAS) protocol was introduced by
the company Move Networks in 2007 as a delivery method
for video streaming [7]. At the HAS server side, a raw video
sequence is encoded at different bitrates and resolutions and
then the encoded video sequence is divided into segments
(video chunks). Bitrate and resolution are two of the
most important factors that can affect the quality of video
streaming, and they can be set in different combinations,
so-called quality levels, to yield different qualities of video
streaming. On the client side, video players estimate the
network bandwidth and use the GET method to request video
chunks with bitrates or quality levels suitable to network
bandwidth to create a seamless playout.

To standardize HAS, the Moving Picture Experts Group
(MPEG) and the 3rd Generation Partnership Project (3GPP)
have introduced a standard called Dynamic Adaptive Stream-
ing over HTTP (DASH) [8], [9]. Thanks to DASH, video
transmission can exploit the available HTTP servers and Con-
tent Delivery Network (CDN) frameworks. Moreover, the
DASH standard allows the client player to freely choose the
optimal mechanism to meet its own requirement of the user’s
quality of experience (QoE) rather than using predetermined
control rules. There has been broad industry support for the
standard such as Microsoft Smooth Streaming [10], Apple
Live HTTP Streaming [11], and Adobe HTTP Dynamic
Streaming [12]. Two big content providers, YouTube and
Netflix, have relied onDASH; YouTube has employed DASH
as its default playing method and Netflix has been the largest
DASH content provider [13], [14].

The core of DASH is an adaptive bitrate (ABR) algorithm
that is an efficient solution for video delivery over the
networks in order to meet the users’ expectations [15],
[16]. In DASH systems, a pool of video chunks with
various bitrates and/or quality levels is available on the
server side for dynamic and flexible delivery in different
network conditions. The ABR algorithm plays a key role in
determining suitable bitrates/quality levels of the requested
video chunks based on observation factors such as network
throughput, playback buffer occupancy, and video freezing
ratio to enhance users’ QoE [17], [18]. Most existing ABR
algorithms use predetermined control rules for selecting
the chunks. The rules, which are constructed based on
some network and player conditions, can be grouped into
three classes. The first one is the throughput-based class,
in which information on downloaded video chunks is
used to predict the network bandwidth, and based on the
prediction of network bandwidth, the client player requests
the most suitable video bitrate [19], [20]. The second is
the buffer-based class in which buffer occupancy–bitrate
functions are constructed for the player to select suitable

bitrates for video chunks [21]. The third one, the so-called the
hybrid class, combines both information on buffer occupancy
and network bandwidth and then applies the optimization
process to make bitrate adaptation rules [2], [15], [22].
Unfortunately, there exist some limitations in those methods.
For example, buffer-based techniques cannot adapt well to
the changes in network conditions whereas throughput-based
techniques are more aggressive and only work well when the
network is stable. On the other hand, hybrid techniques must
compromise the performance to make the computation load
possible for real-time bitrate adaptation.

In mobile networks, many disturbed factors such as
variation in radio link, multipath fading, interference, and
noise cause network link instability and continuous changes
in network bandwidth [23]. Therefore, maintaining the
optimal video bitrate, i.e., the optimal QoE, is a huge
challenge. If the client player requests chunks with a bitrate
too high, it likely faces video freezing and re-buffering
when the network bandwidth fluctuates. In contrast, lowering
the demand bitrate can decrease the probability of the
aforementioned problems, but it will highly lead to a low or
even unacceptable video quality. Since the network condition
information is helpful for making rate adaptation policy, it is
essential if the information can be foreseen in the short and/or
long term. Many researchers attempted to estimate/predict
network bandwidth for switching up or down the rate
adaptation [15], [24], [25]. It is shown that with the aid
of the foreseen network bandwidth knowledge the process
of quality-chosen decision outperforms the conventional
one [26].

Moreover, Thang et al. [25] introduced an aggressive band-
width prediction while Tian and Liu [24] and Jiang et al. [15]
also developed a conservative bandwidth estimation. How-
ever, these methods seem to be inefficient when applied
in mobile networks. Google’s Exoplayer, known as one
of the most popular video streaming players, employs the
window-sliding percentile for estimating the instantaneous
bandwidth [27]. To improve the accuracy of the bandwidth
prediction, machine-learning-based bandwidth prediction has
been considered [28], [29].

In this work, we study QoE-aware HTTP adaptive video
streaming problems in heterogeneous mobile networks in
which network bandwidth is significantly and rapidly varied.
We exploit the short-term and long-term memory abilities
of a Gated Recurrent Unit (GRU) network to increase
the accuracy of bandwidth prediction, and then, develop
a modified rate adaptation policy, that is based on the
accurately predicted bandwidth, aiming to enhance users’
QoE. In our developed solution, a new customized GRU
network is firstly proposed for the prediction of network
bandwidth in both the short term and long term more
accurately. The history of network bandwidth is taken into
account with two perspectives namely variation range and
variation trend when applied as the inputs of GRU. Secondly,
an adaptive bitrate strategy is introduced to determine the best
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quality level of video chunks based on the predicted network
bandwidth. The performance of the proposed solution will be
evaluated by using numerical simulations and compared to
that of notable conventional works.

The remainder of this paper is organized as follows. Firstly,
Section II provides the research background and related
works. Then, Section III describes our proposed QoE-aware
adaptive bitrate video streaming solution to improve QoE for
HAS mobile systems. Afterward, Section IV implements the
experimental simulations, and presents the obtained perfor-
mance evaluation results. Finally, Section V summarizes the
work and discussion.

II. BACKGROUND AND RELATED WORKS
A. HTTP ADAPTIVE STREAMING
Figure 1 shows a typical HTTP adaptive streaming archi-
tecture [8], [9], [15]. In the HAS system, video content is
encoded in different bitrates or quality levels, and is divided
into smaller video chunks, e.g., one to ten seconds in length.
Principally, each quality level is determined by its appropriate
average bitrate and video resolution. These segments also
can be independently decoded. In fact, at the beginning
of a new session, the HAS client application downloads
the manifest that contains the description of the segments
and their available quality levels. With the consideration of
current network and device states like bandwidth and buffer
availability, the HAS client’s adaptive bitrate strategy chooses
the quality level of the next video chunk. The goal of the
quality level adaptation is to improve the QoE metrics which
rely on specific parameters including the number of times
the video stalled, the average quality level, and the quality
switching frequency [17], [18].
Compared to traditional real-time protocols, the main

advantage of HAS is to enable the adjustment of video
quality along with the available bandwidth to avoid video
stalling. Therefore, HAS smooths video streaming with the
best-effort approach over the network. Moreover, in HAS,
video streams are transferred via HTTP and can exploit
existing HTTP infrastructure, including HTTP servers, HTTP
proxies, and CDN nodes, while passing through firewalls
easily. That is the reason video-oriented service providers
like Apple, Netflix, Microsoft, and Google have deployed
massively HAS models. Most HAS solutions utilize a
similar system architecture with DASH. Besides DASH,
another popular HTTP-based adaptive bitrate streaming
media protocol introduced by Apple in 2009 is HTTP Live
Streaming (HLS). HLS, known to be the most popular
streaming format, is similar to MPEG-DASH. HLS works by
splitting the video stream into a sequence of small HTTP-
based file downloads, each download loading one short block
of an overall potentially unbounded transport stream. Media
streams are also encoded at different bitrates and the available
streams list is transferred to the client by using the expanded
M3U playlist. Despite many advantages, DASH and HLS
protocols still have to deal with some inefficiencies to cope

FIGURE 1. HTTP adaptive streaming architecture.

with network variability and enhance users’ QoE, especially
in mobile networks and for live video streaming.

B. BANDWIDTH ESTIMATION FOR VIDEO STREAMING
Bandwidth estimation/prediction is an important module
of the HAS systems. This module helps the system to
choose a reasonable video rate and consequently avoid buffer
exhaustion in video players. Up to now, there are many
methods have been proposed for bandwidth estimation [25],
[28], [29], [30], [31]. In these methods, the network
bandwidth is estimated by transmitting probe packets and
measuring the time it takes to receive a response packet.
However, these methods are difficult to be deployed widely
due to the modification requirements in the devices and
standard protocols.

For more feasible, the bandwidth estimation usually is
implemented at the application layer on the server side or
client side. In [32] and [33], a machine learning model
using a deep learning network is used to estimate the
bandwidth on the server side. The bandwidth estimation at
the server has the advantage that complicated algorithms
can be implemented due to the high processing capacity of
the server. However, in the estimation process, the server
requires feedback information such as buffer state from the
client. It may cause a delay in selecting the bitrate of the
video chunk for bandwidth adaptation, especially in radio
network environments with constantly changing bandwidth.
Consequently, it may cause buffer overflow or exhaustion
on the client side. To overcome this limitation, the bitrate
selection algorithmmay bemoved to the client side [27], [29].
In [27], Exoplayer exploits the sliding percentile algorithm
(denoted as SP) for the bandwidth prediction. The SP
algorithm is based on k previous sample values of bandwidth
and selects the bandwidth that ensures the sum of the weights
calculated by multiplying a sliding percentile value by k
equals or is greater than the required weight. Although the
SP algorithm is simple to implement, it is a statistic-based
estimation method and consequently, the accuracy of SP is
not high. On the other hand, in [29], the authors developed
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FIGURE 2. GRU model architecture [34].

an LSTM neural network solution to predict bandwidth.
LSTM, shortened from Long Short-Term Memory, is a type
of recurrent neural network (RNN) architecture specifically
designed to address the vanishing gradient problem in
traditional RNNs. Its unique structure allows it to retain
information over long sequences, making it well-suited
for tasks involving time series prediction. The advantage
can even be further extended with Gated Recurrent Unit,
an advancement of LSTM [34]. GRU has fewer gates
and parameters while offering faster and more efficient
performance than LSTM. Hence, in this work, we target an
accurate bandwidth prediction method using a GRU neural
network on the client side.

Figure 2 illustrates the working principle of a GRU model.
A gated recurrent unit network was introduced to incorporate
gating mechanisms that regulate the flow of information
within the network and allow update and reset of hidden states
selection [34]. In the realm of predicting ht at time t th based
on the previously known values xt−k , xt−k+1, . . . , xt−1, xt
and hidden state ht−1. Here, ht is a linear interpolation and
can be calculated as follows:

ht = (1 − zt) c⊙ ht−1 + zt ⊙ h̃t (1)

The candidate activation h̃t is calculated by (2) to reduce the
effect of the previously hidden state ht−1.

h̃t = tanh (xtwxh + (rt ⊙ ht−1)whh + bh) (2)

When rt close to 0, (2) makes effectively the unit act as if the
first value of an input sequence is read, permitting it to ignore
the previously computed hidden state. The update gate zt and
reset gate rt are computed similarly as follows.

zt = σ (xtwxz + ht−1whz + bz) (3)

rt = σ (xtwxr + ht−1whr + br ) (4)

In (2), (3) and (4), bh, br , bz, whh, whr , whz, wxh, wxr , and
wxz are the networks’ parameters that are needed to train,
while ⊙ in (2) is Hadamard product, also known as element-
wise product, and σ in (3) and (4) is the sigmoid function.

As opposed to rt , zt decides how much the unit updates
its activation or how much the previously known information

is used to gain the next prediction. The GRU mechanism
affects the whole state each time, instead of choosing which
particular state is exposed.

C. QoE ASSESSMENT MODEL
Currently, many QoE evaluation models have been intro-
duced and standardized [30], [35], [36], [37], [38]. The core
challenge of an ABR strategy is to maximize the perceived
QoE while coping with the system requirements, i.e., video
smoothness and buffer size limitation, by dynamically adapt-
ing to the fluctuation of network conditions. Consequently,
the applied QoE assessment model plays a key role in
designing ABR algorithms. Recent advances in state-of-the-
art DASH-based technologies show a noticeable transition
from traditional QoE measurement that is based on video
quality (e.g., Peak Signal-to-Noise Ratio) and user experience
(e.g., subjective mean opinion scores) to more complex
quality metrics (e.g., rebuffering time, video bitrate, startup
delays) [16].

Particularly, a simple and efficient ABR strategy that
was based on the client’s buffer information was introduced
early in [21]. Although this algorithm is light and helps
reduce video freezing frequency, similar to other buffer-based
ABR solutions, it only considers the buffer occupancy to
determine the video bitrate. Unfortunately, the QoE model is
normally more complicated and its metrics may include other
important parameters, i.e., bandwidth. As a result, the QoE
efficiency of buffer-based algorithms is limited. On the other
hand, ExoPlayer, recently the most popular video streaming
player developed by Google, utilizes a throughput-based
ABR strategy for choosing the bitrate for the next video
chunks [27]. Exoplayer’s ABR algorithm selects 1) the
highest bitrate for the next chunk when the highest bitrate
is less than or equal to the estimated bandwidth modified
by a pre-determined factor α, or 2) the proper bitrate in
the set of 8 preset bitrate values if the predicted bandwidth
becomes greater than the previous bandwidth while the
buffer level remains low or if the predicted bandwidth is
smaller than the previous one while the buffer level remains
high. The flexible bitrate determination strategy helps to
improve ABR performance however, it may still struggle with
less accurate bandwidth prediction. Hence, QoE assessment
methods adaptively taking into account the effects of system
parameters including the bandwidth of the network, bitrate
changing, and buffer occupancy have been introduced and
standardized in [30], [35], [36], [37], [38], [39], and [40].

To date, two main QoE estimation methods, which are
Mean Opinion Score (MOS) and utility score, are widely
applied. The first method, MOS, is employed for quality-
of-service monitoring while the second one, utility score,
is usually applied in adaptive bitrate selection algorithms. The
formulas in these two methods are different, but the input
parameters are similar, including video and audio bitrates,
resolution, framerate, and information related to rebuffering.
MOS is determined by the MOS assessment model through
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the quality estimation process by a subjective method. Since
MOS best reflects the image quality perceived by the user,
many MOS evaluation methods have been investigated and
proposed. These methods are different in input parameters,
accuracy, and computational costs. In the HAS system, the
viewer has no original video to compare to the received one.
Therefore, a no-reference model can be used to estimate
the MOS. Non-referential models are classified into models
including metadata-based models [39], [40] and pixel-based
models [38], [40].

On the other hand, the utility score is estimated by the
sum of three parameters: bitrate, quality level change, and
rebuffering [41]. The formula for calculating the utility score
for a set ofM consecutive video chunks is given as follows.

Utility =

M∑
n=1

Q (Rn) − µT − λ

M−1∑
n=1

|Q (Rn+1) − Q (Rn)|

(5)

whereQ(Rn) is the function measuring user perceived quality
according to bitrate Rn and Rn is the bitrate of the nth chunk.
In [41],Q(Rn) is set to Rn.

a
Q(Rn) = |Q (Rn+1) − Q (Rn)| is

the penalty after each change in quality level. µ and λ are the
weights for the penalty for the rebufferings and variability of
quality, µ = 3000 and λ = 1. T is the total rebuffering time.
In the calculation of the utility score, the first element is the
bitrate utility, and the second and the third elements are the
penalties of rebuffering and bitrate change respectively. There
are many variations of this QoE calculation model in ABR
algorithms with useful bitrate calculations and weights for
penalties [37], [42]. In this work, a method using utility score
is proposed to improve QoE for video streaming systems
using the DASH protocol. A detail of the proposed method
is introduced in the following section.

III. PROPOSED METHOD
A. FRAMEWORK OF THE PROPOSED QoE-AWARE
ADAPTIVE BITRATE VIDEO STREAMING SCHEME
The framework of the proposed method is described in
Figure 3. On the video player side, a GRUmodel is utilized to
predict the current bandwidth of the network. The output of
the GRUmodel is then used as input to a video chunk selector
accompanied by the current buffer occupancy. Based on input
values, the video chunk selector selects the most suitable
quality level for the next video chunk to achieve themaximum
QoE metric. After that, a request including the chunk index n
and corresponding quality level q of the chunk is sent to the
video server.

B. PROPOSED GRU MODEL FOR BANDWIDTH
ESTIMATION
In this section, we propose a bandwidth prediction algo-
rithm based on the GRU model to estimate the network’s
available bandwidth for the next video chunk and assess its
performance versus the ground-truth (real) data of mobile
network bandwidths [43], [44]. The underlying problem for

FIGURE 3. The framework of the proposed method.

FIGURE 4. The architecture of the proposed bandwidth prediction model.

adaptive bitrate prediction generally requires high accuracy,
a lightweight model, and a short inference time. Our proposed
model architecture is illustrated in Figure 4. To generalize
and enhance the contextual understanding of the model,
we take a length-k sequence as an input including 3 features:
transferred data measured in bits (the amount of data that
the client transmits to the server in a measurement), elapsed
time (the time it takes from transfer start to transfer end),
and bitrate (transferred data divided by elapsed time). These
features are fetched into a Bidirectional GRU (BiGRU)
followed by a GRU layer and a Fully Connected Layer
(FCL). While BiGRU simultaneously processes the input
sequence in both directions (forward and backward), enabling
capturing an overview of the data flow, GRU and FCL make
convergence faster by their simple structure and prediction
based on their previous known information.

As mentioned above, our proposed model takes sequence
data with length-k as input and estimates the following
bandwidth value ypred t+1 . Firstly, we convert our data
measurements into megabits (Mb), second (s), and megabits
per second (Mbps) respectively, in order to confine their
fluctuations within a smaller range. Instead of normalizing
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TABLE 1. Feature selection for the proposed model.

the input data, this approach helps us preserve the trends and
accurate original values of the data.

Though bitrate can be calculated from the other two
features, the experiment shows that three features still help
the model achieve better results. The simulated results of
this experiment are given in Table 1. In particular, four
experiments (denoted as Exps) are implemented and the
accuracy is calculated by two typical metrics that are mean
squared error (MSE) and mean absolute error (MAE). For
the other 3 experiments, one feature is removed and the
loss value is observed to see how it affects the model’s
performance. Exp. (2) demonstrates that the transferred data
does not contribute significantly because when it is removed
from the feature set, the appropriate MAE and MSE are the
lowest among those of 3 other experiments with 2 features.
However, a full feature set of three still gives the best result
with an MAE equal to 0.49, a standard deviation equal to
0.07, an MSE equal to 0.45, and a standard deviation equal
to 0.15. Figure 5 demonstrates the accuracy of the proposed
model in the case of the average bandwidth of 3000 Kbps.
It implies that the GRU-based method predicts the network
bandwidth accurately in a real-time manner; the estimated
bandwidth properly fits the ground truth curve of the real
mobile network bandwidth and a little over or underestimated
prediction only occurs with the peaks of sudden bandwidth
drops having a negligible impact on video streaming.

FIGURE 5. The accuracy of the proposed GRU-based bandwidth
prediction model.

C. PROPOSED VIDEO CHUNK SELECTION ALGORITHM
Motivated by the algorithm in [41], we develop a novel
adaptive bitrate selection algorithm (nABR) to figure out the
most suitable quality level of the next video chunk. In [41],

the optimal bitrate is selected to maximize QoE based on the
current buffer state and the estimated bandwidth. However,
the bitrate selection adopts a lookup table with available
bitrate corresponding to a specific bandwidth and buffer
state. Thus, the bitrate depends on the available bandwidth
range of the look-up table. In our proposed method, the
optimal quality level, a combination of bitrate and resolution,
is computed online considering the attained QoE and the
buffer state. In addition, in the QoE function, the weights
of rebuffering and quality variation are considered to adapt
to the buffer state. In particular, if the available buffer is
increasing, it means that bandwidth is in a good state, and the
role of rebuffering time is less influential than the variability
of quality. Consequently, the weight of the rebuffering time is
decreased while the weight of quality variation is increased.
Otherwise, the weight of rebuffering time is increased and the
weight of quality variation is decreased. Pseudo codes of the
proposed algorithm are given as follows.

Algorithm 1 Novel Adaptive Bitrate Algorithm
(nABR)
Input: R∗: Bitrate of the previously downloaded chunk

Ri: Bitrate of the video chunk corresponding to the
quality level ith

L: Length of the video chunk
Bcurrent : The current buffer occupancy
Bprev: The buffer occupancy for the previous video
chunk
C : The network bandwidth predicted by the GRU
model
µ: Rebuffering time
λ: Quality switching frequency penalty

Output: quality_level: The optimized quality level of the
next video chunk

1: µ := 4.3
2: λ := 1
3: QoEmax := 0
4: quality_level := 0
5: if (Bcurrent > Bprev) then
6: µ =

µ
2

7: λ = λ × 2
8: else
9: µ = µ × 2

10: λ =
λ
2

11: end if
12: for i = 0 to quality_levelmax do
13: QoERi =Ri−µ ×

(Ri×L
C −Bcurrent

)
−λ × |Ri−R∗

|

(6)
14: if (QoERi > QoEmax) and (Ri ⩽ C) then
15: QoEmax = QoERi
16: quality_level = i
17: end if
18: end for
19: return quality_level
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In (6),Ri is the bitrate utility concerning the quality level ith

which is considered for the current video chunk while R∗ is
the bitrate of the previous chunk. Ri×LC −Bcurrent and |Ri − R∗|

are terms which are considered respectively as the penalty
of rebuffering and smoothness. The index i corresponds to
quality level ith of available video sequences at the server side.
The target of the loop in the algorithm is to seek an optimal
bitrate Ri among available quality levels of a video sequence
to achieve the highest score of the QoE metric. The output of
the algorithm is the quality level of the video chunk that the
player expects to download from the server.

IV. PERFORMANCE EVALUATION
A. EXPERIMENT SETUP
In this experiment, a testbed of an HTTP-based video
streaming system is built on the Nginxweb server [45]. Nginx
is an open-source web server that uses an asynchronous,
event-driven approach where requests are handled in a single
thread. On the client side, ExoPlayer [27] is used to deploy the
developed QoS-aware video streaming scheme incorporating
the GRU-based bandwidth prediction algorithm (denoted
as GRU) with the nABR algorithm, named GRU_nABR,
and the comparable traditional video streaming methods
[21], [27], [41]. Moreover, the dataset of practical mobile
network bandwidths is collected from [43] and [44]. The
dataset includes trace files recording the bandwidths of
mobile networks in Belgium and the United States. Based
on the bandwidth dataset, to evaluate a wide range of
scenarios, Mahimahi tools [46] are employed to emulate
mobile network environments that have various uplink and
downlink bandwidths connecting the Nginx web server and
ExoPlayer. On the other hand, the tested mobile network
is also assumed to support three heterogeneous bandwidth
video services including low speed (1000 Kbps), medium
speed (1500 Kbps), and high speed (3000 Kbps).

In addition, the parameters used in the evaluation are
average QoE and QoE component factors including buffer
occupation, average quality level, and quality switching
frequency. Buffer occupation is the data volume (measured
in seconds) available in the buffer for playing out. This
metric reflects the accuracy of themodel to predict bandwidth
and select the optimized quality level of video chunks to
download. The higher the buffer occupation is, the lower
the freezing ability of the video is. The quality switching
frequency refers to the number of changes in quality level
during the media playback. The average quality level is the
average quality level of downloaded video chunks during the
media playback. Quality level is assumed to range from 0 to
7 and the smaller the quality level is, the better video quality
concerning bitrate and solution is obtained. The average QoE,
as computed in (6), relies on the QoE component factors and
reflects the overall quality experienced by the end user.

Furthermore, numerical simulations have been conducted
for three different network bandwidth scenarios including
low-speed (1000 Kbps), medium-speed (1500 Kbps), and

TABLE 2. The quality level of video sequences.

high-speed (3000 Kbps). Each network bandwidth scenario
was evaluated with 25 bandwidth samples randomly selected
from the processed bandwidth dataset while each bandwidth
sample was run with five pre-selected different video
sequences covering music video, news video, action movie,
2D animation, and 3D animation video. The length of each
video sequence is in range from 2 to 5 minutes. These video
sequences are encoded with 8 quality levels corresponding
to 8 resolutions. The details of the quality levels assigned to
video sequences used in the simulation are summarised in
Table 2. To evaluate the effectiveness, each method is tested
with all five video sequences in each case of bandwidth.
The final results are the ensemble averages of the network
bandwidth scenarios.

Performance of the proposed QoE-aware video streaming
scheme incorporating the novel dynamic bitrate adaptation
strategy, nABR, with the developed GRU-based bandwidth
prediction algorithm, GRU , is evaluated and compared
to that of the notable traditional video streaming meth-
ods. The buffer-based scheme [21] only considers the
buffer availability to determine the video bitrate while the
throughput-based method [27], Exoplayer, includes Sliding
Percentile algorithm (named SP) to estimate the network
bandwidth and a simple adaptive bitrate algorithm, denoted
as eABR. The efficient hybrid-based method given in [41]
consists of a conventional ABR algorithm (named cABR)
and an LSTM-based bandwidth prediction method (denoted
as LSTM ). Firstly, the GRU efficiency is estimated in
comparison with that of SP and LSTM algorithms to verify
the bandwidth prediction enhancement of our developed
method. Performances of the appropriate ABR algorithms
(eABR, cABR, and nABR) are then assessed concerning three
examined bandwidth prediction approaches including SP,
LSTM , and GRU . Finally, a performance comparison of
our proposed method and the three remarkable throughput-
based, buffer-based, and hybrid-based methods is conducted
to validate the effectiveness of our proposed QoE-aware
video streaming scheme.

B. BANDWIDTH PREDICTION EVALUATION
To evaluate the accuracy of bandwidth prediction methods,
the proposed prediction method (GRU ) is compared to
the sliding percentile algorithm (SP) and the LSTM-based
method (LSTM ). The numerical experiments have been
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TABLE 3. Comparison of the comparable bandwidth prediction
algorithms.

done with various bandwidth services including low-speed,
medium-speed, and high-speed bandwidths and the obtained
results are summarized in Table 3. The results show that
in all cases of bandwidths, the proposed model, GRU ,
always achieves the highest accuracy while SP, the simplest
algorithm, attains the worst performance. Especially, in the
case of high bandwidth (3000 Kbps), the GRU model gains
accuracy higher than SP 49% in terms of MAE and 70% in
terms of MSE. In the case of low bandwidth (1000 Kbps),
the MSE of the GRU model is the smallest. This means that
the variance of the proposed model is very small compared to
the other models. It is worth mentioning that, similar to SP,
GRU has a faster inference time compared to that of LSTM,
however, the difference is almost negligible.

C. QoE FACTORS EVALUATION
Firstly, the performance of the simplest ABR algorithm,
the Exoplayer’s original adaptive bitrate strategy (eABR),
has been evaluated concerning various bandwidth prediction
techniques including SP, LSTM , and GRU . The appropriate
adaptive bitrate variants are named SP_eABR, LSTM_eABR,
andGRU_eABR respectively. Table 4 shows the effectiveness
of the considered adaptive bitrate variants in terms of
the parameters including buffer occupation, average quality
level, quality switching frequency, and average QoE. The
results demonstrate that GRU_eABR always offers the best
performance while SP_eABR is the worst, in terms of
the average QoE. The reason is that with the same ABR
algorithm, the overall performance strongly relies on the
efficiency of the bandwidth prediction; applying a more
accurate algorithm helps improve the performance.

Regarding the component parameters of QoE, the
GRU_eABR also provides the best values in most cases
except low-speed bandwidth. In the case of band-
width 1000 Kbps, GRU_eABR is better than those of SP
and LSTM in terms of the average quality level while
the quality switching frequency is higher. The reason is
that in low bandwidth conditions, the GRU-applied method
needs to change the quality level more rapidly than the
other methods to adjust buffer occupation. Consequently,
its buffer occupation and average quality level have been
improved and these lead to an enhancement of the average
QoE. In the case of bandwidth 1500 Kbps and 3000 Kbps,

TABLE 4. QoE influent factors comparison of four methods using ABR
algorithm in exoplayer (eABR).

thanks to higher bandwidth prediction accuracy, GRU_eABR
achieves better results than the others. In particular, the buffer
occupation of GRU_eABR is higher than that of SP_eABR
and LSTM_eABR up to 16.6%, and 35.6% respectively.
GRU_eABR also offers up to 12% and 4.72% better quality
level (smaller value of average quality level) than SP_eABR
and LSTM_eABR severally, while its quality switching
frequency is respectively 42.9% and 16.7% lower than
the comparative ones. Consequently, the average QoE of
GRU_eABR gains 15.6%, and 35.1% increment compared
to SP_eABR and LSTM_eABR.

On the other hand, Figures 6, 7 and 8 demonstrate the
obtained buffer occupation, quality levels, and QoE of the
three compared methods with respect to running time when
streaming a 3D animation with the bandwidth of 3000 Kbps.
Graphs of buffer occupation and QoE as illustrated in
Figures 6 and 8 show that they are accumulated and varied
with the variation of bandwidth, and as a result, estimating
bandwidth more precisely provides better performance. It is
recognized that applying our developed bandwidth prediction

FIGURE 6. Buffer occupation of three methods in case of bandwidth
3000 Kbps.
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FIGURE 7. The quality level of the three methods in the case of
bandwidth is 3000 Kbps.

FIGURE 8. QoE values three methods in case of bandwidth 3000 Kbps.

surpasses the other approaches most time, except in the initial
streaming stage. Figure 7 shows changing quality levels
adaptively during the video streaming process to adjust the
bitrate and resolution of video chunks for improving the QoE.

In addition, a performance comparison of the adaptive
bitrate variants combining cABR and one of three different
bandwidth prediction strategies (SP, LSTM , and GRU ), so-
called SP_cABR, LSTM_cABR, and GRU_cABR orderly, are
summarized in Table 5. The numerical results also verify
that the method with our developed bandwidth prediction,
GRU_cABR, achieves the best QoE over the compared adap-
tive bitrate methods, SP_cABR and LSTM_cABR. It means
that with the same cABR algorithm, higher accurate band-
width prediction such as GRU provides better performance,
in terms of QoE. However, regarding the QoE component
factors, it is worth noting that the buffer occupation and the
quality switching frequency of GRU_cABR are always the
best (greatest buffer occupation value and smallest average
quality level value) whereas, in some cases, the required

TABLE 5. QoE influent factors comparison of three methods using cABR.

TABLE 6. QoE influent factors comparison of three methods using nABR.

quality switching frequency is high, comparing to those of
SP_cABR and LSTM_cABR. It implies that even the quality
switching frequency needs to be kept as small as possible
to ensure video smoothness, an increment of the quality
switching frequency may help to switch more often to higher
video quality levels (bitrate and/or resolution) and as a result,
the overall QoE is enhanced.

Moreover, the efficiency of both our proposed bandwidth
prediction,GRU , and adaptive bitrate, nABR, strategies is fur-
ther emphasized with the comparison results obtained among
the combinations of nABR and the corresponding bandwidth
prediction approaches, named SP_nABR, LSTM_nABR, and
GRU_nABR consecutively, shown in Table 6. It is con-
firmed that our proposed solution, GRU_nABR, integrating
nABR with GRU outperforms the comparable methods
and offers the highest QoE. Particularly, in the case of
bandwidth 1500 Kbps, the average QoE of GRU_nABR is up
to 19.4% and 7.4% respectively higher than that of SP_nABR
and LSTM_nABR. In addition, the average quality level of
GRU_nABR is also higher than SP_nABR and LSTM_nABR
up to 21.74% and 12% orderly.

Finally, to clarify thoroughly the effectiveness of our pro-
posed QoE-aware video streaming scheme, its performance,
in terms of the average QoE, is compared to that of three
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TABLE 7. QoE performance comparison.

remarkable methods, mentioned in previous sections, rep-
resentative of three typical adaptive bitrate strategy classes;
the worldwide adopted throughput-based approach (Exo-
player) [27], the notable buffer-based method [21], and the
comparatively efficient hybrid-based one [41]. The obtained
simulation results are summarized in Table 7. It demonstrates
that thanks to the integration of the QoE-aware dynamic
adaptive bitrate and the highly accurate bandwidth prediction
algorithm, our proposed solution significantly outperforms
other comparing solutions. The other hybrid-based method
comes after because of less effective ABR and bandwidth
prediction algorithms, however, it still attains relatively
higher QoE on average than both the throughput-based
and the buffer-based approaches. On the other side, the
throughput-based method provides the worst performance.
It is only slightly better than the buffer-based method in the
case of low-speed bandwidths when estimating the network
bandwidth plays a more important role in improving the QoE
than controlling the buffer.

V. CONCLUSION
In this paper, we have proposed an efficient video streaming
strategy that incorporates a GRU-based bandwidth estimation
and an adaptive bitrate selection algorithm to enhance the
QoE of adaptive bitrate video streaming mobile systems.
In our approach, the short-term and long-term memory
abilities of the GRU neural network are exploited to
provide the accurate predicted bandwidth information for
determining wisely and adaptively the most suitable bitrate
of video chunks based on the conditions of mobile devices
and networks. The performance of the proposed video
streaming solution has been verified and compared to that of
typical conventional works by using numerical simulations.
The obtained results imply that our developed scheme
outperforms the comparable ones and offers the best quality
of experience. It can achieve up to 19.4% QoE increase on
average.
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