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ABSTRACT With the excessive selection for body weight (BW) and breast muscle weight (BMW) in broiler
chickens, the incidence of leg diseases has gradually increased, whichmay lead to severemortality, decreased
productivity, and growth restrictions. Traditional methods for detecting leg diseases heavily rely on the
interpretation of X-ray images by professionals and scoringmethods for chicken gait. However, X-ray images
of broiler chicken legs suffer from low background contrast and small, blurry lesion areas, posing significant
challenges for traditional target detection methods. This paper proposes an improved algorithm based on
the latest YOLOv8 for detecting leg diseases in X-ray images of chicken legs. In the feature extraction
phase, Partial Convolution (PConv) is introduced to the C2f module, effectively reducing computational
complexity while more accurately extracting spatial features. By incorporating Channel Prior Convolutional
Attention (CPCA) into the network backbone, dynamic allocation of attention weights in both channel
and spatial dimensions is achieved, preventing the loss of feature details caused by convolution iterations
and enhancing the representation capability of small object features. The feature fusion stage introduces
a novel Gather-Distribute mechanism (GD), effectively improving the inter-layer information exchange.
Additionally, a Partial Convolution-based Shared Weight Detection Head (SharedPConv head) is introduced
in the network head, making the model more lightweight and effectively alleviating the overfitting issue.
Experimental results demonstrate that the improved method achieves a 7.2% increase in average precision,
with a speed of 66.8fps, meeting real-time requirements and performing the detection task more accurately.

INDEX TERMS X-ray, Yolov8, broiler, joint effusion, Tibial Dyschondroplasia.

I. INTRODUCTION
Poultry farming plays a crucial role in meeting global meat
demands, with broilers being one of the most commonly
raised poultry. However, the prevalence of leg diseases in
broilers poses significant challenges to the industry. It is
estimated that over 27.6% of chickens exhibit poor mobility,
with 3.3% almost unable to walk by the age of 40 days
[1]. Internationally, 14% to 30% of broilers are estimated to
suffer from lameness, affecting their movement speed and
overall health, directly attributed to gait abnormalities [2].
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Broiler leg diseases can stem from various factors, including
genetic predisposition, rapid growth rates, improper nutrition,
and environmental factors. Common leg diseases include
physical distortion, Tibial Dyschondroplasia (TD), and Joint
Effusion(JE). TD clinically manifests as reduced feeding,
gait abnormalities, and movement disorders [3]. These
conditions result in significant economic losses and welfare
issues in the poultry farming industry, potentially leading to
increased mortality in severe cases [4], [5]. Traditionally, the
detection of leg diseases in broilers relied on manual clinical
examinations and subjective assessments, such as gait scoring
methods [6]. These methods are both time-consuming and
labor-intensive and are prone to human errors. Therefore,
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there is an urgent need for an automated detection system that
provides an objective and reliable assessment of leg health.

In recent years, object detection has demonstrated out-
standing performance in various image recognition tasks,
bringing accurate and efficient disease detection to the field
of medical imaging. Currently, convolutional neural networks
(CNNs) have been successfully applied in areas such as brain
tumor segmentation [7], lung nodule detection [8], and brain
image analysis [9], making significant contributions to the
advancement of medical imaging. Deep learning methods
play a crucial role in the field of radiology. Despite the
remarkable achievements of deep learning in medical image
recognition, there are still challenges, particularly in the case
of X-ray images of diseases in chicken thighs. Challenges
include poor image quality, small and blurry lesion areas,
and large aspect ratios. Additionally, in practical applications,
handling a large batch of X-ray images simultaneously poses
challenges in terms of model complexity and computational
load. Moreover, the scarcity and imbalance of target samples
lead to issues such as insufficient training data and overfitting
during the training process, resulting in poor generalization
ability. To tackle these challenges, researchers have proposed
several improvement measures. For small object detection,
techniques such as feature map scaling and fusion can be
employed to prevent the loss of small objects and enhance
feature representation [10]. The combination of shallow-level
positional information with deep-level semantic information
improves feature fusion capabilities [11].
The YOLO series algorithms have been widely applied in

object detection due to their accuracy, lightweight design, and
scalability [12]. Researchers aim to address the contradiction
between semantic feature extraction and target scale and
enhance feature extraction and classification capabilities by
adopting multi-feature fusion techniques [13]. To further
improve the performance of the YOLO algorithm, an anchor-
free mechanism can be employed to address the difficulties of
positive and negative sample imbalance and hyperparameter
tuning [14]. Enhancing the feature learning of the backbone
network helps extract more discriminative features [15].
Cross-scale neck fusion attention emphasizes object-
specific features [16], while Feature Pyramid Networks
improve information flow and sharing across layers [17].
In addition, lightweight convolutional module design,
network pruning, and knowledge distillation techniques
can accelerate inference speed and improve computational
efficiency [18].

The purpose of this study is to prune and optimize the
YOLOv8 model to improve its detection capability for small
objects while meeting practical requirements. To achieve this
goal, we propose the following key modifications.

• The leg diseases to be detected in this study include
joint effusion and tibial dyschondroplasia, as illustrated
in Figure 1. Specifically, tibial dyschondroplasia is
characterized by the overlap of tibial cartilage at the
tibiotarsal joint, while joint effusion appears as a

FIGURE 1. Using Clahe data augmentation to compare with the original
image, A is the original image, where (a) represents the X-ray image of a
broiler chicken with normal leg bones, no joint effusion, and no tibial
cartilage dysplasia. (b) Chondrodysplasia. (c) Joint effusion.

semi-transparent grey shadow around the joint. Both
diseases exhibit characteristics of small targets in
large X-ray images. YOLOv8 is employed as the
baseline network, and the Channel Prior Convolutional
Attention (CPCA) is introduced into the backbone
to dynamically distribute attention weights in both
channel and spatial dimensions. This method proves
particularly effective in handling low contrast and
pronounced organ shape variations in medical images.
Additionally, a novel collection-distribution mecha-
nism (GD) called gold-yolo is introduced into the
network’s neck to enhance partial information fusion
capabilities.

• To address the challenges of limited X-ray images
and unclear manifestation of the lesion areas for joint
effusion and developmental dysplasia of the cartilage,
the Contrast Limited Adaptive Histogram Equalization
(CLAHE) algorithm is employed as a data augmentation
technique to improve image quality.

• We replace specific C2f layers in the backbone network
with C2f_PConv modules. The C2f_PConv module
incorporates partial convolution (PConv). Furthermore,
to achieve a more lightweight model, we introduce a
weight-sharing detection head based on partial convolu-
tion (PConv) into the network’s head. Through optimiza-
tion, the proposed lightweight detection head reduces
parameters by 30% compared to the original YOLOv8
detection head. The design of these two lightweight
convolution modules reduces model complexity and
enhances detection efficiency.

In the following sections, we will provide a detailed
description of our methodology, including data collection and
preprocessing, implementation of the deep learning model,
and evaluation of the automated detection system. We will
present our experimental results and discuss the impact and
potential applications of our proposed approach in the field
of broiler health management.
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II. RELATED WORK
In the field of X-ray object detection, the fundamental aspects
of object detection algorithms primarily revolve around three
key components: feature extraction, feature fusion, and the
integration of various feature processing techniques. These
elements collaborate to enhance the capabilities of feature
extraction and classification.

A. MULTI-SCALE FEATURES FOR OBJECT DETECTION
Traditionally, features at different levels carry information
about the positions of objects of varying sizes. Larger
features encompass low-dimensional texture details and
the positions of smaller objects, while smaller features
contain high-dimensional information and the positions of
larger objects. The original concept behind Feature Pyramid
Networks (FPN), proposed by Lin et al. [19], is that these
distinct information fragments can mutually enhance the
performance of the network. FPN, through scale-aware
connections and information exchange, offers an efficient
architectural design for fusing multi-scale features, thereby
improving the detection accuracy of objects of different sizes.

The Feature Pyramid Network (FPN) designed by
Wang et al., named Path Aggregation Network (PANet) [20],
adopts a bottom-up pathway to facilitate more comprehensive
information fusion across different levels. Similarly, Effi-
cientDet [21] introduces a novel repeatable module, BiFPN,
to enhance the efficiency of information fusion across dif-
ferent levels. Additionally, Yang et al [22]. extend FPN with
an Asymptotic Feature Pyramid Network (AFPN), enabling
interactions between non-adjacent layers. Addressing the
limitations of FPN in detecting large objects, SFNet [23]
aligns features at different levels with the semantic flow to
enhance FPN performance in the model.

However, due to the excessive number of paths and indirect
interaction methods in the network, the previous FPN-based
fusion structures still have drawbacks in low speed, cross-
level information exchange, and information loss.

B. ATTENTION MECHANISM
The attention mechanism plays a crucial role in medical
image detection and computer vision. Attention mechanisms
typically consist of channel attention and spatial attention.
What to focus on is determined by channel attention. Channel
attention was pioneered by Hu et al. (2018), who introduced
SENet. The core of SENet is the Squeeze-and-Excitation
(SE) block, which involves two key steps: global average
pooling and channel-wise weighting computation. Through
this block, the network can focus on important features.
However, SENet only includes channel attention, limiting its
ability to selectively focus on important regions. Therefore,
Woo et al. proposed the Convolutional Block Attention
Module (CBAM) [24], which sequentially combines channel
attention and spatial attention. CBAM integrates channel
attention and spatial attention in sequence, allowing the
network to focus on informative channels and important

regions. However, the spatial attention map is computed by
compressing channels, resulting in consistent spatial attention
weight distribution for each channel when element-wise mul-
tiplication is performed with input features. This limitation
restricts the adaptive ability of attention since spatial attention
weights cannot dynamically adjust based on specific features
for each channel.

Addressing this issue, Huang et al. proposed a novel
method called Channel Prioritized Convolution Attention
(CPCA) [25]. In contrast to CBAM, CPCA employs a
depth-wise convolution module as the spatial attention com-
ponent. The depth-wise convolution module uses bar-shaped
convolution kernels of different scales to extract spatial
mapping relationships between pixels. The use of multi-scale
depth-wise bar-shaped convolution kernels ensures effec-
tive information extraction while reducing computational
complexity [26]. The channel attention module is initially
used to obtain the channel attention map. Subsequently,
the depth-wise convolution module sequentially extracts
key spatial regions for each channel, obtaining dynami-
cally distributed spatial attention maps for each channel.
These dynamically distributed spatial attention maps closely
approximate the actual feature distribution for each channel,
effectively enhancing network performance.

C. COMPARISON OF METHODS BASED ON REGION AND
REGRESSION
Object detection methods are generally divided into two cate-
gories: region-based methods and regression-based methods.
Region-based methods involve searching for possible lesion
areas in images and then running a classifier on these regions
to identify targets. For example, Gan et al. [27] used Faster
R-CNN and Inception-v4 to detect distal radius fractures,
achieving an average Intersection over Union (IOU) value
of 0.87, with IOU values not less than 0.5. Jia et al. [28]
employed cascade R-CNN as a baseline model for detecting
sternal fractures in chest X-ray images. They optimized
the detection of small fractures in large X-ray images with
significant local variations using attention mechanisms and
atrous convolution. Experimental results showed a mean
Average Precision (mAP) of 0.71, significantly better than
using cascaded R-CNN (mAP = 0.55). Although two-stage
object detection algorithms can achieve higher accuracy,
they introduce substantial computational overhead and may
not meet the real-time requirements of object detection
in practice. In contrast, regression-based methods directly
predict the position and category of targets. Currently, some
researchers have started applying deep learning to object
detection in X-ray images. For instance, Han et al. [29]
combined a YOLO detector with an InceptionResNet-V2
classifier, achieving good diagnostic performance for breast
lesions. The model detected and classified breast lesions
in single breast X-ray images in less than 0.025 seconds
on average. Wang et al. [30] proposed a YOLO-Xray
model for bubble defect detection in chip X-ray images
using the YOLOv5 algorithm. By using image segmentation
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preprocessing and constructing a defect dataset, the model
improved the detection capability of small defects. The
YOLO-Xray algorithm achieved an average precision (mAP)
of 93.5% on the CXray dataset, a 5.1% improvement over the
original YOLOv5, demonstrating state-of-the-art detection
accuracy and speed.

The above studies demonstrate the feasibility of deep
learning in X-ray image detection. Currently, most deep
learning research focuses on the human skeleton and lungs,
with limited studies on diseases related to chicken legs. Due
to the increasing prevalence of chicken leg diseases, poultry
health andwelfare are under serious threat. Therefore, there is
an urgent need to develop deep learning models specifically
for the detection of chicken leg diseases to assist farmers in
rapidly and accurately diagnosing and locating diseases in
broiler chicken legs.

III. MATERIALS AND METHODS
A. DATASET AND PRE-PROCESSING
1) ESTABLISHMENT OF A DATASET FOR LEG DISEASES IN
BROILER CHICKENS
To successfully develop an accurate automatic detection
system for chicken leg diseases, establishing a comprehensive
and meticulously annotated dataset is crucial as the cor-
nerstone for training and evaluating deep learning models.
This study primarily focuses on two specific leg diseases:
joint effusion and tibial dyschondroplasia. The construction
process of this dataset involves the following steps:

Step 1:Data Collection: Using the HX-100P veterinary
diagnostic portable X-ray equipment from Beijing Jiaxin-
huixiong Technology Co., Ltd. (Beijing, China), chicken
legs were captured. These chickens underwent clinical
examinations, and a team of veterinary experts confirmed
the presence of each leg disease. The dataset includes only
chickens with explicitly diagnosed conditions to ensure the
accuracy and reliability of the data.

Step 2:Annotation and Labeling Process: For joint effusion
and tibial dyschondroplasia, bounding boxes were placed
around the affected joints or regions with abnormal cartilage
development. Annotations include disease-specific labels,
and As shown in (b) and (c) of A in Figure 1 illustrates the
lesion areas indicating the presence of joint effusion or tibial
dyschondroplasia.

Step 3:Data Composition: The dataset comprises X-ray
images of joint effusion and Tibial Dyschondroplasia. Table 1
summarize the distribution and composition of the dataset,
providing detailed information on the number of images for
each leg disease category.

By constructing a comprehensive dataset with accurate
annotations, we ensure a robust foundation for the proposed
automatic detection system. This dataset encompasses vari-
ous leg diseases, offering effective learning and generaliza-
tion opportunities for deep learning models. In the following
sections, we will discuss data preprocessing techniques used
to enhance the dataset’s quality and prepare for training the
detection model.

2) DATA PREPROCESSING
Data augmentation is a commonly employed technique in
the fields of machine learning and computer vision, aimed
at expanding the training dataset to improve the model’s
generalization capability and robustness. In this study,
we incorporate the Contrast Limited Adaptive Histogram
Equalization (CLAHE) algorithm [21] as a component of
data preprocessing to enhance the model’s ability to capture
subtle details in lesion areas of chicken leg X-ray images.The
CLAHE algorithm is based on the concept of histogram
equalization, adapting it to local regions of an image to
enhance contrast and mitigate uneven illumination. In con-
trast to traditional global histogram equalization methods,
CLAHE demonstrates advantages when dealing with images
featuring uneven grayscale distributions, avoiding issues of
excessive enhancement while enhancing image details.

During the data preprocessing stage, original X-ray images
of chicken legs were input into the CLAHE algorithm, which
performed adaptive histogram equalization on local regions
of the image. Specifically, we divided the image into multiple
overlapping local blocks, applying the CLAHE algorithm
calculation to each block to enhance image contrast and
details.

By applying the CLAHE algorithm for data augmentation,
significant improvements were observed in the task of
disease detection in chicken leg X-ray images. As shown in
Figure 1, CLAHE-processed images exhibited clearer and
brighter features, facilitating the identification and analysis
of chicken leg diseases such as joint effusion and tibial
dyschondroplasia.

B. METHOD FOR CHICKEN LEG DISEASE DETECTION IN
X-RAY IMAGES
1) ALGORITHM SELECTION
YOLOv8, the latest version of the You Only Look
Once (YOLO) series for object detection, has significantly
improved its performance in the field throughmultiple refine-
ments and optimizations. In comparison to earlier YOLO
versions, YOLOv8 has achieved notable advancements in
both accuracy and speed for object detection. Furthermore,
it has demonstrated outstanding performance on the COCO
dataset, exhibiting excellent average precision and lower rates
of missed detections. Hence, we have chosen YOLOv8 as
the baseline model for our research to ensure that our study
attains a high level of performance.

The YOLOv8 network architecture is primarily divided
into three modules: Backbone, Neck, and Head. In contrast to
the previous YOLOv5, the Backbone of the network replaces
all C3 modules with C2f modules, introducing more skip
connections and additional Split operations to better capture
object boundaries and contextual information. The Neck
section continues the PAN-FPN structure but removes the
CBS 1×1 convolution structure in the upsampling stage of
the PAN-FPN from YOLOv5, replacing the C3 modules with
C2f modules. The Head section transitions from the original
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TABLE 1. Distribution and composition of a dataset on joint effusion and chondrodysplasia in the legs of broiler chickens.

FIGURE 2. For a regular convolution operation (a) and a PConv (partial convolution) operation (b), it can be observed that PConv achieves lower FLOPs
compared to the conventional convolution.

coupled head to a decoupled head and shifts from YOLOv5’s
Anchor-Based form to an Anchor-Free form.

2) THE C2F MODULE INTRODUCES PCONV CONVOLUTION
The original YOLOv8 model is relatively large, featur-
ing a complex backbone network and detection head,
which may result in higher computational complexity in
resource-constrained environments. Particularly in practical
applications, there is a demand for higher efficiency
in the X-ray image detection of diseases in broiler
chicken legs. The introduction of Partial Convolution
(PConv) reduces redundant computations, more effectively
extracting spatial features, and significantly decreases the
model’s parameter count and computational complex-
ity [22]. This adaptation makes the model more suit-
able for embedded devices and environments with limited
resources.

Figure 2(a) illustrates the working principle of conven-
tional convolution and PConv. It can be observed that
conventional convolution extracts features by considering all
channels, resulting in a FLOPs (floating-point operations per
second) calculated by the following formula.

H ×W × K 2
× C2 (1)

From Figure 2(b) it can be observed that PConv selectively
applies conventional convolution to spatially extract features
from only a subset of input channels, while leaving the rest
unchanged. For consecutive or regular memory access, the
first to last consecutive channels (denoted as CP channels)
are calculated as representatives of the entire feature map.
Without compromising generality, the FLOPs of PConv are
only

H ×W × K 2
× C2

P (2)

When a typical fraction CP
C =

1
4 , Besides, PConv has a

smaller amount of memory access, i.e.,

H ×W × 2CP + K 2
× C2

P ≈ H ×W × 2CP (3)

Which is only 1
4 of a regular Conv for r =

1
4 From the

above analysis, it can be concluded that PConv significantly
improves the model’s processing speed and efficiently
extracts subtle features from X-ray images.

As shown in Figure 3(c) the C2f module consists of two
convolutional layers and n bottlenecks, including numerous
skip connections and additional split operations. These
operations facilitate the fusion of features extracted from
different depth layers, enabling the model to simultaneously
process low-level and high-level features. However, this
characteristic also adds to the computational complexity of
the network. During both training and inference, handling
additional feature mapmerging and channel adjustments may
result in increased computational and memory requirements.

In this paper, we replaced the first regular convolution
in the bottleneck of the C2f module with PConv, and
used two 1×1 convolutions to replace the second regular
convolution, forming the C2f_PConv module. However,
it is important to note that replacing all C2f modules with
C2f_PConv modules in the YOLOv8 network structure may
potentially lead to a decrease in network accuracy. To address
these challenges, we conducted experiments to validate
detection accuracy and inference speed. Through this process,
we found that replacing the second and third C2f modules
and the fourth C2f module in the backbone network with
C2f_PConv modules achieved optimal optimization results.
This modification preserves task-relevant information for
extracting critical features related to broiler chicken joint
effusion and tibial dyschondroplasia, while disregarding less
crucial details. Figure 3 illustrates the improved overall
network architecture of YOLOv8 designed in this study,
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FIGURE 3. Improved YOLO v8s structure schematic.

providing detailed information on both the C2f module and
C2f_PConv module.

3) PARTIAL CONVOLUTION-BASED SHARED WEIGHT
DETECTION HEAD (SHAREDPCONV HEAD)
The detection head of YOLOv8 inherits the decoupling
design from YOLOX, where the parameters of the clas-
sification branch and regression branch are independently
trained, endowing the model with stronger feature learning
capabilities. However, this decoupling design results in
a substantial parameter count and computational load; it
is estimated that the YOLOv8 detection head occupies

approximately 30% of the entire model’s parameters and
computational resources. When addressing the challenge of
detecting leg diseases in X-ray images, there is an urgent need
to enhance the efficiency and accuracy of the model.

To address this issue, we drew inspiration from the
weight-sharing concept in RetinaNet and adopted a coupled
design to replace the decoupling design of the YOLOv8
detection head. Simultaneously, we utilized Partial Con-
volution (PConv) to replace the original 3×3 regular
convolution in the YOLOv8 detection head, creating a novel
Partial Convolution-based Shared Weight Detection Head
(SharedPConv head). Figure 4 provides detailed information
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FIGURE 4. Decoupling head and coupling head design principles.

on decoupling and coupled designs, while Figure 5(a)
illustrates the specific network structure of the SharedPConv
head. By adopting the coupled design, both branches share
a set of parameters until the final layer, significantly
reducing the model’s complexity and parameter count. This
enhances the model’s inference speed and more effectively
improves the detection performance of broiler chicken leg
diseases.

4) CHANNEL PRIOR CONVOLUTIONAL ATTENTION (CPCA)
The attention mechanism is a technology that enhances the
extraction of key information by directing focus toward
important regions of input objects. Currently, several main-
stream attention mechanisms such as SE-Net, SimAM, and
CPCA have been validated, achieving significant advance-
ments [33], [34]. Particularly noteworthy is the CPCA
attentionmechanism, which dynamically distributes attention
weights in both channel and spatial dimensions. It accom-
plishes this by extracting spatial relationships through deep
convolutional modules without disrupting channel priors.
This approach demonstrates remarkable efficacy in handling
features like low contrast and pronounced organ shape
variations inmedical images. The channel prior convolutional
attention module performs channel attention and spatial
attention sequentially, as shown in Figure 6. Given an
intermediate feature map F ∈ RC×H×W as input, the channel
attention module (CA) first infers a 1D channel attention map
Mc ∈ RC×1×1. MC is then element-wise multiplied with the
input feature F, and the channel attention values are broadcast
along the spatial dimension to obtain the refined feature
Fc ∈ RC×H×W with channel attention. The spatial attention
module (SA) processes to generate a 3D spatial attention map
Ms ∈ RC×H×W . The final output feature F̂ ∈ RC×H×W

is obtained by element-wise multiplying Ms with Fc. The
overall attention process can be summarized as:

Fc = CA(F) ⊗ F,

F̂ = SA (Fc) ⊗ Fc (4)

where ⊗ represents element-wise multiplication.

• Channel Attention: The module employs the approach
proposed by CBAM [24] to implement channel atten-
tion. Spatial information is extracted from the feature
map through average pooling and max pooling opera-
tions. This process generates two independent channel
attention vectors. Subsequently, these vectors are input
into a shared multi-layer perceptron (MLP). The outputs
of the shared MLP are combined through element-wise
summation to obtain the channel attention map. The
computation of the channel attention can be summarized
as:

CA(F) = σ (MLP(AvgPool(F)) + MLP(MaxPool(F))) (5)

where σ denotes the sigmoid function

• Spatial Attention: To avoid enforcing consistency in
the spatial attention maps for each channel, CPCA
utilizes deep convolution to capture spatial relationships
between features. This ensures the preservation of
inter-channel relationships while reducing computa-
tional complexity. Amulti-scale structure is employed to
enhance the convolutional operation’s ability to capture
spatial relationships. Channel fusion is performed at
the end of the spatial attention module using a 1×1
convolution, resulting in a more refined attention map.
The computation method for spatial attention is as
follows:

SA(F) = Conv1×1

(
3∑
i=0

Branchi(DwConv(F))

)
(6)

where, DwConv represents depth-wise convolution, and
Branchi, i ∈ {0, 1, 2, 3} represents the i-th branch.
In this paper, we investigate two diseases–joint effusion

and tibial dyschondroplasia–that typically manifest as rela-
tively small targets in large X-ray images. This characteristic
leads to the continuous accumulation of complex background
information during convolutional operations, resulting in a
significant amount of redundant information. This situation
may cause the model to overlook sufficient attention to the
lesion areas, leading to the issue of false negatives. Addi-
tionally, as mentioned earlier, while PConv convolution has
made progress in significantly reducing model complexity
and computational burden, it has a limitation in that it only
convolves over a subset of channels, thereby diminishing
information exchange between channels.

To address these challenges, we introduced the Channel
Prior Convolutional Attention (CPCA) into the backbone of
the YOLOv8 object detectionmodel. Specifically, we embed-
ded the CPCA attention mechanism after the Spatial Pyramid
Pooling Fusion (SPPF) module, thereby enhancing the bidi-
rectional flow of information between the backbone network
and the feature fusion layers. Additionally, this module
employs multi-scale depth convolution to effectively extract
spatial relationships, enabling better capture of subtle features
in the regions of joint effusion and tibial dyschondroplasia.
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FIGURE 5. Detailed network structure diagram of SharedPConv head.

FIGURE 6. Channel Prior Convolutional Attention (CPCA) features an overall structure comprising sequential placement of channel attention and
spatial attention. Spatial information of the feature maps is aggregated by the channel attention through operations such as average pooling and
max pooling. The spatial information is subsequently processed through a shared MLP (Multi-Layer Perceptron) and added to produce the channel
attention map. The channel prior is obtained by element-wise multiplication of the input feature and the channel attention map. Subsequently,
the channel prior is inputted into the depth-wise convolution module to generate the spatial attention map. The convolutional module receives
the spatial attention map for channel mixing. Ultimately, the refined features are obtained as the output by element-wise multiplication of the
channel mixing result and the channel prior. The channel mixing process contributes to enhancing the representation of features.

FIGURE 7. Traditional neck structure.

5) CROSS-LEVEL FEATURE FUSION
The disease characterized by joint effusion in the leg of
broiler chickens typically manifests as mild effusion, present-
ing small and indistinct features on X-ray images. The YOLO
series neck structure, as depicted in Figure 7, employs a
traditional FPN structure, which comprises multiple branches
for multi-scale feature fusion. However, it only fully fuse
features from neighboring levels, for other layers information
it can only be obtained indirectly ‘recursively’. This results in
a significant loss of small-scale information, such as lesions

FIGURE 8. The architecture of the proposed gold-YOLO.

in the area affected by broiler chicken joint effusion disease,
during the computation process, leading to a considerable
number of missed detections. To avoid information loss
in the transmission process of traditional FPN structures,
We have introduced a novel GatherDistribute (GD) mecha-
nism inspired by Gold-YOLO [35]. Specifically, the process
gathers and distributes correspond to three modules: Feature
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Alignment Module (FAM), Information Fusion Module
(IFM), and Information Injection Module(Inject).

• The gathering process involves two steps. Firstly, the
FAM collects and aligns features from various levels.
Secondly, IFM fuses the aligned features to generate
global information.

• Upon obtaining the fused global information from
the gather process, the inject module distributes this
information across each level and injects it using
simple attention operations, subsequently enhancing the
branch’s detection capability.

To enhance the model’s ability to detect objects of varying
sizes, The method developed two branches: low-stage gather-
and-distribute branch (Low-GD) and high-stage gather-and-
distribute branch (High-GD). As shown in Figure 8, the
neck’s input comprises the feature maps B2, B3, B4, and B5
extracted by the backbone, whereBi ∈ RN×CBi×RBi .The batch
size is denoted by N, the channels by C, and the dimensions
by R=H T×W.Moreover, the dimensions of RB2,RB3,RB4,
and RB5 are R, 1

2R, 1
4R, and

1
8R, respectively.

Low-stage gather-and-distribute branch: In this branch, the
output B2, B3, B4, and B5 features from the backbone are
selected for fusion to obtain high resolution features that
retain small target information. The structure is shown in
Figure 9(a).

a: LOW-STAGE FEATURE ALIGNMENT MODULE
In the Low-Level Feature Alignment Module (Low-FAM),
the input features undergo downsampling through the use of
average pooling (AvgPool) operations, achieving a uniform
size. By resizing the features to the smallest feature size of
the group

(
RB4 =

1
4R
)
, we obtain Falign .

b: LOW-STAGE INFORMATION FUSION MODULE
The low-stage information fusion module (Low-IFM) design
comprises multi-layer reparameterized convolutional blocks
(RepBlock) and a split operation. Specifically, RepBlock
takes Falign (channel= sum (CB2,CB3,CB4,CB5)) as input
and produces Ffuse (channel= CB4 + CB5). The middle
channel is an adjustable value (e.g., 256) to accommodate
varying model sizes. The features generated by the RepBlock
are subsequently split in the channel dimension into Finj−P3
and Finj_P4, which are then fused with the different level’s
feature.

The formula is as follows:

Falign = Low_FAM ([B2,B 3,B4,B5]) (7)

Ffuse = RepBlock
(
Falign

)
(8)

Finj_P3 ,Finj_P4 = Split (Ffuse ) (9)

c: INFORMATION INJECTION MODULE
In order to inject global information more efficiently into
the different levels, This module draws inspiration from the
segmentation experience and employs attention operations
to fuse the information, as illustrated in Figure 9(c).

FIGURE 9. Gather-and-distribute structure. In (a), the Low-FAM and
Low-IFM is low-stage feature alignment module and low-stage
information fusion module in low-stage branch, respectively. In (b), the
High-FAM and High-IFM is high-stage feature alignment module and
high-stage information fusion module, respectively.

Specifically, this module inputs both local information
(which refers to the feature of the current level) and global
inject information (generated by IFM), denoted as Flocal
and Finj, respectively. This module uses two different Convs
with Finj for calculation, resulting in Fglobal_embed and
Fact . While Fglobal_embed is calculated with Flocal using
Conv. The fused feature Fout is then computed through
attention. Due to the size disparity between Flocal and Fglobal,
this module employs either average pooling or bilinear
interpolation to scale Fglobal_embed and Fact based on the size
of Finj, ensuring proper alignment. At the conclusion of each
attention fusion, a RepBlock is added to further extract and
integrate information.

In low stage, Flocal is equal to Bi, so the formula is as
follows:

Fglobal_act_Pi = resize
(
Sigmoid

(
Convact

(
Finj_Pi

)))
(10)

Fglobal_embed_Pi = resize
(
Conv vglobal_embed_Pi

(
Finj_Pi

))
(11)

Fatt_fuse_Pi = Convlocal_embed_Pi(Bi) ∗ Fglobal_act_Pi
+ Fglobal_embed_Pi (12)

Pi = RepBlock
(
Fatt_fuse_Pi

)
(13)

High-stage gather-and-distribute branch: The High-GD
fuses the features P3, P4, P5 that are generated by the
Low-GD, as shown in Figure 9(b).

d: HIGH-STAGE FEATURE ALIGNMENT MODULE
The high-stage feature alignment module (High-FAM) con-
sists of avgpool, which is utilized to reduce the dimension
of input features to a uniform size. Specifically, when the
size of the input feature is {RP3,RP4,RP5}, avgpool reduces
the feature size to the smallest size within the group of
features

(
RP5 =

1
8R
)
. Since the transformer module extracts

high-level information, the pooling operation facilitates
information aggregation while decreasing the computational
requirements for the subsequent step in the Transformer
module.
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e: HIGH-STAGE INFORMATION FUSION MODULE
The high-stage information fusion module (High-IFM)
comprises the transformer block (explained in greater detail
below) and a splitting operation, which involves a three-
step process: (1) the Falign , derived from the High-FAM, are
combined using the transformer block to obtain the Ffuse .
(2) The Ffuse channel is reduced to sum (CP4,CP5) via a
Conv 1×1 operation. (3) The Ffuse is partitioned into Finj−N4
and Finj−N5 along the channel dimension through a splitting
operation, which is subsequently employed for fusion with
the current level feature.

The formula is as follows:

Falign = High_FAM([P3,P 4,P5]) (14)

Ffuse = Transformer
(
Falign

)
(15)

Finj_N4 ,Finj_N5 = Split (Conv 1 × 1 (Ffuse )) (16)

The transformer fusion module in Eq. 15 comprises several
stacked transformers, with the number of transformer blocks
denoted by L. Each transformer block includes a multi-head
attention block, a Feed-Forward Network (FFN), and residual
connections.

f: INFORMATION INJECTION MODULE
The information injection module in High-GD is exactly the
same as in Low-GD. In high stage, Flocal is equal to Pi, so the
formula is as follows:

Fglobal_act_Ni = resize
(
Sigmoid

(
Convact

(
Finj_Ni

)))
(17)

Fglobal_embedN i = resize
(
Convglobal_embed_Ni

(
Finj_Ni

))
(18)

Fatt_fuse_Ni = Convlocal_embed_Ni(Pi) ∗ Fglobal_act_Ni
+ Fglobal_embed_Ni (19)

Ni = RepBlock
(
Fatt_fuse_Ni

)
. (20)

In this paper, as shown in Figure 1, we replaced the
original FPN structure in the yolov8 neck with the Gather-
and-Distribute mechanism (GD). To further enhance the
interconnectivity of cross-level information, We added two
Feature Alignment Modules (FAM) with three inputs each
in the Low-Level Gathering and Distributing Branch. The
formulation can be expressed as:

Fi = Low− FAM ([B(i− 1),B i,Conv(B(i+ 1))]) (21)

where Fi serves as Bi in Equation 12, specifically, as illus-
trated in Figure 8(c), Fi is utilized as the x_local input in
the Information Injection Module. Therefore, in this paper,
Equation 9 should be modified to:

Fatt_fuse_Pi = Convlocal_embed_Pi (Fi) ∗ Fglobal_act_Pi
+ Fglobal_embed_Pi · (22)

Similarly, in the High-stage gather-and-distribute branch, two
additional Feature Alignment Modules were added, and a

TABLE 2. Comparison of experimental test results.

C2f structure was introduced after all Information Injection
Modules. The formula can be expressed as:

Fi = High− FAM ([C2 f (pi),Conv(B(i+ 1))]) (23)

where Fi serves as Pi in Equation 9, Therefore, in this paper,
Equation 9 should be modified to:

Fatt_fuse_Ni = Convlocal_embed_Ni (Fi) ∗ Fglobal_act_Ni
+ Fglobal_embed_Ni (24)

Through this improvement, the effectiveness of information
fusion and transmission has been strategically increased,
thereby better addressing the issue of indistinct joint effusion
lesion areas.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL CONDITIONS AND PARAMETER
SETTINGS
The experimental setup employed the Linux operating sys-
tem, equipped with an NVIDIA GeForce RTX 3090 graphics
processing unit (GPU) with 24GB of memory. Computa-
tion was conducted using PyTorch version 1.13.1+cu116,
and the Python language environment was configured to
version 3.8.0.

To enhance the model’s performance during training,
we introduced learning rate decay methods into the training
process. This approach involved adjusting the update speed
of the model’s parameters using an initial learning rate (lr0).
Furthermore, a learning rate coefficient (lrf) was applied to
regulate the decay of the learning rate throughout the training.
The final learning rate was determined by multiplying the
initial learning rate by the coefficient. To ensure an adequate
number of training steps, the iteration was set to 500. During
training, the learning rate gradually decreased, fostering
model stability, facilitating smooth convergence, and min-
imizing fluctuations to attain the optimal solution. Table2
provides an overview of the hyperparameter configurations
utilized during model training.

B. EVALUATION INDICATORS
To assess the performance of the improved detection model,
it is crucial to choose appropriate metrics. The evaluation
metrics employed in this paper include recall (R), average
precision (AP), and mean average precision (mAP). These
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TABLE 3. Comparison of experimental test results.

evaluation metrics are calculated as follows:

AP =

∫ 1

0
P dR

mAP =

∑N
i=1APi
N

Recall =
TP

TP + FN

Precision =
TP

TP + FP
(25)

TP (true positive) represents the number of detected
diseases in X-ray images with diseases, FP represents
the number of detected diseases in X-ray images without
diseases, FN represents the number of undetected diseases in
X-ray images with diseases, and TN represents the number
of undetected diseases in X-ray images without diseases.
The AP value corresponds to the area under the precision-
recall (P-R) curve. mAP is the average precision obtained by
averaging the AP values for detecting two types of chicken
leg diseases: joint effusion and tibial dyschondroplasia. The
number of defect categories, N, is 2. A higher mAP indicates
better defect detection performance and higher recognition
accuracy.

In addition to performance metrics, model complexity
needs to be considered, including the number of parameters
(Mb) and the number of Floating Point Operations (FLOPs).
For a standard convolution, the calculations for parameters
and FLOPs are as follows:

Parameters = (Kh ∗ Kw ∗ Cin ) ∗ Cout + Cout

FLOPs = [(Kh ∗ KW ∗ Cin ) ∗ Cout + Cout ] ∗ (H ∗W )

(26)

where, K_h and K_w denote the height and width of the
convolution kernel, C_in, C_out represents the number of
input channels, represents the number of output channels, and
H andW are the height and width of the output feature vector.
Typically, K_w and K_h have the same size.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) ANALYSIS OF ORIGINAL MODEL PERFORMANCE
The YOLOv8 model has been developed in four vari-
ants: YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x.
YOLOv8s is the model with the minimum depth and width,
while the other three models are products that deepen and
extend YOLO v8s. Smaller network models demand lower
performance requirements for mobile terminals and are easier
to deploy.

This section investigates the impact of model depth and
width on the detection of diseases in broiler chicken legs
in X-ray images. In deep learning models, a more complex
structure and deeper depth typically lead to better detec-
tion performance. However, in the most complex models,
small sample data may not demonstrate optimal detection.
To design a model with the best cost-effectiveness, we trained
four different models, YOLOv8s, YOLOv8m, YOLOv8l, and
YOLOv8x, using a dataset processed through Clahe data
augmentation. The model metrics are presented in Table 3.

The experimental results indicate that the average precision
(mAP) of YOLOv8l and YOLOv8x is lower than that of
YOLOv8s. This suggests that, for the detection of diseases
in broiler chicken legs under X-ray images, a deeper neural
network structure may lead to overfitting issues, reducing the
model’s generalization. Although the mAP of YOLOv8m is
only 0.5% higher than YOLOv8s, considering the training
time cost and hardware requirements, we decided to use
YOLOv8s as the base detection model.

2) LIGHTWEIGHT STRUCTURE COMPARATIVE ANALYSIS
In this section, to assess the effectiveness and feasibility of
the C2f_PConv module and the Partial Convolution-based
SharedWeight Detection Head (SharedPConv head), we con-
ducted ablative experiments. To ensure the precision of the
ablative experiments, the model’s operational environment
and hyperparameters remained consistent, and specific
experimental results are detailed in Table 4. In the table,
C2f_PConv represents the enhancement of introducing Par-
tial Convolution (PConv) into the C2f module of the original
YOLOv8 model, while SharedPConv denotes our designed
Shared Weight Coupling Head based on Partial Convolution.
Params indicate the number of model parameters, GFLOPs
represent the model’s billion floating-point operations per
second, and mAP is the average detection precision across
all target classes.

Analysis of the performance of the C2f_PConv module
reveals that the Partial Convolution (PConv) in this module
operates only on specific channels of the feature map.
Consequently, compared to the baseline model, the improved
model showed a reduction of 12.6% in parameters and
a decrease of 13.4% in GFLOPs. Further analysis of the
experimental results indicates that the improved model
achieved a 4.0% increase in mAP and a 1.3% improvement in
precision. This validates that the enhancement of this module
does not compromise model precision despite the reduction
in parameter count.

The analysis of the performance of the Partial Convolution-
based Shared Weight Detection Head (SharedPConv head)
shows that, as presented in Table 4, the improved model
exhibited a reduction of 13.7% in parameters and a decrease
of 24.3% in GFLOPs. Experimental results demonstrate that
by replacing the decoupled design of the YOLOv8 detection
head with a coupled design, parameter sharing was achieved,
significantly reducing model complexity. Further analysis
of experimental results shows slight improvements in mAP,
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TABLE 4. Comparison of experimental test results.

TABLE 5. Embedding CPCA attention mechanism into detection regions in different regions of the network.

TABLE 6. Comparison of detection performance of different feature fusion algorithms in this dataset.

TABLE 7. Statistical results of ablation experiments.

FIGURE 10. Comparison of various attention mechanisms under YOLOv8s.

precision, and recall, supporting the effectiveness of the
model enhancement.

Performance analysis of the combined modules reveals
that the integration of the C2f_PConv module and the

Partial Convolution-based Shared Weight Detection Head
(SharedPConv head), compared to the baseline model,
resulted in a 26.6% reduction in parameters, with corre-
sponding increases of 3.4% and 2.9% in mAP and precision,
respectively. Furthermore, comparing the combined model
with models incorporating only the C2f_PConv module or
the SharedPConv head individually, it is evident that the
combined model did not suffer significant precision loss
while achieving reductions of 16% and 15% in parameter
count, respectively. This indicates that, compared to indi-
vidual component modules, the model is more lightweight,
successfully validating the superiority of the combined
module over single-component modules, rather than a simple
accumulation of accuracy.

3) COMPARATIVE ANALYSIS OF ATTENTION MECHANISMS
Figure 10 presents a comparison of detection results for
the YOLOv8s detection model with different attention
mechanisms embedded in the backbone. The experiment
utilized X-ray images from a dataset of chicken leg diseases
for training.
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As shown in the table, introducing the YOLOv8 model,
the Channel Prior Convolutional Attention (CPCA), and the
SimAM attention mechanisms can improve the network’s
detection accuracy. However, with the introduction of the
Triplet attention mechanism, there is a slight decrease in
detection accuracy compared to the original algorithm. The
CPCA attention mechanism achieves the optimal perfor-
mance, increasing mAP by 3.7% compared to the original
algorithm. In summary, the CPCA attention mechanism,
employing multiscale depth convolutional modules, effec-
tively extracts features frommedical imageswith low contrast
and significant organ shape variations, thereby enhancing
feature learning capabilities.

Furthermore, to thoroughly investigate whether embedding
CPCA in the model backbone is the optimal choice, this
experiment conducted a detailed comparison by embedding
CPCA separately in the backbone and feature fusion layer
of the YOLOv8s object detection model. The experimental
results are presented in Table 5: embedding CPCA in the
feature fusion layer improves detection accuracy by 3.3%,
and mAP (0.5) increases by 2%. Embedding CPCA in the
backbone achieves an mAP value of 90.2%, with only a
slight increase in overall model parameters. The improvement
is particularly significant in the detection model. Through
comparative analysis of the experimental results, we conclude
that embedding CPCA in the YOLOv8s model effectively
enhances the correlation between low-dimensional and high-
dimensional features, thereby achieving more accurate target
localization and recognition.

When the CPCA attention mechanism is embedded in
the feature fusion layer, the detection accuracy improves by
3.3%, and mAP(0.5) increases by 2%. Embedding the CPCA
attention mechanism in the network’s backbone results in
a higher mAP(0.5) of 90.2%, with only a slight increase
in the overall model parameters. Through comparative
experimental results, it is evident that embedding the CPCA
attention mechanism into the backbone of yolov8s allows for
more accurate localization and recognition of targets.

4) COMPARATIVE ANALYSIS OF FEATURE FUSION LAYERS
In this section, we aim to explore the impact of different
feature fusion methods on the dataset by embedding AFPN,
GFPN, BiFPN, and the GatherDistribute (GD) mechanism
into the neck of the YOLO v8s detection model. The
experimental results are presented in Table 6.

From Table 6, it is evident that when adopting AFPN,
GFPN [36], BiFPN, and GD, the model’s detection accuracy
is superior to the original model with FPN structure.
However, through a comprehensive analysis of Precision,
Recall, and mAP(0.5), we found that the GatherDistribute
mechanism (GD) achieved the most balanced detection
results on this dataset. Compared to the original model, the
precision improved by 3.3%, and there was a slight increase
in recall. By comparing the experimental results, we conclude
that the GatherDistribute mechanism (GD), by employing a
unified module to gather and fuse information from different

levels and then distributing it to different levels, successfully
avoids the information loss problem caused by the lack of
inter-layer communication in traditional FPN structures and
their variants (such as AFPN, GFPN, BiFPN). Therefore,
embedding the GatherDistribute mechanism (GD) into the
neck of YOLOv8s can more accurately locate and identify
features of the affected areas.

5) ABLATION EXPERIMENT
To visually observe the impact of different improvement
modules on the model’s performance, this section conducted
ablation experiments for validation. Specifically, various
improvements were introduced into the original yolov8s
model, including Clahe data augmentation, CPCA attention
mechanism, C2f_PConv module, cross-level feature fusion
through the Gather-and-Distribute mechanism (GD), and a
detection head based on shared PConv weights. The detection
performance was compared while keeping the dataset and
training parameters constant.

The experimental results are presented in the Table 6.
By introducing Clahe data augmentation, CPCA atten-
tion mechanism, C2f_PConv module, Gather-and-Distribute
mechanism (GD), and a detection head based on shared
PConv weights, each improvement module contributed to an
increase in the model’s average precision. When yolov8s is
integrated with these five improvement modules to form the
final chicken leg disease detection model, under conditions
nearly identical to yolov8s parameters, the overall mAP
increased by 10.6%.

Table 7 demonstrates that each improvement module
contributes positively to the model’s performance, and the
integration of these modules results in a notable enhancement
in overall mAP for the chicken leg disease detection model.

6) ANALYSIS OF DETECTION RESULTS
In this section, we focus on detecting chicken joint effusion
and tibial dyschondroplasia diseases by randomly selecting
different types of X-ray images. The detection results of the
original yolov8s model and the improved yolov8s model are
illustrated in Figure 11.
From Figure 11(c)-(d), it can be observed that under

the complex background interference of low-contrast X-ray
images, YOLOv8s exhibits instances of missed detection
with low confidence in detecting lesions related to chicken
joint effusion disease. Visual results for the detection of
chicken cartilage malformation disease show cases of false
positives. In contrast, in Figure 11(a)-(b), the improved
YOLOv8s model in this study is not affected by non-uniform
complex backgrounds. It successfully detects 100% of the
lesion areas of joint effusion in the images, providing more
precise bounding boxes with higher confidence and without
any instances of false positives. The comparison indicates
that the improved YOLOv8s model delivers more accurate
detection results, capturing crucial information in the lesion
areas of chickens and demonstrating excellent generalization
performance.

VOLUME 12, 2024 47397



X. Zhang et al.: Detection of Leg Diseases in Broiler Chickens

FIGURE 11. Comparison of the improved YOLOv8s with the original YOLOv8s detection results is shown in Figure, where (a) provides examples of
detecting chicken joint effusion disease on the baseline network YOLOv8s, (b) presents examples of detecting chicken tibial dyschondroplasia disease on
the baseline network YOLOv8s, (c) illustrates examples of detecting chicken joint effusion disease on the improved YOLOv8s proposed in this paper, and
(d) demonstrates examples of detecting chicken tibial dyschondroplasia disease on the improved YOLOv8s.

TABLE 8. Performance comparison results between the improved algorithm and other algorithms.

FIGURE 12. Comparison of two YOLO V8S detection models
mAP@0.5:0.95.

Figures 12,13 present the loss functions and mAP@0.5:
0.95 curves of the yolov8s detection model before and after
improvement during the training process on the training set
and validation set. From Figures 13, it can be observed that
the improved yolov8s network consistently exhibits lower
loss values in classification, bounding box prediction, and
DFL loss, presenting an earlier inflection point. On the
validation set, the improved yolov8s model demonstrates
stability without oscillations during iterations, indicating
better overall model performance.

Figure 12 illustrates that the curve of the improved yolov8s
is consistently above the curve of the original yolov8s,
indicating an overall higher detection accuracy for the

improved yolov8s network. Notably, the learning curve of the
improved network is smoother, indicating better stability.

In summary, the improved yolov8s detection model in
this study has significantly enhanced accuracy, optimizing
the detection performance of the network and achieving
accurate detection of chicken joint effusion and tibial
dyschondroplasia diseases.

V. DISCUSSION
In this section, we validated the performance of the
proposed method by comparing it with several mainstream
object detection algorithms under the same experimental
environment. Table 8 presents the quantitative comparison
results, where mAP denotes the mean average precision
across all target classes in the model. FPS represents the
detection speed of the model. The improved YOLOv8s
model proposed in this study, with the introduction of
the CPCA attention mechanism in the backbone of the
network and the replacement of the FPN structure with
the GD mechanism in the neck of the network, has a
slightly lower parameter count and average inference time
than some mainstream one-stage object detection algorithms
(YOLOv5s, YOLOv8s). However, the model proposed in this
research achieves higher mAP, accuracy, and recall, reaching
93.7%, 92.8%, and 90.2%, respectively, outperforming other
models. It’s worth noting that in the experiments, we used
the Faster R-CNN and Cascade-RCNN models for object
detection. However, we observed that these models did not
achieve satisfactory performance on our X-ray dataset of
broiler chicken leg diseases. In light of this phenomenon,
we conducted the following analysis: In our study, after
CLAHE data augmentation, the number of images per class

47398 VOLUME 12, 2024



X. Zhang et al.: Detection of Leg Diseases in Broiler Chickens

FIGURE 13. Effect diagram of improved yolov8s and original yolov8s loss function.

was only 800. Since Faster R-CNN and Cascade-RCNN
models belong to two-stage object detection algorithms
and involve multiple convolutional layers in the network
structure, when the training data is limited, the model may
overfit to the noise in the training data and fail to generalize
to new data, resulting in poor performance on this dataset.

While our improved model has achieved an overall
increase in detection accuracy, there are still some limitations.
As shown in Table 8, the parameter count and image
processing time of our model are not optimal.When detecting
a large number of X-ray images of broiler chicken leg
diseases simultaneously, it still requires a certain amount of
time for processing. Therefore, our proposed method needs
further optimization. In the future, we will consider using
model compression and pruning to alleviate the YOLO series
networks, reducing memory overhead and model file size to
balance performance and inference speed.

VI. CONCLUSION
This article introduces an enhancedYOLOv8 object detection
model tailored to the distinctive features of joint effusion
and chondrodysplasia in broiler chickens as observed in
X-ray images. We employed the Clahe data augmentation
method to highlight the features of lesion areas in X-ray
images. Additionally, to further optimize model perfor-
mance, we introduced the CPCA attention mechanism and
C2f_PConv module into the network’s backbone. In the

feature fusion layer, we utilized the Gather-and-Distribute
mechanism (GD). Finally, we introduced a detection head
based on shared PConv weights, significantly enhancing the
model’s ability to extract features from lesion areas.

Our proposed automatic detection method for chicken
leg diseases has gained initial recognition in the poultry
industry, assisting farmers in assessingwhether chickens have
joint effusion and tibial dyschondroplasia. However, there
are still some limitations that need further improvement.
Firstly, we plan to enhance the generalization capability of
the deep learning model by adding more data to the dataset.
Although data augmentation methods were applied to the
current dataset, the limited size of the original data still
imposes constraints on the model’s performance. Secondly,
we will focus on model pruning and distillation processes to
reduce model complexity and achieve further lightweighting.
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