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ABSTRACT The widespread use of fossil fuels in transportation has resulted in significant carbon
dioxide emissions and increased reliance on non-renewable energy sources. To address these environmental
challenges, the electrification of transportation systems through Electric Vehicles (EVs) has emerged as
a promising solution. However, the successful deployment of EVs hinges on the availability of a robust
charging infrastructure capable of meeting the charging demands and extending the driving range of
EVs. Nonetheless, the large-scale deployment of EV charging infrastructure presents several challenges,
including the ability of the electric grid to supply the required energy to accommodate the charging demand.
Moreover, determining the optimal locations for fast-charging stations (FCS) in the traffic network to
ensure accessibility, convenience, and efficient resource utilization poses a significant challenge. As a result,
numerous studies have investigated the optimal allocation and sizing of EV charging infrastructure. The
primary objective of this research is to conduct a comprehensive literature review to examine how this
optimization problem has been addressed in the literature over the past decade. The review aims to identify
the key factors considered in the problem formulation and the optimization techniques for allocating and
sizing the charging stations. To achieve this goal, a systematic literature review was conducted following
the PRISMA methodology for a comprehensive and unbiased approach. This review contributes to the
existing literature by highlighting critical gaps and proposing a framework that can possibly bridge these
gaps. The review identifies several critical gaps in current research, including: 1) Transportation-focused
studies largely ignore electrical grid constraints; 2) Electrical-focused research often relies on statistically
modeled EV charging demand, which may include some geographical assumptions; 3) Multidisciplinary
approaches integrating both transportation and electrical networks are still in early stage; 4) Dynamic traffic
flow of EVs is rarely considered; 5) Exact optimization methods largely rely on linearized or approximated
models; 6) Dominance of approximate methods in transportation and electrical network modeling, primarily
relying on evolutionary algorithms; and 7) Hybrid approaches are mainly utilized to solve a specific part of
the problem rather than enhancing the quality of the solution. In response to these gaps, the research proposes
a novel framework to integrate the transportation network and the electrical grid planning process, offering
a holistic and practical solution in FCS infrastructure development.

INDEX TERMS Allocation, fast charging station, optimization, power flow, transportation electrification.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Electric vehicles (EVs) have the potential to revolutionize the
approving it for publication was K. Srinivas " . transportation sector by reducing greenhouse gas emissions
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and improving energy efficiency. However, challenges such
as high purchase costs, limited driving range, relatively long
charging time, and lack of charging infrastructure obstruct the
wide adoption of EVs [1]. To address these challenges, a plau-
sible solution is the deployment of Fast Charging Stations
(FCS), which can help overcome EVs’ limited range, also
known as range anxiety, and reduce charging time [2]. Nev-
ertheless, the high voltage requirement and the anticipated
peak demand for EV charging associated with FCS can stress
the electrical power grid. If not managed properly, this stress
can result in high charging costs, infrastructure degradation,
major system upgrades, and potential compromises to power
quality and grid safety. Moreover, inadequate placement of
FCS in inaccessible or highly congested areas within the
transportation network may lead to market displacement due
to misalignment with the needs and preferences of EV drivers.
Hence, the main goal of this research is to investigate
the optimization approaches applied to the allocation of
FCS in terms of placement and sizing, considering the elec-
trical and transportation networks. The main objective of
the optimization is to provide the needed services for EVs
while considering the limitations and requirements of both
networks and the preferences of users. For this purpose, a sys-
tematic literature review is conducted to highlight research
trends, develop formulations, and solution tools, and identify
the gaps that should be considered in future research.
Previous review papers in the literature have addressed
the same topic. For example, a comparative analysis was
conducted to highlight the academic research-practice gap,
concluding that node-serving approaches are more common
in practice [3], while flow-capturing models are prevalent in
academic research [4]. Another review article [5] surveyed
the literature for the mathematical models for optimizing
the locations of FCS and modeling the EV demand. How-
ever, these articles focused on the concerns of the traffic
networks and overlooked the electrical grid’s requirements
for supplying EV charging power. On the other hand, some
other studies considered the FCS, from the electrical grid’s
perspective. For example, the advancement of FCS tech-
nologies and their impact on the grid with an emphasis
on renewable energy integration have been considered in a
previous review [6]. Similarly, another paper [7] reviewed
the planning strategies for ultra-fast charging stations and
their impact on the allocation problem compared to conven-
tional charging stations. Moreover, the EV charging demand
and its incorporation into the FCS allocation planning prob-
lem, highlighting the reliance on simplified assumptions
have been investigated [8]. However, these reviews mainly
focused on the electrical network. In contrast, a detailed
review of the demand modeling of EV charging, including
the distribution and transportation networks was conducted
previously [9]. In addition, a comprehensive literature review
highlighting the interdependence between transportation and
electrical networks has been proposed [10]. This recently
conducted review focused mainly on the overall framework
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for integrating transportation and electrical systems without
emphasizing the mathematical formulation and the opti-
mization techniques applied. Furthermore, the other review
articles focused on different aspects of the allocation prob-
lem and EV demand modeling, a standard systematic review
methodology was not followed, which could introduce bias
and affect the comprehensiveness, quality, and relevance of
the included studies. To ensure a comprehensive and unbiased
study, this research follows the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) method-
ology [11] to conduct a systematic literature review of the
mathematical formulation and optimization techniques and
methodologies applied to address the allocation and sizing
problem of FCS. In addition, this paper focuses more on the
formulation utilized in the optimization process, the factors
impacting the process, and the applied solution procedures.

The remainder of the paper is structured as follows:
Section II outlines the systematic review methodology,
Section III focuses on the review of allocation problems in
the transportation network, Section IV covers the alloca-
tion problem within the electrical distribution network, and
Section V presents a multidisciplinary modeling approach
for both networks. The final sections include discussions and
conclusions.

Il. THE PRISMA METHODOLOGY

The use of a rigorous methodology is crucial for conducting
a comprehensive and systematic literature review. One such
methodology is PRISMA, which provides a standardized
approach to the search, screening, and selection of relevant
studies [12]. This methodology has gained popularity in var-
ious fields due to its ability to reduce bias and increase the
transparency and reproducibility of the review process, thus,
it is the chosen methodology to conduct this literature review.
This research aims to investigate the literature for the FCS’s
optimum allocation and sizing problem in both transportation
and electrical networks by adhering to the PRISMA guide-
lines [11]. The objectives of this study include:

1. Review the optimization of FCS’s allocation in the
transportation networks along with the main factors and
considerations affecting it.

2. Review the FCS’s allocation problem tackled in the
electrical network along with the factors impacting the
optimization process.

3. Investigate how both networks are incorporated into the
optimization problem.

4. Identifying the main gaps in the literature and providing
directions for future research.

The aim and objectives of the study have guided the inclusion
and exclusion criteria for the adopted methodology. Hence,
the selection criteria for this study were restricted to English
language for broad accessibility and understanding, peer-
reviewed articles for academic quality assurance published
within the last decade to capture the most recent development
in the field. Specifically, the focus was on articles addressing
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the optimization problem of locating and/or sizing charging
stations for electric vehicles (EVs) while considering fast-
charging technology. This technology is crucial as it enables
EVs to quickly recharge and continue their journey, and
its effectiveness is significantly influenced by the strategic
placement of charging stations along busy roads and high-
ways to maximize the range of EVs

Additionally, the location of the charging stations must
be accessible from the electricity utility’s perspective to
avoid compromising power quality, incurring high losses,
or necessitating extensive infrastructure upgrades, which can
increase costs and cause delays in the widespread adoption
of EVs. Therefore, this study included articles that address
the optimal location of FCS to align with the objectives of
the research. Specifically, it considered articles that utilized
optimization methods, where the optimal locations of FCS
are among the decision variables. It excluded other charg-
ing technologies to focus solely on the location and sizing
problem. This excludes scheduling, or coordinated charging
problems that involve energy management or routing for
EVs, which are considered operational approaches rather than
planning approaches. Moreover, this study excluded articles
that employed qualitative approaches to address the problem
and studies that relied solely on surveys or simulations instead
of mathematical optimization modeling.

For this purpose, high-impact databases such as Scopus,
IEEE, and Science Direct were used to conduct the literature
review. The main keyword search used across the databases
included terms like ““fast charging stations,” ‘“‘allocation,”
“optimization,” and “‘electric vehicles.” For example, in Sco-
pus, the following query was used:

(TITLE-ABS-KEY (“fast charging station” OR FCS)
AND (“electric vehicle” OR “EV”) AND (optima* OR
planning OR allocation OR location* OR distribution OR
infrastructure OR sizing OR siting)) for the time frame
from 2013 to 2024.

Over the past decade, there has been a significant interest
in the research community to study the optimal allocation
and sizing of FCS from various perspectives. As shown in
Figure 1, which displays the number of published articles
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per year in the Scopus database for the allocation problem
of FCS, there has been a significantly increasing trend in this
area. Additionally, Figure 2 demonstrates the distribution of
the topic across research fields, indicating widespread interest
across different disciplines, with the engineering discipline
having the largest share.

To demonstrate the interest in the research topic, Figure 3,
generated by Vosviewer [13], illustrates the publications and
co-authorship collaborations per country. It is evident that
China has the largest number of publications, followed by
the United States and Canada. The links between countries
indicate collaborations between institutions in this research
field, with the thickness of the link reflecting the frequency
of collaboration. The largest collaboration occurs between
China and the USA, indicating their dominance in this field.
It is noteworthy that a threshold of 2 publications was set. Itis
also clear from Figure 3 that there is a lack of research on this
topic within the UAE.

The flow chart in Figure 4 provides a detailed description
of the PRISMA process and illustrates how articles were
screened and selected based on the inclusion criteria, includ-
ing the number of articles screened, included, and excluded.

Based on the search keywords, Scopus yielded 363 articles,
Science Direct had 93, and IEEE had 64. After merging and
removing duplicates, a total of 422 articles were selected for
initial screening. Based on titles and abstracts, 272 articles
were excluded for various reasons, such as having similar
keywords but addressing a different topic (e.g., Finite control
set abbreviated as FCS for motor controls), being social or
psychological disciplinary articles to focus on the technical
optimization aspects of the problem, or being review papers
as they were discussed earlier in the introduction section. Out
of the remaining 234 articles, 84 were not retrieved because
they were either qualitative studies, survey approaches, or not
related to mathematical optimization modeling. Through a
more in-depth review of the full papers, an additional 73 arti-
cles were excluded due to being simulation-based, focusing
on different charging technologies, or addressing opera-
tional optimization problems not the location of the stations.
Thus, a total of 77 articles were thoroughly reviewed and
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categorized in this research. In addition, another 27 papers
were considered through the backtracking of the research
development.

These backtracked articles are included to refer to models,
data or methodologies being used in the reviewed articles.
The inclusion of these backtracked articles help in repro-
ducibility of the presented research as well as provide clear
understanding of the adopted models and methodologies.

The following sections provide detailed discussions of the
selected articles for review. Each article is categorized based
on the system being optimized (i.e., transportation, electrical,
or multidisciplinary), and further categorized based on the
problem formulation and solution approach. This categoriza-
tion highlights the factors and measures considered in each
study along with the optimization formulation and solution
techniques. Following this methodology will help shed light
on the gaps in the literature.

Ill. FCS ALLOCATION IN TRANSPORTATION NETWORK

In this section, the articles that focused only on the trans-
portation network in the allocation and sizing of FCS are
reviewed. These articles are categorized into three categories
according to the optimization problem formulation and the
solution approach. The first category includes the exact
approaches in solutions for linear and nonlinear formulations.
Approximate approaches that encounter heuristic and meta-
heuristic approaches are considered in the second category.
Finally, the hybrid approach of combining more than one
solution approach represents the third category. In each of
these categories, the main factors taken into consideration are
highlighted.
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A. EXACT APPROACHES

This sub-section has grouped the research that utilized exact
solutions for the allocation and sizing of the FCS from the
transportation network perspective. In these studies, a single
objective is typically considered. For example, some aim
to minimize the driving distance directly [14], CO2 emis-
sions [15], or the installation cost [16]. The objective was
to maximize the flow through the servicing unit (i.e. the
charging station) or the EV share, in some other studies.
The allocation problem is also formulated as a set covering
problem [17] to minimize the number of stations required to
cover a certain geographical area, as presented by Zhang [18].
Similarly, a node-based approach to the problem is presented
in other research [19].

A widely adopted methodology in service allocation within
transportation networks is the “flow capturing model”. This
model seeks to maximize the flow passing through the servic-
ing unit, in this case, the charging station. It can be expressed
as

Max Z foXq (1)

q€Q

where f, represents the EV traffic flow on the shortest paths
for the q™ origin-destination (O-D) pair in the network. This
flow is measured by the number of vehicles that are expected
to pass by a certain O-D pair in the network and x, is the
binary decision variable that represents the inclusion or cap-
ture of that flow. While Q representing the set of all O-D pairs
in the modeled traffic network. This is achieved by summing
up the product of the EV traffic flow and the binary decision
variable across all O-D pairs in the set Q.
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Two notable approaches under this framework are the
Flow-Capturing Location Model (FCLM) [20] and the Flow
Refueling Location Model (FRLM) [21]. The FRLM is a
variant of the FCLM that considers the demand for refueling
or recharging vehicles in this problem, where a set of O-D
pairs represents the EV flows and is utilized to maximize
the flow volume of charged vehicles. This approach has been
adopted in several research studies [22], [23], [24].

From the review of the exact approaches for allocat-
ing FCS within a transportation network, it is evident that
flow-capturing models are dominant, where nodes in the
network are considered candidate locations. While existing
methodologies offer valuable insights into FCS allocation,
one significant gap is the lack of representation of the
dynamic network flows. Most studies adopt static models
that assume constant traffic patterns, disregarding temporal
variations in EV demand and traffic conditions. This simplifi-
cation overlooks the potential for FCS locations to influence
route choices and create new traffic patterns, impacting the
utility and profitability of the charging stations. The lack
of consideration for the traffic flow dynamics may not only
result in suboptimal station placements but could also lead
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to unexpected issues such as traffic congestion or market
displacement. Moreover, in this category, the reliance on
exact optimization techniques faces scalability challenges,
when adopted to large-scale planning problems such as the
allocation of FCS.

Additionally, the choice of optimization methodology is
heavily influenced by the problem’s complexity, the need for
scalability, and the level of accuracy required. For instance,
Mixed Integer Linear Program (MILP) methods, while robust
and versatile, may not be practical for large-scale and
dynamic systems due to computational constraints. Dynamic
Programming offers a structured approach to multi-stage
decision problems but can become computationally infeasible
for high-dimensional problems. Table 1 provides a summary
of the exact solution approach, including the formulations,
algorithms/solvers used, modeling procedure, and the main
limitations of each study.

B. APPROXIMATE APPROACHES

Several studies propose approximate approaches to address
the complexity of the allocation problem in the transportation
network. In approximate approaches, there is an inherent
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TABLE 1. Exact approaches in transportation networks.

Modeli Limitati
Obj. Formulation Solv.er/ Ref. odeling procedure imitations
Algorithm
Minimizing the driving distance. Relies on Monte Carlo and queuing theory,
Locating FCS in the first stage, and which may not capture real-world
Multi- Dynamic Floyd’s [14] sizing in the next stage. complexity. Floyd's algorithm may face
stage programming. algorithm. Monte Carlo simulation to model travel | scalability issues.
behavior
Queuing theory for FCS sizing
Minimizing CO2 considering Budget, Parameters are arbitrarily chosen, affecting
Convex MATLAB [25] [15] peak hour demand, Co2 emissions, the robustness of the convex programming
programming model.
s FCLM formulation [20] considering the | Computational intensity in large-scale
. Bender’s . . . .
Stochastic . uncertainty of EV demand. scenarios. High data requirement for
. decomposition [22] . e e
programming modeling probability distributions.
Set covering problem formulation [17] Fails to consider the network's capacity and
. user preferences in the set covering
- Binary LP CPLEX [26] (18] approach. Identified FCS candidate
g locations.
&
Minimizing costs considering Electric Focuses only on electric bus fleets, limiting
Single CPLEX [16] bus fl'eets, and th_e uncertainty of the applicability to a broader range of EVs.
buses' consumption due to different
congestion levels.
MILP
A node-based approach considering EV | Limited to network nodes, leading to
. penetration, driving range, available uneven FCS distribution. Scalability
SCIP solver in . . X .
[19] | services, traffic loads, and distance concerns with network growth, especially
Python [27]
between areas. for exact methods.
FRLM formulation [21] considers the Each pair of the (O-D) matrix is set to have
[23] | demand for recharging vehicles. at least 1 charging station, which may not
. be practical or cost-efficient.
Non-Linear Integer
Program (NLIP) CPLEX
& FRLM with dedicated corridors. Limited to dedicated EV corridors,
[24] constraining the model's broader

trade-off between solution optimality and computational effi-
ciency. While these methods may not guarantee an optimal
solution, they are particularly useful for tackling the complex-
ity and scalability issues often associated with FCS allocation
in transportation networks. Several studies propose approxi-
mate approaches utilizing specific well-known models such
as the set covering approach [28], the arc-based approach [29]
as presented by Csiszar and Csonka [30], FRLM [31], [32],
or the Multipath Refuelling Location Model (MPRLM) [33],
which is a more flexible model than FRLM and allows EVs
to deviate from the predefined path to reach the FCS. The
MPRLM has been utilized for the FCS allocation problem,
as presented by Li and Huang [34]. These models consider
a set of candidate locations as inputs, either by dividing the
region into zones and developing assumptions to generate
initial candidate locations and constraints, or by developing
selection criteria for the locations. However, these assump-
tions and inputs may not accurately reflect drivers’ behaviors
or preferences in real-world applications, potentially impact-
ing traffic flow. Other researchers have adopted different
approaches for the allocation problem, such as minimizing

46746

applicability.

driving distance and waiting time [35] or maximizing EV
share [36].

Furthermore, to accommodate drivers’ decisions, some
researchers introduced a driver preference function and
adopted a multi-objective approach to balance between min-
imum installation costs and maximum driver satisfaction.
This function includes factors such as electricity prices and
driving distance to the station, as presented in [37], and may
further include considerations like crowdedness, brand of
charging station, and level of attraction [38]. Additionally,
to incorporate traffic flow, researchers have adopted the con-
cept of system optimum [39] or user equilibrium [31] or even
developed a novel mathematical program to minimize social
costs with equilibrium constraints [40].

In the approximate approaches category, incorporating
traffic flow into the allocation problem is a challenging task
that requires careful modeling and efficient solutions. Fur-
thermore, the inclusion of factors such as EV penetration
level, charging demand uncertainty, charging time, waiting
time, and driving distance further complicates the problem
formulation. Table 2 summarizes the findings of this category,
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TABLE 2. Approximate approaches in transportation network.

Obj. Formulation Solver/ Algorithm Ref. Modeling procedure Limitations
FRLM considers uncertainties in | Uncertainty modeling limitations, relaxation
Chance- Partial Sampling vehicle driving range, energy of assumptions high data requirements -
constrained Approximation [32] | availability, and power Limited scalability only tested on medium-
MILP Approach [41], consumption. sized instances.
Set covering -Most of the introduced or applied algorithms
(28] are applied to preselected candidate locations
Minimize driving distance and to reduc'e the search space. .
35] waiting time -gxngmlc t;afﬁc f}'llow is not cc{nmdfreq
MINLP GA E epends on the parameter’s selection.
Single Mathematical program with
equilibrium constraints (MPEC)
[40] | to minimize total social cost
° (public parking lots)
=
S Minimize cost and driving time PSO may get trapped in a local optimum.
2 MINLP PSO [39]
(=}
<
[30] | Arc-based [29], Specific heuristics may perform differently
under large-scale instances.
MINLP Heuristic algorithms [34] | MPRLM [33],
36] Maximize EV share.
FRLM for the upper level and
Bi-level [31] | user equilibrium [42] on the
lower level
) Minimize cost and maximize The performance of SPEA-II can be affected
Strengthen_‘ng Pareto satisfaction. by the selection of algorithm parameters.
Multi Evolu.tlonary [37] In the game theory approach, accurately
S MINLP Algorithm-II, modeling user preferences and crowdedness
Objective

Game Theory [38]

including the objectives, algorithms used, modeling proce-
dures, and limitations.

There are two main well-known optimization techniques
utilized in this category, either Genetic Algorithms (GA) or
Particle Swarm Optimization (PSO), each with its strengths
and weaknesses. For instance, both approaches can achieve
good results within a reasonable computational time. How-
ever, GA relies heavily on parameter selection, while PSO
may get trapped in a local optimum. Other research that
utilizes problem-specific heuristics may perform differently
under large-scale problems or different instances. Therefore,
care should be taken as the allocation and sizing problem is a
large-scale planning problem.

C. HYBRID APPROACHES

To enhance the solution quality, account for more factors,
and eliminate some of the limitations of a single optimization
technique, hybrid approaches are introduced [43], [44], [45],
[46], [47]. These approaches combine metaheuristic meth-
ods with other techniques to solve the allocation and sizing
problem.
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could be challenging, impacting the
robustness of charging station placement
strategies.

Some researchers have utilized metaheuristic approaches
for the allocation of FCS, combining them graphically
with Voronoi diagrams to determine the service area [43],
[44]. The Enhanced Heuristic Descent Gradient (EHDG)
algorithm is applied in a study [43]. The method employs
a two-step strategy beginning with GA to generate sets of
feasible solutions and then applying a series of gradient
descent for optimization enhancement. The method’s main
strength lies in its ability to utilize GA’s global search capa-
bilities and gradient descent’s fine-tuning, particularly useful
for problems with complex solution landscapes. However,
its scope is limited to electric buses with predefined routes
and schedules, constraining its broader applicability. Another
study employed PSO for FCS allocation and the Voronoi
diagram for sizing [44]. The Voronoi diagrams offer spatial
granularity, allowing the model to consider the service areas
more realistically. However, like GA, PSO still has its limita-
tions, including the risk of converging to local optima.

A more complex approach uses a hybrid problem-specific
heuristic combined with GA to solve the location and siz-
ing problem [45]. This method focuses on maximizing the
captured EV flow in the network. However, it becomes
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TABLE 3. Hybrid approaches in transportation network.

Obj. Formulation

Solver/
Algorithm

Ref.

Modeling procedure

Limitations

Single MINLP

Hybrid

Bi-level MINLP

(EHDG) and
Voronoi diagram

PSO and Voronoi
diagram

Hybrid problem-
specific heuristic
and GA

Cross entropy and
Successive
Average

[43]

[44]

[45]

[46]

Minimize travel distance to the station. GA is first
used to generate feasible solutions and the DG is for
selection among them and the Voronoi diagram is for
the service area

Minimize total cost. Spatial and temporal charging
demands are generated using travel survey data

Maximize charger EV (capacitated flow model)
Utility theory for drivers' charging strategies.

Minimize system cost and environmental impacts.
Cross entropy to decide the FCS locations of the
upper level and the Successive average for stochastic
user equilibrium in the lower level.

Minimize cost and charging time considering
functional zoning and traffic factors.

The problem is formulated for
electric buses with predefined
routes and schedules.

. It has similar limitations to
GA.

PSO limitations for allocation
still hold.

Some chromosomes may
represent the same solution.
Gets complex on a large scale.

Low performance on large-
scale problems

The area is divided based on
the points of interest and some

PSO and
Simulated [47]
Annealing

Multi-
objective

MINLP

computationally complex on a large scale and some chromo-
somes in the GA may represent the same solution, reducing
the algorithm’s efficiency.

On the other hand, a bi-level approach was presented,
where each level is solved using a specific algorithm [46].
The upper level aims to minimize installation cost and envi-
ronmental impacts using cross-entropy, while the lower level
optimizes routing and ensures traffic network equilibrium
using successive averages. For traffic assignment, the authors
adopted a stochastic user equilibrium model with Poisson (O-
D) demand and stochastic charging demand. This approach is
a mathematical model tailored for EV users. However, it may
require several assumptions that could potentially limit its
applicability in real-world scenarios.

A multi-objective optimization problem is formulated to
minimize costs and EV charging time [47]. The study divides
the area into zones based on congestion and signal waiting
time. A combination of PSO and Simulated Annealing is used
to allocate and size the FCS. While promising, this algorithm
needs to be tested against other algorithms for validation.
Moreover, the authors did not consider the range anxiety of
EVs and assumed that drivers are aware of traffic congestion
levels and will therefore seek alternative charging locations
based on this knowledge.

Additionally, the use of hybrid models to enhance solutions
should be tested against other algorithms and in different
instances, including large-scale planning that reflects the
complexity of the problem. The promising aspect of hybrid
models is their ability to enhance the search space to over-
come the limitations of a single approach and obtain higher-
quality solutions. However, this has only been addressed in
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areas are excluded.

A promising hybrid algorithm
that needs to be tested against
other algorithms

a limited number of studies [47]. Thus, testing these hybrid
approaches, especially in multi-objective problems, presents
a major challenge in assessing solution quality. Table 3
summarizes the findings of this category, along with the
limitations of each method.

Despite these advancements, all mentioned articles have
considered transportation aspects from different perspectives
to capture the EV demand and hence allocate the charg-
ing stations. However, these approaches have assumed a
static assignment of EVs, which may not reflect realistic
situations as traffic conditions can substantially affect FCS
locations. The focus has been narrowly on capturing the flow
of EVs, with no research measuring the broader impact of
FCS locations on overall traffic performance, especially when
considering the future scenario of high EV penetration levels.
Moreover, by solely focusing on the transportation aspect, the
electrical demand of FCS is completely overlooked, despite
its significant impact on electric service and charging costs.

The next section discusses the research studies that con-
sider the electrical system performance and the needed
upgrades to accommodate the EV-FCS load.

IV. FCS ALLOCATION IN ELECTRICAL NETWORK

This section discusses the research that focused solely on the
FCS allocation problem considering the electrical network.
According to the optimization problem solution approach,
they have been categorized into the three levels that were used
before (i.e., exact approaches, approximate, solutions, and
hybrid approach). The section also addresses key challenges
such as modeling EV charging demand, grid reinforcement,
and incorporating power flow equations.
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Modeling the charging demand for EVs is one of the
biggest challenges facing the FCS allocation and sizing prob-
lem for the electrical system operators. Due to the lack of
data, several approaches have been introduced in the literature
and will be presented in this section along with the prob-
lem formulation and solution approaches. Moreover, the grid
reinforcement or upgrade to accommodate the introduced
load of FCS is another challenge, some researchers consid-
ered transformers and voltage regulators upgrade for the grid
according to the maximum expected power consumption of
the added EV charging load. Some other researchers con-
sidered the integration of renewable distributed generation
(RDG) and battery energy storage systems (BESS) for grid
reinforcement and Co2 emissions reduction which elevate the
complexity of the planning problem due to their stochastic
nature. Additionally, the inclusion of power flow equations
in the problem to guarantee operational constraints poses
another challenge due to their highly non-linear nature. The
power flow equations (PFE) [48] are crucial in electrical grid
optimization. These equations generally describe how power
flows through the network. Since FCS represent significant
power load, which is often fluctuating due to the fluctuation
in EV charging demand, their placement in the electrical
grid affects the distribution of active and reactive power.
Therefore, to analyze how this load impacts the overall power
flow in the grid, equations (2) and (3) describe the active
and reactive power at each bus in the electrical network,
respectively.

N
P = Pgi — Pri= Y_|V;V, Yal(Cos(8;i — 8 — 6i)) (2)
k=1

N
Qi=06 — QL= z ViV Yie|(Sin(8; — 8k — Oir))  (3)
k=1

where Pg; and Qg; are the generated active and reactive
power at bus i, respectively, whilePr; and Qy; are the active
and reactive load at bus i, respectively. This represents the
FCS load and the conventional loads that already exist in the
network. Additionally, V; is the voltage magnitude at bus i,
§; is its angle, Y is the admittance of the transmission line
connecting buses i and k and 6, is its angle. While N is
the total number of busses in the distribution network. This
analysis is critical for maintaining power quality and stability
in the network, especially considering the fluctuating demand
associated with EV charging.

The voltage V; and current /; at each bus should remain
within the minimum and maximum values as technical limits
during planning, as presented in (4) and (5):

Lin < Ii < Ijpax @
Vinin < Vi < Vinax (5)

These limits ensure that voltages and currents remain
within safe operational bounds, thus preventing network over-
load and ensuring the reliability and safety of the electrical
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grid. By maintaining these limits, overloading parts of the dis-
tribution network due to the addition of FCS can be avoided.

A. EXACT APPROACHES

In this category, researchers have utilized exact methods to
optimize the FCS allocation in the electrical grid to accom-
modate such incoming load either by adding it optimally
to the existing grid, considering upgrades of the infrastruc-
ture such as transformers, voltage regulators, and feeders,
or renewables reinforcement to account for the added FCS
load. For instance, some studies considered the grid’s upgrade
by increasing the capacity of transformers or voltage regula-
tors using different EV demand models [49], [S0].

On the other hand, recognizing the significance of RDG
in reinforcing the grid, some researchers proposed an opti-
mization model for the allocation problem that integrates
RDGs. For example, both RDGs and BESS sizes and loca-
tions are integrated in the same process [51], while other
studies suggested using FCS equipped with BESS [52], and
FCS equipped with RDS [53].

In this category of research, all the articles focused on
a single objective problem, which was either minimizing
the power losses (Eq. 6 and 7) and/or the total investment
costs (Eq. 8).

Min Z Pioss (6)

N N
Pioss = D > [Bua(V? + VI = 2V;ViCos (8; — 8] (7)
i=1 k=1

where Pj,g is the power lost in the transmission lines of the
distribution system, while Bji is the conductance in the line
connecting buses i and k. The voltage magnitudes at these
buses (V; and V}) and their respective phase angles (6; and dx)
contribute to the power loss and they are directly impacted by
the placement of FCS in the distribution system.

Min Z Ctatul (8)

where Cyyq 1s the total investment costs, which may include
FCS installation costs, grid upgrade equipment costs, RDGs,
and BESS costs.

In the existing literature on FCS planning using exact
methods in the electrical network, there is a methodologi-
cal divergence in constraint formulation. Researchers either
incorporate the electrical network’s technical limitations
only or facilitate the exact solution of the problem through
linearization, or relaxation of the power flow equations
adopted [54], [55], [56]. While such simplifications enable
the use of robust and exact optimization methods, they
introduce critical concerns for the steady-state power flow
representation. These linearized models may lead to subopti-
mal FCS locations, especially when the conventional loads
already present in the grid are considered, a factor that is
absent in the studies within this category. Thus, a research
question that arises from the review of this section is whether
these linearized models or relaxations have a significant
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TABLE 4. Exact approaches in electrical power network.

Solution /| Ref.
Algorithm

Obj. Formulation

Modeling procedure

Limitation

Refueling behavior based on
travel surveys for EV demand

Branch and

(MINLP) cut.

[49] | modeling.

PFE not included.

Electric bus routes for demand

Chance-
Constrained
(MILP)

GAMS (51] modeling

Linearization or approximated procedures for power
flow equations

Static representation of transportation network and
relying on assumptions. It may not be suitable for
large-scale representation

Linear PFE model presented.

Zonal demand model and

Single [50] | modeling

Exact

queuing theory for EV demand

Linearized PFE [54].

Queuing theory for EV demand

MILP CPLEX (52] modeling,

Linearized PFE [55].

Monte Carlo Simulation for EV
arrival rate and State of charge
[53] | Relaxed convex PFE model

[56].

impact on the final optimal locations of the FCS or not.
To investigate this, future research should aim to assess the
impact of using linearized models on the planning problem’s
solutions. A suggested investigative strategy could involve
a comparative analysis between the outcomes derived from
linearized models and those obtained using the actual power
flow equations. Such an approach would offer an under-
standing of the trade-offs involved, establishing the reliability
and effectiveness of employing linearized or approximated
models in the allocation problem considering the dynamic
operational constraints of the grid. Table 4 provides a sum-
mary of the findings in this category, including the modeling
procedure that investigates the EV demand modeling for the
FCS, the solution approach, and formulation along with the
limitations.

B. APPROXIMATE APPROACHES

The approximate approach is one of the most widely used
approaches in this area of research, due to the high non-
linearity of the power flow equations and the complexity
of the problem when considering different factors such
as the time-varying existing loads in the distribution net-
work, the power quality issues that arise due to the added load
of the FCS and the temporally dynamic nature of EV charging
demand. Some researchers have formulated the FCS alloca-
tion problem without considering any grid reinforcement or
upgrade [57], [58], [59], [60], [61], [62], [63]. While this
approach simplifies the problem, it poses significant stress
on the existing electrical infrastructure, particularly con-
sidering the time-dependent nature of FCS demand, which
may coincide with peak grid demand. Consequently, such a
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scenario would strain the infrastructure to its limits, resulting
in degradation potential of power quality issues and electri-
cal service interruption. Therefore, this approach may not
be sustainable in the long-term planning, especially as the
adoption of EVs continues to grow. On the other hand, other
researchers have considered alternative grid reinforcement
approaches such as increasing the capacity of distribution
transformers [64], [65]. While this approach addresses the
limitations of the existing infrastructure, it shifts the primary
objective of reducing carbon emissions from transportation
networks by EVs to the electrical network to meet the charg-
ing demands of FCS. This could potentially compromise
the environmental benefits of transitioning to EVs, as the
electrical grid may still rely on non-renewable energy sources
to meet the increased demand. Conversely, recognizing the
importance of integrating RDGs into the electric grid as a tool
for reinforcing the system to meet FCS demand and reduce
carbon emissions, some researchers have formulated the
problem of allocating FCS equipped with RDGs [66], [67].
However, this approach may not be practical in real-world
applications due to the environmental dependency of RDGs
and space constraints especially in urban settings. A more
realistic yet complex formulation, freely allocating the RDGs
and FCS to meet the demand has been proposed in different
studies [68], [69], [70], [71]. This approach offers the flexi-
bility to adapt to different scenarios and constraints. While
this approach is more aligned with real-world conditions,
it also increases the complexity of the problem, requiring
more sophisticated optimization algorithms and computa-
tional resources.

An additional challenge facing this category of research is
the representation of the EV electrical demand present in the
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TABLE 5. Approximate approaches in electrical network.

Obj. Formulation Solution / Algorithm

Ref.

Modeling procedure

Limitations

Approximate

Single MINLP PSO

Adaptive PSO

LaGrange Multiplier
to solve sub-
problems

local search
algorithm

Binary Atom

Improved Krill
Swarm Optimization
Algorithm

Heuristic algorithm
Multi-

Objective MINLP

Improved Bal Eagle
Search (IBES)

GA

Non-dominated
Sorting Genetic
Algorithm (NSGA-
)

Multi-

Objective MINLP

planning problem, since this area of research focuses on the
electrical network and due to the lack of real data to represent
the EV demand, different approaches have been presented in
this category. Some studies have followed basic assumptions
for the initial candidate locations of the FCS [57], [61], [63],
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[60]

[62]

[71]

[57]

[61]

[63]

[64]

[65]

[68]

[58]

[59]

[66]

[67]

[69]

[70]

charging demand model for
electric buses. No PFE no RDG.

EV demand prediction model
No PFE no RDG.

Random EV demand modeling
and Random RDG placement
Assuming predetermined
candidate locations and sizes of
FCS

Included PFE,
upgrade
Assuming predetermined
candidate locations and size of
FCS

No PFE, not including upgrade
Gas stations are the candidate
locations and travel time to
estimate the demand

Included PFE, no RDG

Statistical model for EV demand
No PFE, upgrade

no RDG or

EV statistical diffusion model
[72]

Included PFE, upgrade
Calculated candidate number and
size of FCS[73]

No PFE, RDG included.

Geographic information is used
to determine EV energy loss.
Included PFE, no RDGs or
upgrade

EV user behavior is considered
to determine the expected
charging demand and the
expected EV user cost. included
PFE, no RDGs or upgrades.
Monte Carlo included PFE,
RDGs

A worthiness metric is proposed
to rank FCS candidate locations
based on their attractiveness to
EV drivers, and the EV-project
dataset to build a stochastic
demand model.

included PFE, RDGs

Zonal analysis PFE not included,
RDGs included.

A worthiness metric is proposed
to rank FCS candidate locations
based on their attractiveness to
EV drivers, and EV-project
dataset to build a stochastic
demand model.

Included PFE, RDGs

As PSO performs both global and
local searches simultaneously, it
might get trapped in a local
optimum. Did not include the
power flow equations for optimal
operation.

The proposed algorithms are
compared with existing
algorithms, and they provide better
solutions.

Not tested in multi-objective
problems or large-scale problems.
Rely heavily on assumptions of
EV demand modeling.

The solution efficiency of the GA
and its variants depend heavily on
the parameters of the model such
as fitness function, selection,
mutation, and crossover

while others have utilized mathematical formulas for the
initial number and sizes of FCS [68].

These approaches may lack adaptability to dynamically
changing demand patterns. A step forward to more realistic
initial candidate locations is the use of zonal analysis [69],
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TABLE 6. Hybrid approaches in electrical network.

Obj. Formulation | Solution/ Algorithm Ref. | Modeling procedure Limitations
kernel density estimation and | No RDGs or PFE; GA parameters control
a nearest-neighbor search | performance.
algorithm for EV demand
Two Stage NLP GA-minimax Game theory [75] modeh'n'g‘
-A mini-max game theory
combined with GA s
introduced to min. the peak
demand.
Calculated candidate number | -Random placement of RDG
and size of FCS [73] -Search space is reduced based on the owner
Considered RDG- | criteria (a developed index)
Exploration skill of GWO | -Compared with PSO only
Gray Wolf and PSO [77] | combined with  solution | -Did not consider PFE
efficiency of PSO.
-Enhance search ability and
overcome the local optimum
trap
Shortest deviation path and a | - No search-enhancing approach
physics-based model to | -Each method is responsible for a task
Recalling-enhanced recurrent calculate the energy | FCS equipped with RDGs.
neural network (RERNN) and (78] consumption of EVs -No PFE
Single MINLP Marine Predators Algorithm RDGs
(MPA) algorithm -MPA allocates the FCS and
RDGs, and RERNN is for
% sizing.
2 Historical travel data for EV | Although the hybrid algorithm is very
= demand modeling, | promising, it might not handle multi-
GA, Information entropy [79] considering RDGs. objectives.
[82], and Game theory -Uncertainties of | NO PFE
conventional loads with EV
demand and RDG output
Assuming the maximum | GA is used to generate the locations while
GA and generalized reduced number . ' the. g.radi.ent descent is for .Power. flow
radient descend. [80] | and candidate lo_catlonS for optlmlzatlon. Thus, the algorlt_hm dlfi _qot
g FCS -A stochastic approach | contribute to the solution selection or initial
for RDG and FCS for | population.
allocation and sizing.
Zonal analysis and Monte- | Not tested on large-scale problems,
Carlo simulation for EV | Excludes PFE
[74] .
demand modeling
- Enhance search ability
which could be promising.
Ev demand is estimated by a
Multi- MINLP SFL and TLBO statistical model.
Objective -Load model of EV as
constant impedance constant
[76] | current instead of constant

and geographic information-based models [58], which refine
the assumed locations to make them more realistic but may
still not capture the dynamic nature of EV demand and require
solid knowledge about the geographical locations, attractions,
and population. Other studies have adopted statistical models
to represent EV demand [60], [62], [64], [65]. While these
models can be data-driven, they may not account for real-time
variations and could be sensitive to the quality of past data and
assumptions employed which impacts the universal adopt-
ability. Finally, the most sophisticated approaches, such as
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power
-Considering RDGs
-Enhance  search  ability

which could be promising

Monte Carlo methods and worthiness metrics used in stud-
ies [66], [67], [70] add computational complexity and require
extensive data, making them less practical for real-world
applications.

From the solution algorithm perspective, GA and PSO are
the most widely used approaches in this category. Table 5 rep-
resents a summary of the research in this category including
the problem formulation, solution algorithm, modeling pro-
cedure for EV demand and electrical network considerations,
and finally, the associated limitations.
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TABLE 7. Exact approaches in multidisciplinary.

Obj. Formulation Solution/ Algorithm

Ref. | Modeling procedure Limitations

MILP BARON with GAMS

Linearization or
approximated procedures
for power flow equations

Deterministic O-D matrix
[83] Power flow equations (PFE) Linear
approximation [95]

MILP
Commercial solvers

Bi-level, linearized and reformulated as
single level.

A modified user equilibrium model for
traffic.

Only technical limits.

Static mathematical
representation of

[93] transportation network

GAMS solver

Branch and cut

CPLEX

Single

Exact

Mixed Integer Second-
order cone
programming (MI-
SOCP)

Branch and cut / CPLEX.

NLIP Not specified

MINLP An enumeration technique

ILP GUROBI solver

Multi-
objective
Bilayer Expanded Benders
Decomposition proposed
in the article

MINLP

C. HYBRID APPROACHES
In this sub-section, researchers who focused on utilizing
more than one optimization method to allocate and/or size
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Modified Staircase Facility Location
Model (MSCFLM) [100]

Power flow equations (PFE) Linear
approximation [95]

CFRLM

Linear approximation [54]

[99]

[85]

CFRLM

[89] PFE Linear approximation [96]. RDGs.

FCLM
Linearized model and RDGs [96]
[90]

CFRLM
PFE Linear approximation [97]
[87]

CFRLM
Only technical limits
(88]

Traffic flow model

[91] Only technical limits

User Equilibrium Advanced Interactive
Microscopic Simulator for Urban and
Non-Urban Networks and Queuing
Theory

PFE are included with normal
distribution for active and reactive
power.

[94]

CFRLM
PFE Linear approximation [98]
[86]

Traffic flow model
Power loss is approximated for
[92] | convexity

the FCS in the electrical network are being discussed.
As categorized in the previous sub-section, certain stud-
ies have formulated the problem without considering grid
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TABLE 8. Approximate approaches in multidisciplinary.

Obj. Formulation Solution/ Algorithm Ref. Modeling Procedure Limitations
Mixed-Integer Lagrange multiplier and Minimizing the cost, Linearized | Power flow equations are
Quadratically Karush-Kuhn-Tucker travel assignment model, linearized, and the problem is
Constrained (KKT) conditions are [103] | Linearized PFE [110] relaxed to find the optimal
Programming . solution.
(MIQCP) verified
Minimizing the cost, Data-driven | Not considering RDGs for grid
Single Natural Aggregating (105] agent-based traffic assignment | reinforcement
Algorithm [111] model No Comparison with other
Only technical limits. No PFE algorithms
MINLP Cooperative Traffic O-D matrix and travel
Coevolutionary Genetic survey data o generate EV
Algorithm (CCGA) [102] | demand scenarios.
Traffic assignment mathematical | It may not account for real-time
Two- ILP Harris Hawks [107] | model [112] variability in EV demand or
Stage Optimization (HHO) No PFE RDGs and BESS charging behavior.
Assuming candidate locations | Excluded all time-dependent
@ A graph-based Cross- and F(;LM generates EV demand | variables for power flow
g Entropy method [113] (101] modelmg
= Multi- not included PFE, upgrade
2 biccti MINLP included
g | ohectve Multi-obiecti Minimizing the cost and | Solving each  sub-problem
< deucor;fp (J):ictigne (104] maximizing 'th‘e flow captured. | separately ' )
evolutionary-based Use.r equilibrium for traffic | No 'Comparlson with  other
algorithm [114] asmgpment algorithms
PFE included
maximize profit on the outer | Problem  formulation  was
Reformulated as a Optimization-based bound layer ) and . minimize charging | linearized by the.: Big-M method
linearized single level tightening and sequential [108] costs in the nner lay-er. and ~ McCormick  relaxation
by KKT conditions bound tightening A p ropose.d linearized energy | method
demand assignment model
location and sizing on the upper | Relaxed branch flow model, no
Bi-level level, Modified user equilibrium | RDGs, a linear approximation to
. for traffic assignment on the | convert the bi-level to a single-
A descent algorithm [106] lower level. ¢ level problem. ¢
relaxed branch flow model, no
MINLP RDGs.
Minimize the cost on the upper | Congested areas and
A imate Tterati level and operational costs on the | intersections are excluded from
pproximate fterative [109] | lower level. Dynamic traffic flow | the candidate locations

Optimization Algorithm

reinforcement or upgrades [74], [75]. This simplifica-
tion, while computationally less intensive, often overlooks
the long-term sustainability of the electrical infrastructure.
On the other hand, given the significance of integrating
RDGs into the electrical grid to meet the expected FCS
load and reduce the peak-valley ratio resulting from high
demand at specific times of the day, several studies have
investigated the joint allocation and sizing of both FCS and
RDGs [76], [77], [78], [79]. Others have further extended
the scope with additional considerations for mobile energy
storage [80].

There is a divergence in the primary motivation for employ-
ing a hybrid approach in this category. One primary driver is
the need to address complex, multi-faceted problems through
specialized optimization methods where the utilization of
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simulation platform
Only voltage limit. No PFE

more than one optimization technique can be to perform

a specific task within a large problem. For instance, the
Marine Predators Algorithm (MPA) is tailored for FCS and
RDG allocation and combined with the Recalling-Enhanced
Recurrent Neural Network (RERNN) for station sizing [78].
Another hybrid approach is the combination of GA and the
Generalized Reduced Gradient descent (GRG) algorithm.
The algorithm starts with generating a population of GA chro-
mosomes, where each chromosome represents the planning
decision variables. Then, for each chromosome in the current
generation, the GRG method is used to solve the monthly
operating costs, followed by evaluating the solutions based
on the fitness function and checking the stopping criteria [80].
This modular approach allows for specialized techniques to
be applied to different aspects of the problem, potentially
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TABLE 9. Hybrid approaches in multidisciplinary.

Obj. Formulation Solution / Algorithm Ref. Modeling Procedure Limitations
Integration of queuing No conventional loads,
theory and gravity model to | RDGs and BESS are on site of
Two-stage NSGA-II + [117] maximize served EV flow. FCS. No dynamic traffic flow
; MIP AT .
stochastic Fuzzy Minimizing the power loss, analysis.
PFE, and technical limits Fuzzy Logic for Decision-
makers
GWO + Fuzzy Integration of gravity model | No conventional loads or
GWO generates a set of and O-D matrix to RDGs and gas stations are the
MINLP non-dominating solutions, (115] maximize served EV flow. candidate locations. No
Fuzzy to choose among Minimizing the power loss, dynamic traffic flow analysis.
them by trade-offs in each PFE, and technical limits Fuzzy Logic for Decision-
. objective function makers.
Multi- ; ; R
objective D}fferent congestion levels It mlgh.t not capture the
with EV demand dynamics of the traffic network
uncertainty using the 2m by relying on mathematical
=] Multilayer Metaheuristic and ILP [119] point modeling for EV scheduling
E estimation method for and doesn’t test the impact on
> historical data the traffic network
H Renewable, upgrades, PFE
included
(upper layer optimal Only locations of FCS without
locations of FCS and PV, sizing.
lower level economic
dispatch of electric
NSGA-II + ILP [118] generation Dynamic Traffic
Assignment [120].
Bi-level MINLP
PFE and technical limits
conventional loads
A sequential capacitated Chance constrained no RDGs
. . flow-capturing location No dynamic traffic flow
Improved genetic algorithm [116] model (gCFC%M) analy}:ils.

(IGA) and GA

yielding more accurate or efficient solutions. Conversely,
other studies have leveraged hybrid methods to refine the
selection process among a generated set of solutions. For
example, a hybrid approach combining GA and minimax
game theory has been developed to optimize both the peak
load demand and service level at FCS locations [75]. The
most promising utilization of the hybrid methods can be
viewed as enhancing the searchability of a single approach
for better search exploration and avoiding the limitations of
a single approach thus enhancing the quality of the obtained
solution. Examples include the integration of Teaching and
Learning-Based Optimization (TLBO) with Shuffled Frog
Leap (SFL) for its superior search space exploration [74], [76]
and the combination of Grey Wolf Optimization (GWO) with
Particle Swarm Optimization (PSO) for enhanced solution
efficiency [77]. Furthermore, a combination of GA, infor-
mation entropy, and game theory was presented by Wei and
Chan [79] where 3 populations are generated in parallel,
Information entropy decides the most diverse solution, and
game theory selects individuals in populations. Nonetheless,
it is important to compare the employed method against
alternative approaches and conduct extensive validation on
large-scale, real-life problems to ensure its suitability for FCS
planning and multi-objective optimization.
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PFE and technical limits,
conventional loads, upgrade

A critical gap in this section of research lies in the modeling
of EV demand and the associated strategic placement of
FCS. Existing models predominantly rely on pre-selection
criteria for demand estimation and FCS location [74], statis-
tical models [75], [76], [79], mathematical calculations [77],
[78], or assumptions [80]. None of the previously mentioned
models have taken into account how the location and size
of FCS may affect the transportation network flow. These
models usually select candidate locations based on dense
areas, but this approach could attract more vehicles to these
areas and negatively impact the network flow and transporta-
tion network performance. In addition, failure to incorporate
traffic network conditions may result in underutilization of
charging stations, congestion at some stations, or bottlenecks
within the traffic network. Since the charging time of EVs is
much longer than refueling, it is essential to test the planning
output on traffic flow during different scenarios, including
low, medium, high, and extreme traffic congestion and rush
hours. It is crucial to incorporate the dynamic character-
istics of charging operations and traffic movements while
extending the fast-charging network [81]. Placing large-sized
FCSs in highly congested areas may increase traffic con-
gestion and divert EV drivers to less congested stations for
time and energy saving. Based on the above discussion,
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multidisciplinary optimization approaches are essential for
the success of the deployment of FCS and higher penetration
of EVs.

Table 6 presents an overview of the utilized methods,
modeling procedures, and associated limitations.

V. MULTIDISCIPLINARY OPTIMIZATION OF
TRANSPORTATION AND ELECTRICAL

NETWORKS

In this section, the articles that focused on optimizing both
networks simultaneously are being reviewed. According to
the optimization problem solution approach, they have been
categorized into the same three levels discussed earlier (exact,
approximate, and hybrid approaches).

As a general starting task in this multidisciplinary
approach, coupling between the transportation and electrical
network should happen to reflect common locations for the
decision variables of FCS.

A. EXACT APPROACHES

In this sub-section, the coupling between the transporta-
tion and electrical network happens to accommodate both
networks’ limits and constraints. These methodologies are
predominantly directed towards minimizing the installation
costs of the FCS station or travel time to the station. One
proposed approach is to couple the two networks and consider
the electrical network requirement while constraining the
locations to the special coupling points only [83]. Although
this approach succeeds in incorporating both networks in a
comprehensive model, it relies on a deterministic O-D traffic
flow matrix and deterministic electrical load profile. Such
determinism, however, fails to capture the dynamics inherent
in transportation, EV charging demand, and existing electri-
cal loads, thus representing a considerable limitation.

A more prevalent model adopted in this sub-section is
the Capacitated Flow-Refuelling Location Model (CFRLM)
[84]. This model offers increased flexibility compared to the
FRLM and incorporates queuing theory for estimating EV
demand, [85], [86], [87], [88], with additional accommoda-
tion of RDGs [89], [90]. Furthermore, Modified Staircase
Facility Location Model (MSCFLM) [100], which is a mod-
ified CFRLM that accounts for traffic deviation and adopts
a multi-period perspective in conjunction with user equilib-
rium [99]. Additionally, some researchers have employed
mathematical models for traffic flow assignment [91], [92],
[93]. Although these models incorporate the transportation
network aspect in the problem, relying on mathematical mod-
eling to represent traffic flow may fail to capture the dynamics
of the transportation network. In addition, the upgrade or
reinforcement of the grid was not taken into account, and
the demand for EVs was modeled using user equilibrium
traffic assignment along with queuing theory to ensure a
satisfactory level of service for the FCS [94]. Furthermore,
the representation of the electrical network in this area either
focused on the technical limitations of the network, such as
voltage and current limits, or utilized linearized or relaxed
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formulation for power flow equations [95], [96], [97], [98].
Hence, the major drawback in this area is the unrealistic
representation made for both networks, which is a significant
gap.

Table 7 provides a comprehensive overview of the opti-
mization techniques used, including the formulation, solver,
and utilization of linearized models. To be able to provide an
exact solution to the optimization problem in this subsection,
researchers relied exclusively on linearization procedures for
power flow equations during the planning process. This may
oversimplify the problem fail to capture the operational con-
straints of the electrical network and overlook its critical
aspects. Furthermore, when considering the transportation
network perspective, the utilization of capture flow mod-
els or static flow assignments could have adverse impacts
on real-world transportation network performance. Thus,
it becomes crucial to conduct further analysis and compare
the outcomes of these models with the original power flow
formulation. Additionally, incorporating RDGs is essential
to address the environmental requirements of EV charging.
However, due to the uncertainties associated with RDGs,
the existing formulations may not be sufficient for optimal
integration.

B. APPROXIMATE APPROACHES

In this category, the presented research aims to optimize both
the electrical and transportation networks utilizing approx-
imate optimization techniques. The studies employ varying
models for the transportation network, ranging from static
Flow-Capturing Location Models (FCLM) for generating
EV demand [101], to more dynamic models incorporating
Origin-Destination (O-D) matrices and travel surveys [102].
A significant portion of these studies utilize some form of
traffic flow modeling to better reflect the real-world trans-
portation network [103], [104], [105], [106], [107], [108].
Notably, a subset of these works explicitly incorporates
dynamic flow elements within the transportation network by
utilizing a traffic simulation tool [109].

In the context of the electrical network, some studies do
not take into account grid reinforcements or upgrades [104],
[106], [109], while other cases consider RDG [105], [108].
Few studies also consider the need for electrical network
upgrades [101], [102]. Furthermore, some research addresses
the broader aspect of expansion planning for both the trans-
portation and electrical networks [103].

Table 8 presents the details of the references in this cate-
gory, including the optimization algorithms utilized and the
limitations of the models presented. The wide array of solu-
tion algorithms employed across these studies could indicate
that research in this multidisciplinary area is still in its forma-
tive stages. This diversity can be seen as both an asset and a
challenge. On the one hand, it represents a rich landscape of
approaches to tackle complex problems. On the other hand,
it highlights the need for more consistent methodologies and
benchmarking to assess the relative merits and drawbacks of
these various approaches.
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C. HYBRID APPROACHES

In this category, there is a general lack of research due to
complexity and multidisciplinary dependency. Studies in this
category predominantly utilize MINLP formulations. Addi-
tionally, the electrical network operational constraints are
being recognized in the form of the power flow equations
and the technical limits. However, the research diverges in
whether it includes any system upgrades or reinforcement
to account for the increased load of EVs. Moreover, the
inclusion of conventional grid loads varies among the studies.
While some studies neglect the need for grid upgrades or
reinforcements [115], others incorporate aspects like substa-
tion and feeder upgrades [116]. RDGs are also considered
in a few cases [117], [118] While a more comprehensive
approach considering RDGs and upgrades is presented by Pal
and Bhattacharya [119].

The main differences were the transportation network
adoption and the optimization algorithm used. For trans-
portation network representation in the problem, either by
maximizing the served flow by integrating of gravity model
with spatial-temporal O-D analysis [115], or integrating
the gravity model with queuing theory [117] or a sequen-
tial capacitated flow-capturing location model (SCFCLM)
which is a variant of the well-known FCLM [116], or EV
demand uncertainty modeling considering different conges-
tion levels [119].

These methodologies heavily rely on assumptions to pre-
dict EV demand and may not adequately account for the
influence of FCS locations on traffic flow. Conversely, a more
realistic way of representing the transportation network using
a Dynamic Traffic Assignment simulation tool to control the
level of service [118].

Regarding the use of hybrid models, their primary function
is not to augment the algorithmic searchability of a single
method but to enhance the selection among the generated
solutions [115], [117], or perform a specified task within the
problem [116], [117], [118], [119].

The proposed algorithms generally provide good coverage
and fast convergence compared with others as represented in
each research. However, there was no utilization of hybrid
algorithms to enhance the searchability of a single method as
presented in previous hybrid sections. The efficiency of the
GWO or GA chosen in this category mainly depends on the
parameter’s choice. As a future recommendation, a combi-
nation of Mata-heuristic algorithms may yield better quality
in terms of solutions and will also need to be compared with
other methods to evaluate the computational time and quality.
Details of the methods and models are presented in Table 9.

V1. DISCUSSION AND FUTURE RESEARCH

The literature review presented in this research highlights the
significance of addressing the allocation and sizing problem
of FCS to meet the growing demand for EVs. However,
several areas require further research to promote EV adop-
tion and facilitate a sustainable future for the transportation
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and electrical sectors. These areas can be viewed from two
perspectives: A. the factors considered within each network
as part of the multidisciplinary approach, and B. the optimiza-
tion techniques employed. The following subsections discuss
these aspects in detail.

A. FACTORS

One of the key findings of this review is the limited
consideration given to the impact of FCS placement on
the transportation network flow. While many studies have
focused on optimizing FCS location based on factors such as
demand, driving distance, and EV penetration rates, few have
considered the interaction of the FSCs with the traffic net-
work to assess the impact of FCS on traffic flow and system
equilibrium. To mitigate these negative impacts, it is crucial
to integrate traffic flow analysis when planning the location
and sizing of FCS. Additionally, the static consideration of
traffic flow needs to be expanded to include dynamic traf-
fic conditions to represent the spatial-temporal EV charging
demand and the traffic performance under various scenarios.
Therefore, a major research question to guide future research
direction in this area is what is the impact of FCS locations on
traffic flow, especially with a high penetration level of EVs?

In response to that, Figure 5 presents a conceptual plan-
ning framework for integrating both networks, considering
their unique factors to achieve optimal FCS locations. The
main structure of the proposed framework is the dynamic
EV driving and charging demands through traffic simulation
tools rather than relying on static mathematical representa-
tion of driving behaviors or historical data combined with
electrical grid optimization. The framework begins with inte-
grating dynamic EV movement in the transportation network,
enabling precise identification of spatial-temporal demand
locations. For that purpose, suggestion of traffic simulation
tools to represent EV driving and thus charging demands
may account for the realistic representation and allow for
reassessment of the network performance. Subsequently,
these demands and associated locations are introduced into
the electrical network as candidate sites for the charging
stations. The electrical network optimization with the fed-in
locations and demands along with the conventional loads of
the distribution network, decides upon the upgrade or rein-
forcement of the grid along with the optimum locations from
the perspective of electrical network requirements. In some
cases, the electrical network optimization may suggest new
proposed locations for the FCS. This methodology differs
significantly from existing approaches in the literature, which
often rely on static or oversimplified representations of traffic
networks. In addition, the proposed approach accounts for
existing loads in the electrical network as well as testing the
impacts of the locations on the traffic performance, which has
not previously addressed in the literature.

In the subsequent stages, the proposed locations within the
electrical network are reintegrated into the dynamic trans-
portation simulation to evaluate their impact on traffic flow.
This iterative process continues until both networks exhibit
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minimal requirements for further changes, marking the con-
vergence to optimal solutions that satisfy both networks’
requirements.

For effective integration of the transportation and electrical
networks, a comprehensive set of parameters is necessary.
These include the parameters of the electrical distribution
network to be used where IEEE standard test systems play
an important role [121] as well as existing conventional
loads in the electrical distribution network, and factors related
to RDGs such as the and necessary upgrades. Whereas,
transportation network parameters including the nodes, links,
capacity of the network as well as the EV consumption related
parameters.

The proposed framework offers a roadmap for policy-
makers to address the multidimensional planning problem,
emphasizing a comprehensive tool that integrates multiple
stakeholder needs. This includes accommodating EV users’
needs by elevating service levels and ease of access to charg-
ing stations, which is a critical social aspect. Environmental
considerations involve complementing the EV transition with
renewable generation to prevent shifting loads from the
transportation to the electrical network. Additionally, the
framework presents economic solutions, enabling sustainable
electrification of the transportation system.

Moreover, the review highlights the importance of a multi-
disciplinary approach in addressing the complexities of FCS
allocation and sizing. Collaboration among various fields
such as electrical engineering, transportation engineering,
urban planning, and environmental science is essential. Such
collaboration will reveal different aspects of the problem,
ensuring that all facets of FCS deployment — technical, envi-
ronmental, social, and economic — are adequately addressed.
This holistic approach will lead to sustainable, efficient,
and user-friendly EV charging infrastructures that align with
broader environmental and societal goals.

Moreover, the lack of a mix of charging technologies
is another area requiring attention. Future research should
explore the potential of combining multiple technologies,
such as wireless charging, mobile battery storage, or battery
swapping stations, to effectively accommodate the increasing
EV load. It is important to investigate the impact of these
technologies on both transportation and electrical networks,
considering their advantages and disadvantages. This direc-
tion can be guided by the research question of What is the
optimal mix of EV charging technologies to effectively serve
different penetration levels of EVs?. Furthermore, the focus
on RDGs as a cost-driven factor should be complemented by
considering the reduction in CO2 emissions, which is a key
driver for the transition to EVs.

Moreover, there is a lack of studies focusing on the Middle
East and North Africa (MENA) region, which has unique
driving behavior and road layouts. Besides, the impact of
hot weather conditions and driving habits on EV energy
consumption and allocation should be examined to account
for the specific challenges faced in this region as the use
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of air conditioners in extreme weather regions (i.e., cold,
or hot aired climate regions) causes an about 33% drop in
the driving range [122]. Therefore, it is crucial to investigate
how these regional factors influence the optimal placement of
FCS. Additionally, investigating the impact of FCS locations
on power quality and the extreme load consumption of FCS
in conjunction with conventional loads connected to the grid
would provide valuable insights.

Furthermore, the technological advancement in EV and
its charging infrastructure highlights the need of investigat-
ing new technologies and their impact on the locations of
FCS. Such technologies include autonomous and connected
EVs as well as automatic and coordinated charging systems.
These research directions also emphasis the multidisciplinary
approach incorporating optimized routing of EVs and the
smart grid demand response strategies. This can be moti-
vated by testing the hypothesis that high penetration of fully
autonomous and connected EVs may significantly impact
FCS optimal locations, particularly since it is believed that
automated and connected EVs consumption rate might be
different from conventional EVs [123].

Finally, government incentive programs play a crucial
role in promoting EV adoption and supporting the required
infrastructure. Future studies should evaluate how differ-
ent government incentive programs affect EV market share
growth and the development of EV infrastructure.

B. OPTIMIZATION TECHNIQUES

This paper has demonstrated the use of various optimization
techniques in FCS allocation and sizing. However, further
research is needed in the following areas:

Exact Approaches: While exact approaches utilizing math-
ematical programming models have been widely employed,
they provide a significant strength over the other methods in
finding a global optimum solution using commercial solvers.
However, their reliance on linearization formulations may
oversimplify the problem. Future research should carefully
evaluate the accuracy of these linear approximations and
compare them with the original power flow formulations to
ensure an accurate representation of system behavior and
examine the impact of linearized models on the allocation and
sizing problem. A potential research question could be: How
do the results of optimal FCS locations, from linearized math-
ematical models, differ when compared to results derived
from original power flow formulations?

Approximate Approaches: The performance of approxi-
mate approaches, including heuristic and metaheuristic algo-
rithms, should be assessed, and compared. These approaches
have the strength of finding good solutions within a shorter
computation time and are particularly effective in han-
dling NP-hard and highly non-linear problems. However,
their weakness lies in their reliance on initial parameters
and the risk of getting trapped in local optima. Compar-
ative analyses will aid in selecting appropriate methods
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for specific problem instances. Besides the need for algo-
rithms that handle multi-objectives and large-scale planning
problems.

Hybrid Approaches: The utilization of hybrid approaches
combining multiple optimization techniques shows promise.
These methods offer a major advantage by allowing the
combination of different methodologies to benefit from the
strengths of each. Future research should focus on enhancing
the search capability of these hybrid models and com-
pare their performance with alternative approaches. Multi-
objective optimization within hybrid approaches should also
be explored to simultaneously consider conflicting objec-
tives, such as cost, power loss, environmental impact, grid
reliability, traffic flow, and user preference.

Moreover, the coupling between transportation and elec-
trical networks should be based on realistic assumptions and
real-world data to ensure the relevance and accuracy of the
optimization models.

VIl. CONCLUSION

In recent years, the deployment of fast charging stations
on highways has become a significant concern due to the
increasing number of electric vehicles. Many researchers
have proposed various approaches for allocating and sizing
fast charging stations on highways. The literature review pre-
sented in this paper has broadly categorized the literature into
three main categories: a traffic network-centric approach an
electrical network-centric approach and a multidisciplinary
approach focused on integrating both networks seeking a
more efficient and realistic representation.
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Upgrade Technical Limits

In each of these categories, the researchers have adopted
an exact approach, an approximate approach, and a hybrid
approach. While each approach has its advantages, they often
fall short of addressing the complexity of the problem com-
prehensively. Particularly in the use of linear or nonlinear
formulations with exact solutions, the problem is frequently
oversimplified, making it challenging to scale to larger con-
texts like cities or countries. This limitation is evident across
all three main categories of research. Due to the complexity
and the variety of factors involved, the most widely adopted
approach among the three subcategories is the approximate
approach. Hybrid approaches are emerging as a promising
area of research where more than one solution approach is
utilized. These are either employed for specific tasks within
the problem, such as location or sizing, or used to enhance
population selection in metaheuristic approaches. They also
offer the potential to merge two or more solution approaches,
thereby enhancing the searchability of a single method.

However, the main research gap in this area is the lack
of a comprehensive approach that integrates both the electri-
cal and traffic networks into a single optimization problem
while accounting for the main needs and factors of both
networks. The vast majority of the existing research has
primarily focused on either incorporating traffic information
to generate realistic candidate locations for the electrical
optimization problem or selecting candidate locations on the
electrical system and optimizing the network flow. Relatively
little research has focused on the incorporation of both net-
works. Thus, there is a need for a multidisciplinary approach,
where collaboration among experts from various fields can
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address all aspects of FCS planning. Such an approach would
not only provide more accurate and comprehensive solutions
that consider technical, environmental, social, and economic
factors, but also offer a framework robust enough to scale to
larger problems at the city or country level. It should also
account for a possible mix of charging technologies thereby
aiding policymakers and stakeholders to make informed deci-

sions regarding the deployment of fast charging stations on
highways.
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