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ABSTRACT Computer-aided diagnostic systems have evolved into critical tools for endoscopists in
diagnosing and reducing missed diagnoses. However, due to the lower incidence of rare diseases in
medical images compared to common diseases, there exists an imbalance in sample distribution for lesion
classification. This imbalance results in reduced detection and classification accuracy. In the realm of
deep learning, detection accuracy is influenced not only by the model but also by the choice of the loss
function.This study introduces a novel solution to address the imbalance issue of colorectal lesions in white
light endoscopy by proposing a loss function named Label Distribution and Scale Distribution Aware Loss
(LSDA-Loss). Our innovative loss function resolves the category imbalance problem by considering sample
distribution and employing Bayesian equations to quantify the degree of imbalance. Furthermore, we adopt
proportional distribution to evaluate the complexity of categorizing each sample. Experimental results from
three independent datasets demonstrate that: 1) the integration of the proposed loss functionwith three typical
FPNmodels significantly enhances detection accuracy, achieving improvements of up to 94.56%. 2) Our loss
function effectively balances detection accuracies across the three categories, surpassing the performance of
the original loss function.

INDEX TERMS Colorectal cancer, deep learning, medical image process, white-light endoscopy.

I. INTRODUCTION
Colorectal cancer is ranked third globally in cancer incidence
rates and is associated with highmortality. Recent trends indi-
cate a progressive decrease in the age of onset of colorectal
cancer, imposing significant health and economic burdens on
populations. Approximately 95% of colorectal cancer cases
originate from polyps in the rectum or colon lining, with
certain types like adenomatous polyps carrying the potential
to advance to colorectal cancer. Early detection of colorec-
tal cancer yields a cure rate as high as 90% [1] Notably,
early-stage patients often present no overt clinical symptoms,
prompting the reliance on colorectal cancer screening and the
expertise of seasoned endoscopists for detection. Presently,
white light endoscopy serves as the predominant method for
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colorectal cancer screening, with multiple studies illustrating
its efficacy in reducing morbidity and mortality rates associ-
ated with the disease. High-quality white light endoscopy is
linked to improved prognostic outcomes for patients [2] How-
ever, disparities exist in the quality of white light endoscopy
among providers and endoscopists, as evidenced by studies
reporting false-negative rates for colonoscopy ranging from
22% to 28%. Such discrepancies can result in delayed colon
cancer diagnoses and alarming survival rates as low as 10%
[3] Thus, enhancing early screening for colorectal cancer
necessitates the integration of innovative technological tools
to facilitate lesion detection and mitigate the risk of delayed
diagnoses.

In recent years, deep learning models have achieved sig-
nificant advancements in various medical imaging domains,
surpassing conventional diagnostic methods in tasks like
image detection and classification. Within the realm of
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intelligent medicine [4], there is a growing acceptance and
utilization of AI-assisted diagnosis by doctors, patients,
and technicians. Leveraging deep learning models to sup-
port medical diagnosis can enhance detection accuracy,
addressing missed diagnoses attributed to the inexperience
and visual fatigue commonly observed among colorectalo-
scopists. Notably, the field has seen enhanced detection and
classification accuracy following pivotal works such as the
utilization of a convolutional network (CNN) based deep
learning model for polyp detection by Kumar et al. [5]
Pogorelov et al. [6] pioneered the integration of deep neural
networks, information retrieval, and global and local image
characterization for multi-class classification, detection, and
localization of various colorectal lesions. Yhandah et al. [7]
achieved a notable 75.1% accuracy in classifying adenoma-
tous and non-adenomatous polyps using CNN models with
ten-fold cross-validation. Wimmer et al. [8] applied three
pre-trained CNN architectures to endorse the classification
of colonic polyps using SVM techniques. Byrne et al. [9]
also distinguished adenomas from hyperplastic polyps with
high precision based on a CNN model with 83% specificity
and 90% positive predictive value (PPV).Gao et al. [10] effec-
tively employed ResNet50 to distinguish colonoscopy images
containing lesions from those without lesions, subsequently
categorizing specific lesions into adenomas, carcinomas, and
polyps with an impressive AP50 detection value of 0.903.
Yuan et al. [11] introduced the RIS-DenseNet network,
enhancing polyp image recognition accuracy by incorporat-
ing rotational invariance and image similarity principles into
the algorithm.

Deep learning datasets must be sufficiently large to encom-
pass a diverse array of scenarios and variations pertinent to
the task, ensuring effective generalization of the model to
novel data. Public datasets commonly comprise hundreds of
thousands to millions of samples. Unlike generic images,
acquiring medical images is challenging due to ethical con-
straints governing the image-capture process, resulting in a
scarcity of medical image datasets. Moreover, the prevalence
of rare diseases is lower compared to common ailments.
For instance, in white light endoscopic images of colorectal
lesions, the quantity of samples for polyps and carcino-
mas is notably fewer than for adenomas. This imbalance in
sample distribution across categories poses a challenge by
biasing the model’s detection accuracy towards the majority
categories, often neglecting the minority [12], [13]. How-
ever, in real-world clinical settings, a low polyp detection
rate within any category could impede the accurate diagno-
sis of colorectal cancer. Analyzing white light endoscopic
images of colorectal lesions reveals that polyps and ade-
nomas typically constitute a small portion of the entire
lesion image, leading to a substantial imbalance in pixels.
This foreground-background disparity prompts trained mod-
els to inaccurately favor predicting background categories
over actual lesions, presenting a significant hurdle for deep
learning in medical image detection.Previous studies have
highlighted the potential of deep learning in detecting col-

orectal polyps in white-light endoscopic images [14]. Now,
the quest for effective methods to enhance the performance of
deep models on imbalanced datasets has garnered increasing
attention from researchers.

Neural networks in deep learning are utilized for learn-
ing and predicting input data through multi-level nonlinear
transformations and weight updates, guided by feedback
generated from the loss function to optimize parameters.
The most widely used loss function in multiclassification
is cross-entropy due to its feasibility for micro-optimizable
optimization. However, the traditional cross-entropy loss
function treats each data instance equally, overlooking the
imbalance in category categorization, specifically in white
light endoscopic images of colorectal lesions. As a result,
a dynamic weighting strategy is proposed in this study,
assigning weights to different categories with a focus on chal-
lenging samples, alongside introducing a novel loss function
termed LSDA-Loss. This new approach addresses the cate-
gory imbalance issue by considering sample distribution and
utilizing a proportional distribution to assess the classification
difficulty of each sample. To showcase the effectiveness of
the proposed method, experiments are conducted using three
prominent single-stage deep learning models.

The remainder of the paper is structured as follows:
Section II provides a concise overview of prior research
efforts addressing the category imbalance issue. Section III
elaborates on the LSDA-Loss function and the network com-
ponent of the experimental model. Section IV assesses the
method’s efficacy and performance through experimental
evaluation, while Section V offers the paper’s concluding
remarks.

II. RELATED WORK
A. CLASS IMBLANCE ON IMAGES
The concept of category imbalance pertains to the unequal
distribution of samples across various target categories
within the training dataset. Such imbalanced datasets pose
challenges throughout all phases of target detection and sig-
nificantly impact its performance. Currently, two primary
types of category imbalance issues exist:

PN-class Imbalance: This imbalance concerns the unequal
representation of positive samples (samples containing the
target) and negative samples (samples without the target). For
target detection tasks, negative samples typically outnumber
positive samples as the background region exceeds the target
region in size. This disproportion can lead the model to excel
in classifying negative samples but struggle in accurately
identifying positive samples, thereby elevating the likelihood
of false detections.

PP-class Imbalance: This form of imbalance reflects a
substantial variance in the sample quantities across distinct
target categories. Certain target categories may be overrep-
resented compared to others, creating an uneven sample
distribution. This imbalance obstructs a comprehensive grasp
of targets within specific categories during the learning phase,
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ultimately diminishing the model’s detection accuracy. Con-
sequently, the overall performance of the target detection
model is impacted by the disparity in categorizing sample
difficulty.

Sample classification difficulty imbalance is a common
issue in target detection, whereby there exists a notable dis-
parity in the distribution of easy and challenging samples
within the training dataset. When the proportion of easy
samples surpasses that of difficult ones in the training data,
the model tends to overly focus on learning and optimizing
easy samples at the expense of neglecting the difficult ones.
Consequently, this compromises the model’s capacity to gen-
eralize in real-world scenarios. Recognizing the complexity
of sample classification aids in assessing model performance
and devising suitable optimization strategies to enhance tar-
get detection accuracy.

B. SOLUTION METHODS
Currently, the primary approaches to address the issue of
category imbalance in deep learning models are data-level
techniques and algorithmic strategies.

There are various techniques at the data level. Under-
sampling [15] techniques can be used to construct a relatively
sample-balanced dataset by filtering the majority of the sam-
ples.There is also the option of oversampling [16] a small
number of samples, i.e., selectively copying some of the
samples to make the number balanced, but this can lead to
overfitting of some of the samples after training.Nowadays,
the commonly used method is resampling [17], and SMOTE
[18] is one of the state-of-the-art methods. It is a dataset
balancing technique that effectively solves the data imbalance
problem by generating new samples between a few classes of
samples through an innovative interpolation method.Unlike
the methods described above, SMOTE does not simply
replicate, but algorithmically generates new samples. These
additional samples play a crucial role in enhancing the
representation of minorities, ultimately improving the perfor-
mance of the model.

Algorithm level based methods are mainly used to solve
the category imbalance problem effectively by adapting the
modeling process of the classifier and enhancing some of the
samples through the loss function.

Target detection produces a large number of anchor frames
but few positive image samples, resulting in an extreme
imbalance between positive and negative samples.To address
this challenge, Lin et al. [19] introduced the Focal Loss
method in 2017. This technique alleviates the imbalance by
augmenting the weight assigned to positive example sam-
ples within the cross-entropy loss function. Li et al. [20]
devised the GHM loss function, which dynamically adjusts
sample weights by applying gradients proportionally to the
sample distribution. Specifically, easy samples with low gra-
dients receive reduced weights, while difficult samples with
moderate gradients see weight increments, and outlying sam-
ples with high gradients have their weights decreased.Unlike

Focal Loss and GHM, the PISA [21] method uses a ranking
method called IoU-HLR to evaluate the sample difficulty
based on Mean Average Precision (MAP). It effectively sup-
presses the scores of unimportant samples, thereby enhancing
the emphasis on crucial samples. Qian et al. [22] intro-
duced the DRLoss loss function, which categorizes fore-
ground elements by analyzing the candidate background
frames’ distribution and adjusts their weights accordingly
to achieve a distribution associated with the worst-case loss
scenario. This approach concentrates the loss function on
the decision boundaries between foreground and background
distributions, diminishing logarithmic sorting and enhancing
computational efficiency. Li et al. [23] proposed the Gen-
eralized Focal Loss (GFL) to tackle the mismatch between
training and prediction processes. They further developed two
variants: Quality Focal Loss (QFL), which targets a sparse set
of challenging samples and generates continuous quality esti-
mates ranging between 0 and 1 for the relevant categories, and
Distribution Focal Loss (DFL), which enables the network to
concentrate on learning probability values in the proximity
of continuous target bounding box positions across flexible
distributions.Chen et al. [24] put forward the AP-loss as a
novel ranking method instead of a categorization loss to boost
the performance enhancement in single-stage target detec-
tion. Zhang et al. [25] introduced the IOU perceptual function
of categorization score (IACS) for Non-Maximum Suppres-
sion (NMS) sorting, indicating object category presence and
enhancing bounding box localization accuracy. Yu et al. [26]
devised a double balanced loss function based on Bayesian
principles to address the data imbalance issue among positive
example samples. Sadi et al. [27] proposed the LDAM loss
function to reduce model generalization error by imposing
stronger regularization on the minority class compared to
the majority class. Ozan et al. [28] introduced the Omni-
Comprehensive Loss, a new loss function that leverages NCC
and Tversky’s index to mitigate dataset imbalance and the
issue of gradient vanishing. Saiji et al. [29] introduced the
DLINEX loss function, which innovatively incorporates the
exponential loss function from statistics into a deep learn-
ing framework to combat category imbalance by fine-tuning
parameters to focus more on scarce and challenging-to-
categorize samples.

In summary, there are two main approaches to solving the
class imbalance problem. As mentioned earlier, classifier-
level techniques aim to enhance the loss function. These
techniques can be divided into two categories: assessing the
complexity of sample classification (sample-weight) and bal-
ancing the representativeness of a small number of classes
(class-weight), as shown in Table 1.

III. METHODS
This section focuses on addressing the imbalance issue
observed in white-light endoscopic images of colorectal
lesions. We provide a brief overview of the Feature Pyramid
Network (FPN) framework for feature extraction in lesion
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TABLE 1. Innovative improvements of loss function by scholars over the
years.

detection and introduce a novel loss function named Labeled
Distribution and Scale-Distribution Perceptual Loss (LSDA-
Loss). LSDA-Loss combines a labeling distribution and a
scale distribution to assign different weights to the samples
in each category and uses the target scale to identify difficult
samples.

A. FPN
Convolutional neural network models in the field of deep
learning are extensively employed for detecting lesions in
medical images. These networks extract intricate hierarchical
features by amalgamating local features through convolu-
tional learning and spatial pooling operations. During feature

FIGURE 1. FPN feature fusion.

extraction, variations in features across layers occur. The Fea-
ture Pyramid Network (FPN) [30] addresses this by merging
featuremaps from lower to higher layers, therebymaximizing
the utilization of features from various network layers and
enhancing the detection of small targets in target identifica-
tion tasks.

The feature fusion operation of FPN, illustrated in
Figure. 1, entails upsampling the low-resolution feature
maps by 2x using the nearest neighbor method and sum-
ming them element-wise. Subsequently, the corresponding
low-resolution feature maps undergo a 1 × 1 convolutional
layer to adjust the channel count to align with the upsampled
feature maps, and these enhanced feature maps are com-
bined to form a high-resolution feature map. This process
is iterated multiple times until the desired new feature maps
are generated. Finally, each fused feature map undergoes a
3×3 convolution operation to yield the ultimate feature map.

B. DIFFICULTY OF SAMPLE CLASSIFICATION
In previous research on addressing imbalanced problems,
the prevalent loss function utilized is the Focal Loss. The
Focal Loss assesses difficult samples based on the confi-
dence level magnitude. Specifically, for positive samples, the
model assigns samples with low confidence as difficult, while
samples with high confidence (easy samples) have a negligi-
ble impact on enhancing model performance. A modulation
factor, denoted as ’t’, diversely influences the contribution
of various samples to the loss, thereby enabling the model
training to prioritize difficult, misclassified samples. The
complexity of samples is evaluated by examining the scales of
the three categories of real white light endoscopic colorectal
lesions (as depicted in Figure. 2, with the scale distribution
utilized as a criterion for assessing sample difficulty.

After analyzing data on the distribution of lesions in
various white light endoscopy image databases, the results
are presented in Figure 3. The samples were categorized
into small-scale and large-scale samples using a threshold
of 0.3 based on the lesion area percentage relative to the
whole image. In the large-scale samples, cancerous structures
accounted for over 80%, adenomas for 10%, and polyps for
the lowest percentage. Therefore, the detection and classifi-
cation of cancerous structure samples are more prominent in
the test set. Conversely, in the small-scale samples, polyps
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FIGURE 2. Labeled percentage of polyp, adenoma, and carcinoma-like
lesions in the overall image in the dataset.

FIGURE 3. Proportion of scale occupied by polyps, adenomas, and cancer
lesions.

constituted 40%, adenomas 30%, and cancers 10%, with
each category being relatively balanced, posing challenges
for classification. It is crucial to highlight that inaccuracies
in classification and diagnosis of medical images may result
in treatment delays, potentially impacting the patient’s con-
dition if not addressed promptly.

Based on the preceding analysis, we employ the scale
distribution as a criterion for evaluating sample complexity
and introduce a computational approach, demonstrated in
Eq. (1). The variable t in this equation signifies the ratio
of the prediction frame to the image area, where a lower
ratio indicates higher sample complexity. To address the
imbalance issue, each object is assigned a weight based on
its proportion, enhancing the influence of smaller samples.
Furthermore, a fixed parameter β is introduced to ensure
equilibrium among diverse objects. The weights, denoted as
ωi and determined from Eq. (1), are integrated into the loss
computation process, effectively alleviating the imbalance in
positive samples during detection by assigning appropriate
weights to the losses of distinct targets.

ωi= 1+
t + β

log(t)
(1)

By weighting the original loss function, the classified
small-scale targets are considered as difficult samples,
increasing the contribution of the small percentage of sam-
ples to the total loss. In this case, the network can extract
features that are more meaningful for small target detection.
Simultaneously, as extracting features for large targets poses
no significant challenge, their detection accuracy remains
unaffected. Hence, this approach significantly enhances the
overall detection accuracy.

C. DATA IMBALANCE IN THE POSITIVE EXAMPLE
Commonly used public datasets like MS COCO [31] and
ImageNet [32] contain vast amounts of data in each category,
leading to a scarcity of consideration for category imbal-
ance in traditional loss functions. This scenario contrasts
with medical image datasets, where significant variations
exist in sample quantities across categories. For instance,
within white-light endoscopic images of colorectal lesions,
the number of cancerous structures constitutes only 30% of
the adenoma samples. However, in actual clinical diagnosis,
low detection of any type of polyp hinders accurate diag-
nosis of colorectal cancer. In order to address the issue of
imbalanced positive samples, this study utilized the Bayesian
approach. Initially, the frequency of occurrence for each
sample category was calculated to establish the prior proba-
bilities. The model is guided to prioritize certain categories
in the initial phase by the value of the prior probability.
Subsequently, introducing weighting factors, optimal param-
eter values were determined through numerous experiments
to establish classification difficulty weights. These weights,
as depicted in Eq. (2), were customized for each sample
category to enhance the model’s focus on specific categories
during prediction, thereby improving classification accuracy
and effectively tackling the challenge of sample imbalance.

pp (ci) =
(1

/
ni)

ρ∑k
j=1 (

1/
nj)

ρ (2)

where ni denotes the number of categories ci , pp (ci) denotes
the corresponding prior probability of the category, and ρ is
used as a parameter. the smaller the number of ni, the more
difficult it is to categorize, and the larger the value of pp (ci).
By calculating the prior probability of each category, we can
obtain the prior distribution of the training samples as shown
in Eq. (3).

pp = [pp (c1) , pp (c2) , . . . , pp(ck )] (3)

Since categories in medical images are mutually exclusive,
we solely focus on computing the prior probabilities and
predicted probabilities associated with the correct categories.
The actual vector pertaining to category ci is represented by
q. (4).

trueci = [0, 0, . . . , 1, . . . , 0]T (4)
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In this vector, the positions corresponding to the real cate-
gories are labeled with a 1, and all the rest are 0.

pp ∗ trueci =
[
pp (c1) , pp (c2) , . . . , pp (ck)

]
∗ [0, 0, . . . , 1, . . . , 0]T = pp (ci) (5)

pt ∗ trueci = [pt (c1) , pt (c2) , . . . , pt (ck)]

∗ [0, 0, . . . , 1, . . . , 0]T = pt (ci) (6)

Loss (pt) = −pp (ci) ∗ log (pt (ci)) (7)

In Eq. (5) and (6), pp (ci) represents the a priori probability
of object categorization into the correct category, and pt (ci)
signifies the predicted probability of object categorization
into the accurate category. To mitigate the impact of mis-
classification on outcomes, solely the difficulty weights of
the correct categories are computed in Eq. (7).By calculating
the prior probability pp (ci) of each category, the weight
of a small number of categories to the overall loss can be
increased, allowing the model to focus more on a small
number of categories of samples when it is being trained,
and the small number of categories can be prioritized over
the large number of categories.

D. LSDA-LOSS
In this study, we propose a solution to improve the detection
performance of unbalanced datasets by introducing a weight-
ing term based on Focal Losswhile considering the imbalance
of samples and the classification difficulty of each sample.
First, a concise expression is obtained by Focalloss:

FL (pt) = αt (1 − pt)γCE (p, y) (8)

The weight coefficient, denoted as αt in Eq. (8), varies
between 0 and 1 to fine-tune the weights of positive and neg-
ative samples. Furthermore, the weight coefficient (1 − pt )γ

assesses the difficult classification based on the confidence
level of the samples and makes corresponding weight adjust-
ments. In Eq. (8), CE(p,y) represents the cross-entropy loss
function. After augmenting the positive samples using the
focal loss function to mitigate the foreground-background
imbalance issue, we substitute Eq. (8) into Eq. (7). Eq. (9) is
obtained by elevating the weight of a small number categories
in the overall loss via a Bayesian approach. This adjustment
enables the model to prioritize specific categories of samples
during training, thereby rectifying the categorization imbal-
ance within the positive samples.

Loss(pt ) = −αt (1 − pt (ci))γ pp(ci)log(pt (ci))) (9)

In our methodology, the weight ωi plays a critical role
in assessing the difficulty level, obtained from Eq. (1), and
integrates into the loss computation in Eq. (11) to ascertain
the ultimate loss value. The parameters β and ρ are utilized
for this purpose. Moreover, k represents the quantity of cate-
gories, and ni denotes the sample count in the ith category.
Through the proportional distribution of the sample, thus
enhancing the impact of smaller samples. Consequently, our
proposed LSDA-Loss is formally articulated in Eq. (12).

Loss′ = (1 + ωi)Loss (10)

FIGURE 4. White light endoscopic image (a) polyp, (b) adenoma and
(c) cancer.

LSDA−Loss = −αt

(
2 +

t + β

log(t)

)
(1 − pt (ci))γ

(1/ni)ρ∑t
j=1

(
1/nj

)ρ log (pt (ci)) (11)

IV. EXPERIMENTAL AND RESULT ANALYSIS
A. DATASET
This research utilized the SSPH_WL dataset, compris-
ing white light endoscopic images captured during patient
colonoscopies at the Gastrointestinal Endoscopy Center of
the Eastern Hospital within the Shanghai Sixth People’s Hos-
pital. The dataset collection process received ethical approval
and involved seasoned physicians. Gastroenterologists with
over 5 years of clinical diagnostic expertise conducted the
dataset labeling. Colorectal lesions were classified into three
categories—polyps, adenomas, and cancers—in alignment
with clinical diagnoses. The Shanghai Sixth People’s Hospi-
tal (East) supplied the dataset with strict adherence to privacy
protocols, ensuring the removal of personal sensitive infor-
mation and restricting its usage solely for academic research
purposes. Figure 4 showcases sample images depicting each
category.

The SSPH_WL dataset comprises 1,709 white light endo-
scopic lesion images gathered from June 2015 to September
2019, encompassing 1048 adenoma cases, 381 polyp cases,
and 280 cancer cases. In this research, the SSPH_WL
dataset was split into the training set (SSPH_WL-I) and the
test set (SSPH_WL-II). During dataset partitioning, strati-
fication based on lesion type was conducted, followed by
independent sampling within each stratum to maintain an
8:2 ratio for the training and test sets. Additionally, pub-
licly accessible colorectal white light endoscopic images
from CVC_ClinicDB [33], CVC_ColonDB [34], and Kvasir
[35] were utilized as supplemental test sets to assess the
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TABLE 2. Training dataset and testing dataset used in this study.

classification models’ generalization capabilities. A total
of 428 colonoscopy images were selected from the Kvasir
dataset, featuring 180 adenomas, 73 cancers, and 175 polyps.
Furthermore, a subset of 95 images from CVC_ClinicDB,
CVC_ColonDB, and an in-house video collection, compris-
ing 36 polyp images, 40 adenoma images, and 19 cancer
images, was assembled into a new dataset termed CVC. For
further details on these datasets, refer to Table 2.

B. EXPERIMENTAL SETTINGS
The model was trained with a momentum parameter of
0.9 and a learning rate of 0.0001, while the other parameters
were kept at their default values. The FPN feature pyra-
mid was chosen as the backbone network framework. Three
different FPN models were selected for experimentation to
enhance the performance of the loss function across vari-
ous models. Due to the presence of unbalanced data in the
multi-label categorization task, accuracy is deemed inade-
quate as an evaluation metric for individual category models.
Instead, Average Precision (AP) and Average Recall (AR)
are utilized. AP evaluates the area under the precision-recall
curve, providing a category-specific performance assess-
ment, while AR denotes the average recall across categories.
Extensions of these metrics include AP at IoU = 0.50, AP at
IoU = 0.75, AR given 1 detection per image, and AR given
10 detections per image. Moreover, and are employed to
gauge the accuracy of positive predictions, and F1 is calcu-
lated as the harmonic mean of precision and recall.

Presion =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

F1 =
Presion× Recall
Presion+ Recall

× 2 (14)

where TP (True Positive) means that the model correctly
predicted a positive category.TN (True Negative) means that
the model accurately predicted a negative category.FP (False
Positive) means that the model incorrectly predicted a posi-
tive category. Finally, FN (false negative) is when the model
incorrectly predicts a negative category.

C. HYPER-PARAMETER EXPERIMENTS
The LSDA-Loss function comprises four parameters: ρ con-
trols the prior probability of the category, β regulates the
sample size difficulty parameter, while γ and α are fixed
at 2 and 0.25, respectively. To optimize the hyperparame-

TABLE 3. AP and AR of RetinaNet with the hyper-parameters.

ters ρ and β, a series of experiments were conducted to
refine their values throughout the training process, ensur-
ing a more effective update of the model parameters. The
performance evaluation was carried out on the test set
SSPH_WL-II. The tuning strategy adopted here involved
maintaining and exploring three key values: 0.25, 0.5, and
0.75, with subsequent adjustments made in increments of
0.25. The outcomes from various parameter combinations are
presented in Table 3.

In terms of overall performance, the test set SSPH_WL-II
showed that the best APs and ARs were detected when β =

0.5 and ρ = 0.25. Therefore, subsequent experiments were
used at this parameter combination.

D. RESULT AND ANALYSIS
To assess the suitability of LSDA-Loss, we conducted
comparative experiments using three typical FPN single-
stage models: Retinanet, YOLOV7, and SSD. Additionally,
to further validate the efficacy of the proposed LSDA-Loss
function in classifying white-light endoscopic images of
colorectal lesions, we compared it with four common loss
functions used to address similar imbalance problems in the
same model. These loss functions include cross-entropy loss
(CE), focal length loss (FL), varifocal loss (VFL), double
balance loss (DB), and our LSDA loss function. The detection
results obtained by integrating these five loss functions into
the model and the evaluation of Average Precision (AP) are
presented in Table 4.

Comparing the results of the above data, for colorec-
tal lesion detection under white light endoscopy, Retinanet
outperforms Yolov7 and SSD with a detection accuracy of
94.56% and a 12.27% improvement over the original Focal-
loss using LSDA-Loss. In YOLOv7, the detection accuracy
of LSDA-Loss is 7% better than CE and 7.4% better than
FL. In SSD, the loss rate of LSDA-Loss reaches 87.09%,
which is 5.46%, 2.13% and 1.29% higher than the other three
loss functions, respectively. Moreover, LSDA-Loss effec-
tively balances the APs of the three categories in all three
models.In all three models, LSDA-Loss’s can significantly
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TABLE 4. Comparison of CE, FL, VFL, DB, and LSDA-Loss loss functions
under different models.

improve the detection accuracy of the models and balance the
classification accuracy of the three categories.

The results depicted in Figure 5 illustrate the enhanced
detection performance achieved with LSDA-Loss. The
results, shown from left to right, compare the effective-
ness of four different loss functions LSDA-Loss, CE, FL,
and DB in detecting similar lesion images. Picture (a)
displays an adenoma image, demonstrating the improved
classification confidence provided by LSDA-Loss. Mean-
while, picture (b) exhibits a polyp image, showcasing
the enhanced classification accuracy. This advancement
enables the correct classification of previously misclas-
sified or unclassifiable diseases.This improvement allows
previously misclassified or unclassifiable diseases to be
correctly classified. Moreover, LSDA-Loss has better clas-
sification performance for small targets.As shown in
(c), which is a cancer image, it can be seen that the
classification accuracy is significantly improved.Hence,
the comparison unequivocally demonstrates the signif-
icant enhancement in detection performance facilitated
by LSDA-Loss.

In Figure. 6, the feature maps extracted from the back-
bone network are visualized using CAM. In Figure 6, the
lesion images of polypoid adenoma and cancer are dis-
played from left to right. Panel (a) presents the input white

FIGURE 5. Results on the loss function is LSDA-Loss, CE, FL, DB.

FIGURE 6. CAM images of polyps, adenomas, and carcinomas by
RetinaNet with FL and LSDA-Loss.

light endoscopic image, followed by panel (b) showing
the visualization image generated post-detection using FL,
and panel (c) displaying the visualization image produced
after detection using LSDA-Loss. A comparison between
the feature maps obtained with LSDA-Loss and FL reveals
that LSDA-Loss demonstrates superior classification capa-
bilities for white-light endoscopic images of colorectal
lesions.
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TABLE 5. Comparison of the two parts of LSDA-Loss on the three test sets.

FIGURE 7. Comparison of two loss functions in three test sets.

E. ABLATION EXPERIMENTS
This study conducted experiments on the RetinaNet model
using three separate test sets to validate the effectiveness
and necessity of each component of LSDA-Loss. Table 5
presents the performance metrics of LSDA-Loss on the
SSPH_WL_II, Kvasir, and CVC test sets. The ‘‘omega’’
labels signify classification difficulty, while the ‘‘priority’’
labels indicate data imbalance. Introducing only the ‘‘omega’’
component led to an increase in recall to approximately 90%
across all three datasets by 13.02%, 3.85%, and 0.1% respec-
tively, demonstrating excellent performance. This highlights
the efficacy of utilizing ‘‘omega’’ for scaling the distribu-

FIGURE 8. Comparison of confusion matrix results for the two loss
functions.

FIGURE 9. Misclassified samples.

tion weights. Similarly, adding only the ‘‘priority’’ element
resulted in stable evaluation metrics of around 90% across
the datasets, confirming the effectiveness of the ‘‘priority’’
component. When both weightings were incorporated in
the experiment, the combined evaluation across the four
metrics achieved the highest values, with AP50 accuracy
improving by 12.27%, 1.26%, and 0.12% respectively. These
experiments underscore that LSDA-Loss exhibits robust gen-
eralization capabilities on the test set, enhancing model
detection performance and overall classification accuracy.

F. EFFECTIVENESS OF CATEGORY CLASSIFICATION
This study not only assesses the overall classification per-
formance of the model but also evaluates its ability to
differentiate between the three categories. Figure 7 illus-
trates the average accuracy results of the Focal Loss and
LSDA-Loss functions on the three test sets. Notably, the
accuracy in classifying polyps using LSDA-Loss notably
improved in the SSPH_WL_II dataset, with a significant
increase of 18.71%. Both the Kvasir dataset and the CVC
dataset showed lower accuracy in classifying polyps and
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cancers; however, after the enhancement of the loss function,
their accuracies were improved, leading to more balanced
classification accuracies across all three categories. Analysis
of the histograms indicates that the use of LSDA-Loss enables
the model to prioritize enhancing the performance of the
initially underperforming categories, consequently achieving
more balanced classification accuracies for all three cate-
gories.

False detection occurs when the model successfully local-
izes the lesion but fails to classify it accurately due to
a lack of classification ability. The confusion matrix in
Figure 8 presents a detailed analysis of the categories of
false detections. When utilizing the Focal Loss function (a),
22 adenomas were erroneously classified as cancers, 6 can-
cers as adenomas, 12 adenomas as polyps, and 7 polyps
as glands. In contrast, with the LSDA-Loss (b), 20 adeno-
mas were misclassified as cancers, 6 cancers as adenomas,
7 adenomas as polyps, and 6 polyps as adenomas. Polyps,
characterized by their small size and similar color and lining,
exhibit distinctions from cancers, which are typically large,
darker in color, and may appear blood-tinged. These marked
differences in lesion characteristics account for all detection
errors. The variable shapes of adenomas contribute to mis-
classification; some small adenomas resemble polyps, while
larger adenomas share features with cancers, making them
prone to misidentification.

Figure 9 lists some examples of images that were incor-
rectly detected as described above. From left to right, polyps
were misclassified as adenomas, adenomas were misclassi-
fied as polyps and cancers, and cancers were misclassified as
adenomas.

V. CONCLUSION
Aiming to address the problem of class imbalance with
lesion samples in medical images, this paper introduces a
novel loss function known as LSDA-Loss. The proposed loss
function utilizes Bayesian principles to prioritize specific
sample categories, thereby achieving balanced classification
accuracy across all categories. Furthermore, the target scale
is utilized to distinguish between difficult and easy sam-
ples, leading to improved classification accuracy. Through
experiments in three typical FPN networks, the evaluation
metrics of LSDA-loss outperform the other loss functions,
with a detection accuracy of up to 94.56%, and balances the
detection accuracy of the three categories.Through parameter
tuning on three distinct datasets, the findings demonstrate that
the model attains optimal detection performance when ρ =

0.25 and β = 0.5, resulting in significant increases in the AP
value of 18.71%, 6.87%, and 10.23% respectively.These find-
ings confirm the effectiveness of the proposed loss function
in enhancing accuracy and achieving desired outcomes in the
classification of white light endoscopy images.

The loss function is mainly based on the detection of
colorectal images under white light endoscopy, and there
is a great deal of generalization in other medical images.
In future research, it can be further generalized in other medi-

cal images, such as tissue slices, to continuously improve the
loss function to achieve higher detection accuracy.
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