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ABSTRACT This paper introduces a first-order method for solving optimal powered descent guidance
(PDG) problems, that directly handles the nonconvex constraints associatedwith themaximum andminimum
thrust bounds with varying mass and the pointing angle constraints on thrust vectors. This issue has been
conventionally circumvented via lossless convexification (LCvx), which lifts a nonconvex feasible set to a
higher-dimensional convex set, and via linear approximation of another nonconvex feasible set defined by
exponential functions. However, this approach sometimes results in an infeasible solution when the solution
obtained from the higher-dimensional space is projected back to the original space, especially when the
problem involves a nonoptimal time of flight. Additionally, the Taylor series approximation introduces an
approximation error that grows with both flight time and deviation from the reference trajectory. In this
paper, we introduce a first-order approach that makes use of orthogonal projections onto nonconvex sets,
allowing expansive projection (ExProj). We show that 1) this approach produces a feasible solution with
better performance even for the nonoptimal time of flight cases for which conventional techniques fail to
generate achievable trajectories and 2) the proposedmethod compensates for the linearization error that arises
from Taylor series approximation, thus generating a superior guidance solution with less fuel consumption.
We provide numerical examples featuring quantitative assessments to elucidate the effectiveness of the
proposed methodology, particularly in terms of fuel consumption and flight time. Our analysis substantiates
the assertion that the proposed approach affords enhanced flexibility in devising viable trajectories for a
diverse array of planetary soft landing scenarios.

INDEX TERMS First-order methods, nonconvex constraints, convex optimization, optimal control, powered
descent guidance.

I. INTRODUCTION
Recently, the space industry has been undergoing a radical
transformationwith the advent of the ‘‘new space’’ era. In par-
ticular, SpaceX’s Falcon 9 and Blue Origin’s New Shepard
have successfully demonstrated soft landing technologies for
reusable launch vehicles, and the European Space Agency
is working on the Themis program [1], [2]. In earlier days
of planetary landing missions, classical guidance algorithms
such as those used in the Apollo guidance system were
developed, but they were limited to missions with various
constraints. In recent times, there has been notable progress
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in the development of convex optimization-based soft landing
methodologies [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]
alongsidemachine learning-based techniques [13], [14], [15],
[16]. These advancements aim to effectively address a diverse
array of practical constraints encountered in the domain.

This paper addresses optimal powered descent guidance
(PDG) problems with the goal of finding minimum-fuel soft
landing trajectories while considering a variety of constraints
on the state variables and control forces [17]. Two notable
constraints regarding PDG problems are as follows: 1) the
magnitude of the thrust is bounded not only by an upper limit
but also by a lower limit since the main engine cannot be
turned off after ignition during the powered descent phase,
and 2) the thrust vectormust lie within a certain range because
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of maneuvering requirements or the field-of-view limits of
the navigation sensors. The lower bound constraints are
obviously nonconvex, and the pointing angle constraints can
also be nonconvex depending on the range. In previous works
relying on techniques such as lossless convexification, the
problem has been reformulated by linearizing and relaxing
these nonconvex constraints by introducing a slack variable
limiting the magnitude of the thrust and the changes of
variables handling mass variations [17], [18], [19].
It is known that the relaxation is exact, with the slack

variable matching the thrust magnitude, when the minimum
fuel problem is solved for cases with the optimal time of
flight, t∗f . However, when the problem is solved for a nonop-
timal time of flight, the solution obtained from the relaxation
may be infeasible for the original problem. Conventionally,
the optimal time of flight is found by applying bisection
or similar search algorithms; however, doing so increases
the computational burden and hence is not desirable during
the powered descent phase, in which fast decision making
is needed. Moreover, the previous techniques additionally
require Taylor series approximation for handling the thrust
bound constraints, which are reformulated in the form of
exponential functions [7], [17]. Such approximation tends
to result in suboptimality or constraint violation when the
problem considers a significantly long time horizon or when
the obtained optimal solution deviates notably from the
reference trajectory along which the dynamics are linearized.

Motivated by these shortcomings inherent in existing
techniques, this paper introduces a novel first-order solution
algorithm that directly handles the nonconvex sets originating
from the original PDG problem. Unlike prior approaches
which resort to relaxation or linear approximation techniques,
the proposed algorithm handles the complexities of non-
convex sets without such compromises, thereby effectively
surmounting the challenges highlighted earlier. It is observed
that for the lossless convexification cases (with the optimal
time of flight), the proposed approach finds the same
optimal solution that the previously known approach finds.
Additionally, the proposed approach is observed to find very
good practical solutions even for the lossy convexification
cases (with a nonoptimal time of flight), for which the
previous approach fails.

To the best knowledge of the authors, this is the first results
in directly handling the nonconvex constraints from the
PDG problems under the convex optimization frameworks.
We summarize the advantages of the proposed approach as
follows:

• It solves PDG problems with nonconvex constraints
at the computational complexity of a single convex
optimization problem.

• It generates practically feasible trajectories even when
the previously known approaches fail.

• It significantly reduces the suboptimality of the solution
originating from linear approximation error.

Notably, the proofs of convergence for first-order methods
such as the alternating direction method of multipliers

TABLE 1. Nomenclature.

(ADMM) or proximal gradient (PG) techniques largely rely
on the fact that projection onto convex sets is nonexpansive.
However, note that nonexpansivity of the projection operators
is not a necessary and sufficient condition for algorithm
convergence; in fact, it is an overly conservative condition,
as there are many cases in which expansive projections
can still achieve global convergence. Our approach involves
orthogonal projection onto nonconvex sets, which can be
expansive, and is thus deserving of the name expansive
projection (ExProj).

The rest of this article is arranged as follows. We begin
with briefly describing the mathematical formulation and the
nonconvex nature of the PDG problem. Then we explain how
the nonconvex constraints in PDG problem can be directly
handled with first-order optimization methods, and give the
algorithmic details for efficiently computing the solutions.
We finally present the computational results that shows the
advantages of the proposed expansive projection approach
over the existing convexification technique, and we also
present an indoor flight test result that justifies the real-time
implementation of the proposed approach.

II. POWERED DESCENT GUIDANCE PROBLEM
A. THE PDG PROBLEM IN NONCONVEX FORM
The minimum-fuel PDG problem for planetary landers or
reusable launchers is defined as follows.

Problem-PDG:

minimize
tf ,T (·)

∫ tf

0
∥T (t)∥ dt

subject to r̈(t) = g+ T (t)/m(t), (1a)

ṁ(t) = −α ∥T (t)∥ , (1b)

0 < ρ1 ≤ ∥T (t)∥ ≤ ρ2, (1c)

eT1 T (t) ≥ ∥T (t)∥ cos θtp, (1d)

r(0) = rinit, ṙ(0) = ṙinit, m(0) = mwet, (1e)

r(tf ) = ṙ(tf ) = 0, m(tf ) ≥ mdry, (1f)

∀t ∈ [0, tf ],

where (1a) expresses the dynamics under the assumption that
the vehicle is a point mass and (1b) gives the change in mass
due to thrust usage. The constraints that follow, from (1c)
to (1f), describe the limits on the thrust magnitude, the
pointing angle constraint, and the initial and final constraints,
respectively. In addition to the constraints described in
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Problem-PDG, a wide range of additional constraints can be
considered depending on the mission and vehicle types. Note
that the constraints in (1a) and (1b) are nonlinear and that the
lower bound on the thrust in (1c) is nonconvex. In addition,
(1d) can be nonconvex depending on θtp. Moreover, note that
tf is an optimization variable rather than being fixed a priori.

B. LOSSLESS CONVEXIFICATION
In the lossless convexification (LCvx) technique described
in [17], [18], [19], a slack variable 0(t) such that ∥T (t)∥ ≤

0(t) is introduced to apply convex relaxation to the non-
convex constraints of Problem-PDG: the lower bound on
the thrust magnitude, ρ1 ≤ ∥T (t)∥, and the pointing angle
constraint on the thrust vector, eT1 T (t) ≥ ∥T (t)∥ cos θtp.
Additionally, with the following changes of variables for
linearizing the dynamics,

u(t) = T (t)/m(t),

σ (t) = 0(t)/m(t),

z(t) = logm(t),

zref(t) = log(mwet − αρ2t), (2)

the original constraint on the slack variable and the thrust
bounds, ∥T (t)∥ ≤ 0(t) and ρ1 ≤ 0(t) ≤ ρ2, respectively,
are reformulated as follows.

∥u(t)∥ ≤ σ (t), (3)

ρ1e−z(t) ≤ σ (t) ≤ ρ2e−z(t). (4)

Note that in (4), the inequality on the left-hand side defines
a nonlinear but convex set, while the inequality on the right-
hand side defines a nonconvex set. LCvx linearizes both sides
around a reference trajectory zref(t), yielding the following
convex problem.
Problem-LCvx:

minimize
tf ,σ (·),u(·)

∫ tf

0
σ (t)dt

subject to r̈(t) = g+ u(t),

ż(t) = −ασ (t),

∥u(t)∥ ≤ σ (t),

eT1 u(t) ≥ σ (t) cos θtp,

ρ1e−zref(t){1 − (z(t) − zref(t))} ≤ σ (t),

σ (t) ≤ ρ2e−zref(t){1 − (z(t) − zref(t))},

r(0) = rinit, ṙ(0) = ṙinit, m(0) = mwet,

r(tf ) = ṙ(tf ) = 0, m(tf ) ≥ mdry,

∀t ∈ [0, tf ]. (5)

Note that Problem-LCvx is equivalent to Problem-PDG
only when the inequality in (3) is tight.

∥u(t)∥ = σ (t). (6)

It has been proven that the optimal solution obtained from
Problem-LCvx for the optimal time of flight of Problem-
PDG, t∗f , is guaranteed to satisfy ∥u∗(t)∥ = σ ∗(t), ∀t ∈

[0, t∗f ].

III. FIRST-ORDER OPTIMIZATION
A. FIRST-ORDER METHODS
First-order methods are a class of optimization algorithms
that use the gradient or subgradient information along
with proximal operations to solve optimization problems.
Compared to the classical second-order methods such as
interior point methods [20], [21], [22], which require the
Hessian information, first-order methods are computationally
simpler and more robust, easier to implement, and more
efficient in terms of memory usage; hence, they can handle
problems on very large scales [23], [24], [25].

Although first-order methods can be less accurate and
may require more iterative computations than second-order
methods, they are well suited for control applications in
which a high-accuracy solution is not necessarily required
and there are successive opportunities to update the solution
in subsequent time steps [26], [27].

B. CONVERGENCE, NONEXPANSIVITY, AND EXPANSIVE
PROJECTION
A general convex optimization problem with convex f (·) and
C can be expressed as

minimize
x∈C

f (x) (7)

and can be solved via the ADMM, for example, by iteratively
updating

xk+1
= proxf /ρ

(
zk − uk

)
,

zk+1
= proxIC

(
xk+1

+ uk
)

,

uk+1
= uk + xk+1

− zk+1, (8)

where IC(·) denotes the indicator function of the set C defined
by

IC(x) =

{
0, if x ∈ C
∞, otherwise

(9)

The global convergence of (8) can be shown based on
an understanding of the nonexpansivity of the proximal
operator of convex functions [23], [25], [28]. Noting that the
orthogonal projection 5C(·) is the proximal operator of the
indicator function IC(·), nonexpansivity for the convex f (·)
and C implies that

∥ proxf (x) − proxf (y)∥ ≤ ∥x − y∥ (10)

and

∥5C(x) − 5C(y)∥ ≤ ∥x − y∥ (11)

for all x and y.
On the other hand, as shown in Figure 1, the operator5X (·)

for projection onto a nonconvex set X can be expansive, that
is

∥5X (x) − 5X (y)∥ ≥ ∥x−y∥ , (12)

for some x and y.
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FIGURE 1. Orthogonal projections onto a nonconvex set X . Observe that
the projection onto nonconvex sets can be expansive.

Note that projection onto nonconvex sets can sometimes
increase the distance between two points, violating the
nonexpansivity condition in (11). However, this does not
necessarily imply divergence of (8), as (11) is merely a suffi-
cient but not necessary condition for the convergence of (8).
This consideration can serve as a logical background for the
intuitive application of expansive projections to first-order
optimization. Although general results on the convergence of
the first-order methods on nonconvex problems are not yet
known in general, however readers can refer to [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38] for some recently
reported analytic results on nonconvex optimization.

C. FIRST-ORDER METHOD WITH EXPANSIVE PROJECTION
FOR PDG PROBLEMS
The PDG problem convexified via LCvx can be readily
solved using off-the-shelf solvers. However, this approach is
not able to produce a practically feasible solution for some
cases with tf not equal to t∗f ; moreover, the solution may
be suboptimal due to the approximation error arising from
linearizing (4).
In this paper, we do not apply convex relaxation or

linear approximation. Instead, we use a first-order method
with direct projection onto nonconvex sets, which can be
expansive. With the nonconvex constraints in (4) and (6), the
problem can be defined as follows. Note that this problem
is identical to the original PDG problem in (1) and that two
nonconvex constraints are present in (13c) and (13e).

Problem-ExProj:

minimize
tf ,σ (·),u(·)

− z(tf )

subject to r̈(t) = g+ u(t), (13a)

ż(t) = −ασ (t), (13b)

∥u(t)∥ = σ (t), (13c)

eT1 u(t) ≥ σ (t) cos θtp, (13d)

ρ1e−z(t) ≤ σ (t) ≤ ρ2e−z(t), (13e)

r(0) = rinit, ṙ(0) = ṙinit, m(0) = mwet, (13f)

r(tf ) = ṙ(tf ) = 0, m(tf ) ≥ mdry. (13g)

∀t ∈ [0, tf ].

D. ADMM WITH EXPANSIVE PROJECTION
We apply the ADMM procedures with expansive projections
(ExProj) onto the nonconvex sets defined by (13c) and (13e).
The ADMM algorithm combines dual ascent and the method
of multipliers to find the optimal solution by alternately
updating the primal variables and the dual variables [24].
With x =

[
rT ṙT

]T and the terminal constraints expressed
in the soft constraint term, Problem-ExProj can be discretized
into the following standard form:

minimize − zN + γ ∥xN∥
2

subject to Py ≥ q,

y ∈ C0 ∩ C1 ∩ C2, (14)

with

C0 = {y | Gy = b} ,

C1 = ∩i {(ui, σi) | ∥ui∥ = σi} ,

C2 = ∩i
{
(zi, σi) | ρ1e−zi ≤ σi ≤ ρ2e−zi

}
, (15)

where γ is some positive weighting parameter, and the
horizon size N satisfies N1t = tf with sampling interval
1t . The vector yi consists of the i-th state variables and
control vector and takes the form yi =

[
uTi xTi+1 σi zi+1

]T
for i ∈ {0, 1, · · · ,N − 1}, and we correspondingly define
the stacked variable y =

[
yT0 yT1 · · · yTN−1

]T
. Thus, we can

encode the inequality constraints in (13d) as Py ≥ q and the
dynamic constraints in (13a) and (13b) as Gy = b.

Accordingly, the problem is further reformulated as
follows:

minimize − zN + γ ∥xN∥
2
+ IC0 (y) + ICw (w)

subject to Dw1y− w1 = 0,

Dw2y− w2 = 0,

Py− q− w3 = 0, (16)

with

C3 = {w3 | w3 ≥ 0} ,

Cw = {w | w1 ∈ C1, w2 ∈ C2, w3 ∈ C3} , (17)

where w1 and w2 are auxiliary variables of y and Dw1 and
Dw2 are selection matrices that extract w1 and w2 from y.
The variable w3 is a slack variable introduced for handling
the inequality constraints in Py−q ≥ 0, and we additionally
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define the stacked variable w =
[
wT1 wT2 wT3

]T .
Dw1y =

[
uT0 σ0 uT1 σ1 · · · uTN−1 σN−1

]T
,

Dw2y =
[
σ0 σ1 z1 σ2 z2 · · · σN−1 zN−1

]T
. (18)

With H and h defined such that yTHy + hT y = −zN +

γ ∥xN∥
2, we can formulate the augmented Lagrangian for

Problem (16) as

Lρ(y,w, ys) =

fg(y,w,ys)︷ ︸︸ ︷
yTHy+ hT y+

ρ

2
∥Cy− q̃−w+ ys∥

2
2

+ IC0 (y) + ICw (w) (19)

with

w =

w1

w2

w3

 , C =

D
w1

Dw2

P

 , q̃ =

 0
bw2

q

 , ys =

ys,1ys,2
ys,3

 ,

(20)

from which the problem in (16) can be solved by iteratively
applying the following updates.

yj+1
= argmin

y

(
fg(y, wj, yjs) + IC0 (y)

)
,

wj+1
= argmin

w

(
ρ

2

∥∥∥Cyj+1
− q̃− w+ yjs

∥∥∥2 + ICw (w)
)

,

yj+1
s =Cyj+1

− q̃− wj+1. (21)

We handle the linear constraints Gy = b without
introducing an additional multiplier. Instead, we make use
of the KKT condition for the associated equality-constrained
quadratic problem [39] as follows.

yj+1
= argmin

y

(
fg(y, wj, y

j
s) + IC0 (y)

)
~w�[

ρCTC + H GT

G 0

] [
yj+1

∗

]
=

[
ρCT

(
q̃+ wj − yjs

)
−h

b

]
.

(22)

The updates for w1 and w2 involve a series of expansive
projection operations onto C1 and C2, respectively, while the
updates for w3 is relatively simple.

wj+1
= argmin

w

(
ρ

2

∥∥∥Cyj+1
− q̃− w+ yjs

∥∥∥2 + ICw (w)
)

=


[l]5C1

(
Dw1yj+1

− w1 + yjs,1
)

5C2

(
Dw2yj+1

− w2 + yjs,2
)

5C3

(
Pyj+1

−q+ yjs,3
)

 . (23)

FIGURE 2. Orthogonal projection onto the surface of the second-order
cone defined by C1. Note that the set is nonconvex and that the
projection from region 1⃝ (exterior region) is nonexpansive, while the
projection from region 3⃝ (interior region) can be expansive.

FIGURE 3. Orthogonal projection onto C2 (shaded area). Note that the
set is nonconvex and that the projection from region 1⃝ (below C2) is
nonexpansive, while the projection from region 3⃝ (above C2) can be
expansive.

1) PROJECTION ONTO C1
In general, projection onto the convex set defined by a
second-order cone constraint of the form ∥u∥ ≤ σ involves
projection from the exterior region of the cone [23], [27].
However, in our problem, projection from both the exterior
and interior regions should be considered because the
constraint in (13c) represents the surface of a second-order
cone.

5C1 (u, σ ) =


(u, σ ) if σ = ∥u∥
0 if σ ≤ −∥u∥(

∥u∥ + σ

2∥u∥
u,

∥u∥ + σ

2

)
otherwise.

(24)

Note from Figure 2 that the projection from region 3⃝ can
be expansive.

2) PROJECTION ONTO C2
The set C2 describes an area surrounded by two exponential
curves. For a point (z, σ ) /∈ C2, the line passing through the
corresponding projected point and itself is perpendicular to
the slope at the projected point on the boundary. Based on
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FIGURE 4. Relative residuals attained by using the Newton-Raphson
method for the instances derived from ExProj. Note that the
computational process exhibits exponential convergence, typically
converging within a minimal number of iterations.

this observation, we can compute the projection as follows.

5C2 (z, σ ) =


(z, σ ) if (z, σ ) ∈ C2
(t1, ρ1e−t1 ) if σ < ρ1e−z

(t2, ρ2e−t2 ) otherwise.

(25)

Here, t1 and t2 satisfy the followings.

et1 (t1 − z) − ρ2
1e

−t1 + ρ1σ = 0,

et2 (t2 − z) − ρ2
2e

−t2 + ρ2σ = 0. (26)

Note from Figure 3 that the projection from region 3⃝ can
be expansive.

Since the solution to (26) is not given in closed
form, we numerically solve the problem using the
Newton–Raphson method, which rapidly converges within
a few steps for this problem; see Figure 4.

3) PROJECTION ONTO C3
The projection onto the set C3 is simply obtained by taking
only the positive parts.

5C3 (Py
j+1

−q+ yjs,3) = (Pyj+1
−q+ yjs,3)+. (27)

IV. NUMERICAL EXAMPLES
To verify the performance of the proposed approach (ExProj)
and to make quantitative comparisons with the previously
known standard technique (LCvx), we prepared three sim-
ulation cases. The first is the case of the optimal time of
flight, tf = t∗f , for which convexification with the LCvx
technique is lossless and both ExProj and LCvx are expected
to find the optimal solution. The other two cases concern
nonoptimal time of flight, tf < t∗f and tf > t∗f , for which
the convexification can be lossy.

The simulation scenario is based on the Mars soft landing
mission presented in [17], and the simulation parameters are
summarized in Table 2. The LCvx problem was solved using
the ECOS [40] solver via the cvxpy [41] parser, and the

FIGURE 5. Optimization results for the scenario of optimal time of flight
case (tf = t∗

f ). It is observed that the convexification is lossless in this
case, resulting in both LCvx and ExProj algorithms yielding nearly
identical optimal solutions. However, note that in the latter phase of the
thrust profile, the LCvx solution marginally underutilizes the maximum
allowed thrust, rendering it slightly suboptimal.

TABLE 2. Simulation Parameters.

ExProj problem was solved using a customized solver based
on the algorithms presented in this paper.

A. OPTIMAL TIME OF FLIGHT CASE (TF = T ∗

F )
For the case with the optimal time of flight, tf = t∗f ,
the convexification technique applied in LCvx is lossless,
yielding ∥ui∥ = σi for all i = 0, . . . ,N − 1, and both LCvx
and ExProj converge to the globally optimal solution. The
optimal time of flight for the given scenario is found to be
t∗f = 46.96 s. The results are summarized in Figure 5 and
Table 3, which presents the final position and velocity as well
as the fuel consumption for the mission.

We observe that the two methods produce mostly the
same results, with slight differences that can be attributed
to the approximation error due to the linearization of (4)
in LCvx. The effect of this approximation error is also
visible in the later part of the thrust profile, where the
ExProj solution utilizes the full maximum thrust, while the
LCvx solution uses slightly less than the maximum allowed
thrust, making the LCvx solution slightly conservative and
suboptimal; see Table 3. However, note that the overall effect
of these differences on the achieved fuel consumption is not
significant in this case.
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FIGURE 6. Optimization results for the scenario wherein the time of flight
is strictly shorter than the optimal time (tf < t∗

f ). It is noteworthy that
under these conditions, the convexification technique from the LCvx
approach is no longer lossless, and the obtained solution violates the
lower bound limit on the thrust (highlited in dotted red circle).
Conversely, the ExProj successfully finds a feasible solution.

TABLE 3. Optimization Results for tf = t∗

f .

B. NONOPTIMAL TIME OF FLIGHT CASES (TF < T ∗

F OR
TF > T ∗

F )
Cases with tf ̸= t∗f are where the convexification in the LCvx
technique fails or the linearization error is significantly large.

For the first case, in which the time of flight is strictly
shorter than the optimal time (tf = 41.8 sec < t∗f ),
we observe that the convexification due to LCvx fails with
∥ui∥ < σi, resulting in an infeasible solution. This can be
seen in Figure 6, where the thrust profile found with LCvx
is below the lower limit, whereas the ExProj solution is still
feasible.

For the second case, in which the time of flight is
strictly longer than the optimal time (tf = 82 sec > t∗f ),
the convexification is lossless with ∥ui∥ = σi; however,
the approximation error due to the linear approximation
of the thrust bound constraints in (4) means that the LCvx
approach considers incorrect limits, and the discrepancy
increases as the flight time increases. This is clearly observed
from the last part of the thrust profile in Figure 7, where
the LCvx solution uses significantly less thrust than the
allowed maximum. Consequently, the LCvx solution is
significantly conservative and thus suboptimal, whereas the
ExProj solution is free of this suboptimality.

FIGURE 7. Optimization results for the scenario where the time of flight is
strictly longer than the optimal time (tf > t∗

f ). Note that the effect of the
linear approximation error on the thrust profile increases with the flight
time (highlighted in dotted red circle where the LCvx solution fails to fully
utilize the maximum thrust). This arises from the linear approximation for
the maximum thrust constraint within the LCvx formulation.

TABLE 4. Flight Test Parameters.

V. EXPERIMENTAL VALIDATION
We briefly present the results obtained from flight tests
conducted using a drone in the indoor flight arena equipped
with motion capture systems.

The proposed algorithmwas implemented on an embedded
GPU (NVIDIA Jetson AGX Orin) to efficiently compute
and update the optimal PDG trajectory at a rate of
10 computations per second. Subsequently, the computed
thrust command is transformed into both throttle and attitude
commands of the drone. In this test, we configured the
parameter α in (1b) to have a very small value, as the weight
of the drone remains constant regardless of thrust usage.
Furthermore, we incorporated a dynamic adjustment to the
maximum allowable tilt angle of the thrust vector, which
progressively decreases as the vehicle approaches the landing
pad [42]. The parameters used for the flight test is given in
Table 4.

In Figure 8, we present the trajectory and a sequence
shot obtained through the motion capture systems, and we
present in Figure 9 the trajectory and thrust vector data
acquired from the flight test, along with the corresponding
tilt angle limit. The figure also includes the LCvx solution
(depicted by lighter lines) computed from the identical initial
conditions. Notably, it is observed that the LCvx solution is
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FIGURE 8. Experimental validation of ExProj via indoor flight test. Sequence shot from the flight test is shown.

FIGURE 9. Trajectory and the thrust profile from the indoor flight test. The
flight results obtained through ExProj are compared to the computational
results produced by LCvx, computed using the identical conditions. Note
that the thrust profile derived from ExProj is feasible satisfying all the
given thrust magnitude and angle bounds, while the thrust magnitude
from LCvx solution violates the lower bound limit.

infeasible, necessitating a thrust level below the estabilished
lower bound.

VI. CONCLUDING REMARKS
In this paper, we proposed a first-order method that
directly handles the nonconvexity arising in powered descent
guidance problems.

Our approach combines first-order convex optimization
algorithms with orthogonal projections onto nonconvex sets,
which can be expansive. Through a series of numerical

examples, we verified the performance of the proposed
algorithm and compared it with the most well-known
standard convexification approach. To the authors’ best
knowledge, it is the first approach that directly handles
the nonconvex constraints in the PDG problem in the
convex optimization frameworks and generates good feasible
solutions in a variety of cases even when the existing standard
approach fails.

Numerical experiments reveals that our approach matches
the standard convexification technique for lossless cases,
outperforms in generating feasible solutions even when
the standard techniques fail, and excels in terms of fuel
consumption when the solution obtained from the standard
approach is significantly suboptimal.

Furthermore, we provided a concise overview of results
obtained from an indoor flight test, demonstrating the efficacy
of the proposed algorithm. It is observed that the solution
derived from the proposed approach adeptly guided the
vehicle with the desired flight time while maintaining the
flight stability.

Although some results on the convergence of first-order
methods on nonconvex problems have been reported recently,
general results are not yet known. Therefore, a natural
extension of the present work will be to analyze the
convergence of this specific algorithm.
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