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ABSTRACT Household electrical appliances have developed into a significant part of demand response as
a result of the widespread use of smart meters and the popularity of home energy management systems.
Load-side resources will still be wasted as a result of the transmission and queuing delays brought on
by insufficient communication resources. To address the difficulties of large-scale, decentralized, and
dispatchable household electricity load engaging in demand response, this study presents an approach to
enhance the timeliness of dispatchable resources in home energy management systems, which may be
separated into two categories. The most effective approach to allocate bandwidth is determined in the first
section using historical bandwidth demand data and ARIMAmodels. The second section, meanwhile, makes
use of offloading strategies and the cloud edge cooperation architecture to decrease queuing delays brought
on by computational workloads. The results demonstrate that the suggested strategy can effectively reduce
the time needed for information transmission and queuing, as well as alleviate the information interaction
time between supply and demand. The timeliness of the proposed strategy is evaluated based on the number,
value, transmission delay, and queuing delay of schedulable loads at each node.

INDEX TERMS Home energy management system, smart homes, cloud-edge collaboration, timeliness,
demand-side resources.

I. INTRODUCTION
The uncertainty and variability associated with renewable
energywill present challenges to themaintenance of adequate
balancing reserves in the power system as the proportion
of electricity consumption by residential users continues to
rise rapidly [1], [2], and with the ongoing increase in the
penetration rate of renewable energy sources. To address
the aforementioned issues, home energy management sys-
tems (HEMSs) are now recognized as an effective method
of controlling distributed energy and transferrable household
appliance loads, resulting in a significant reduction in peak
household energy demand [3], alleviating the challenges of
insufficient renewable energy output. HEMS is in charge
of managing household electrical equipment such as smart
appliances, small-scale power generation systems, electric
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vehicles (EVs), and energy storage systems (ESS) [4], and
ensuring the robust operation of each home device [5]. As a
result, appropriate scheduling strategies must be contributed
into effect to ensure household consumer participation while
simultaneously accomplishing efficient scheduling of house-
hold load resources in terms of dispatchable resources and
timeliness.

Demand response (DR) is an effective scheduling method
to reduce peak energy consumption and improve opera-
tional efficiency and reliability [6], [7], [8]. Existing demand
response methods can be categorized into two types: direct
load control (DLC) and price-based techniques [9]. Dis-
patch centers can directly adjust the operation of certain
customer equipment (e.g., air conditioning systems) through
DLC mechanisms [10], as Advanced Metering Infrastruc-
ture (AMI)-driven HEMS transforms end-users from passive
observers to active participants in energy management [11],
[12]. Recently, many studies have focused on developing
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new HEMS models that employ powerful optimization
and management techniques to achieve cost-effectiveness
for households [13]. Literature [14] performs HEMS user
scheduling by exchanging energy and prices with upstream
grid agents. Themain objective of literature [15] and [16] is to
propose a MAS-based HEMS that utilizes time-of-use (ToU)
tariffs to trade with the local electricity market. In addition,
the literature [17] manages energy received from distributed
energy sources (DES) outside the utility grid based on the
day-ahead ToU price. The Stackelberg game was developed
in [18] to investigate real-time pricing scenarios for smart
grids involving different retailers and residential customers.
In [19], prices are transmitted and enforced by exchanging
information with customers connected to the community con-
troller, thus reducing the real-time nature of the proposed
pricing scheme. Existing HEMS research focuses more on
the participation of individual users in DR, but in practice,
the large number of HEMS users participating in demand
response generates a large amount of data when interacting
with demand-side dispatchable resources [20], [21], and the
large amount of data generates a large amount of bandwidth
demand and computational power demand. Unreasonable
bandwidth allocation will result in data transmission delays
and waste of bandwidth resources, while insufficient com-
puting power in the data center will result in queuing delays,
both of which will affect the real-time data transmission [22],
[23].

To address the above bandwidth issues, many researchers
have proposed many approaches on bandwidth allocation as
shown in Table 1. Literatures [24], [25], [26] aim at high
accuracy rate and bandwidth allocation method based on
joint learning can effectively handle wireless communication
resources, but it has the disadvantages of long training time,
high data transmission delay and insufficient communication
resources [24]. Articles [27], [28], [29], [30] consider the
objectives of high user bandwidth demand, low utilization
and low user response rate, respectively, to achieve reason-
able bandwidth allocation, but their accuracy is insufficient.
Therefore, appropriate bandwidth allocation methods should
be selected according to different application scenarios.

To address the above queuing delays, the article
[31]proposes to perform all tasks including recognition,
detection and recommendation in a data center through cloud
computing to reduce the computational delay. However,
cloud computing cannotmeet the growing number of comput-
ing tasks. Literature [32]suggests that since edge servers have
the advantages of proximity, low delay, and real-time access,
some computation tasks can be scheduled to edge nodes to
alleviate the computation pressure in cloud centers and reduce
the transmission delays [33], [34]. However, edge servers
have the disadvantage of smaller data processing and storage
capacity, which cannot satisfy the computing tasks with larger
data size. In summary, edge computing or cloud computing
alone cannot meet the demand for reduced queuing delay.
Since cloud-side collaboration improves the capability of the
network in terms of data processing, information interaction,

TABLE 1. Literature related to bandwidth allocation.

TABLE 2. Research drawbacks in previous literature and contribution of
this paper.

and real-time feedback, it will be a viable solution for reduc-
ing queuing delays [35], [36].

Recently, several articles have begun to focus on the time
delay in the demand response process. The article [37] pro-
poses a distribution network operation strategy based on
cloud-side collaboration to improve the potential of distri-
bution network operation. Instead of studying HEMS user
response with cloud-side collaboration alone, this paper
considers multiple delays to reflect the real situation. The arti-
cle [38] constructs a cloud terminal collaboration mechanism
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based on 5G and edge computing, targeting air condition-
ing and electric vehicle charging, and provides real-time
data transmission services by satisfying bandwidth demand
through 5G. However, there are only two of its response
terminals, and there is no queuing delay in the actual sim-
ulation. This paper takes a large number of household loads
as the response object, analyzes the impact of queuing delay
on the response volume of dispatchable resources, and pro-
poses corresponding strategies. The article [39] proposes a
load clustering management and control strategy based on
a cloud-based cooperative framework using air conditioners
and electric water heaters as the objects of study. Similarly,
it ignores the impact of transmission delay on scheduling.
Compared to the above articles, this paper considers both
transmission delay and queuing delay in the corresponding
process of DR and proposes a corresponding strategy with
bandwidth dynamic delay and offloading strategy, which sup-
plements the research gap in this part.

In summary, the goal of this paper is how to minimize
the loss of schedulable resources due to time delays and
increase the amount of schedulable resources that a HEMS
user actually provides during scheduling. The contributions
of this paper compared to previous papers are reflected in
Table 2, which we will summarize below:

1) According to the data volume size of HEMS schedu-
lable resource information, ARIMA model [5], [27] is
used to realize the dynamic allocation of bandwidth,
reduce the transmission delay of HEMS user data in
the DR phase, and set up multiple scheduling scenarios
to select appropriate scheduling intervals.

2) Based on the cloud-edge collaboration framework,
the offloading strategy is used to select a reasonable
offloading path to reduce the queuing delay in the
offloading process of computing tasks, taking into
account the transmission delays among nodes, the edge
nodes, and the computing resources in the cloud center.

3) Based on the above two points, the total time delay
for each node to complete a single scheduling task is
calculated, and the timeliness value actually provided
by the HEMS users within each node in the demand
response session is analysed.

II. METHODOLOGY
This paper describes a strategy for mitigating the issue
of delayed energy management caused by HEMS users’
extensive participation in DR. Fig.1 depicts the proposed
strategy framework, which can effectively alleviate the tem-
poral delay during the involvement of numerous HEMS users
in DR.

The proposed strategy is based on a cloud-edge collabo-
rative framework, which is a method for dealing with delays
and large data transmissions from smart devices and sensors
that leverages the strengths of both cloud and edge computing
[40]. The framework is constructed from three parts: the
cloud center, edge nodes (ENs), and terminals [41], [42]. The

terminals are considered as Business Nodes (BNs) as they
collect the schedulable resource information from the HEMS
users within the node and upload it to the ENs. The cloud
center receives the uploaded schedulable resource informa-
tion from all the ENs and performs the overall scheduling of
the schedulable resources.

The above is the scheduling model in the ideal state
(no time delay). However, under time delay, each layer
will generate corresponding resource allocation schemes
for the time delay that may be caused by the scheduling
mode in order to improve the timeliness of the schedulable
resources for HEMS users. First, before the start of the next
scheduling phase, the cloud center aggregates the bandwidth
resources required by each node in the previous phase per
unit of scheduling time and predicts the bandwidth resources
required by each node per unit of time in the next schedul-
ing phase using the ARIMA algorithm, and the bandwidth
allocation scheme is distributed to each service node through
the edge nodes to alleviate the transmission delays of each
node in the next scheduling phase. Second, the computing
resources of the edge nodes may not be able to satisfy the
computing resources required by the business nodes under
their jurisdiction during the scheduling period, so the cloud
center will count the remaining computing resources of the
cloud center and each edge node during the scheduling
period, and determine an offloading strategy for the comput-
ing tasks based on the computing resources required by each
computing task and the transmission delay between the com-
munication links between the nodes to alleviate the queuing
delay. Finally, the timeliness of the schedulable resources of
each node is calculated based on the delay generated by the
above two steps.

In summary, the proposed strategy aims to achieve timely
scheduling of resources in HEMS by leveraging a cloud-edge
collaborative framework and implementing a two-part imple-
mentation strategy to optimize data transmission and offload
computation tasks.

A. HOME ENERGY MANAGEMENT SYSTEM
The HEMS that is proposed in this section can track all
sorts of household appliances in real time. Each house-
hold appliance can be categorized into four categories: a
temperature-controlled load (TCL), an interruptible load
(IL), a transferable load (TL), or a fixed load (FL) [43].
An intelligent socket, as shown in Fig.2, is in charge of
gathering information on electricity usage and dispensing
electricity to home appliances. The information processing
module connects the intelligent socket, system management
center, and smart meter. The customer sends instructions
for power consumption to the system management center,
which uploads dispatchable resources. Based on the uploaded
data, the higher-level system issues dispatch instructions.
The smart meter determines the load scheme and obtains
power from the distributed grid after receiving power
consumption instructions from the information processing
module.
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FIGURE 1. The proposed strategy aims to improve the timeliness of resource flexibility in HEMS.

FIGURE 2. Management chart of home energy management system.

The objective function of the real-time phase domestic
energy management problem is shown in Equation (1). In this
case, washing machines, air conditioners, electric cars, and
must-run services are denoted by the letters IL, TCL, TL,
and FL. The goal of the HEMS within each node is to
minimize its combined metrics through real-time scheduling.
The objective of the HEMS is to maximize its dispatchable
energy through real-time scheduling. The first part of the
objective function denotes the cost of electricity purchased

by the customer at time t . The second and third parts denote
the impact of IL and TL devices being dispatched on the
user’s electricity experience and the impact of TCL devices
being dispatched on the user’s comfort, respectively, where
N , M and K are the corresponding number of domestic
TLs, ILs and TCLs, respectively. It is important to note that
charging and discharging electric vehicle batteries frequently
may decrease their lifespan [43]. As a consequence, in this
paper, electric vehicles are regarded as TL rather than energy
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TABLE 3. Notations. TABLE 3. (Continued.) Notations.

storage devices. Specifically, FLs are household appliances
that are essential to daily life and are exempt from scheduling.

Max Cz = η1

ξ∑
t=1

ft (
N∑
n=1

Pnt,zℓ
n
t +

M∑
m=1

Pmt,zℓ
m
t +

K∑
k=1

Pkt,zℓ
k
t ′ )

+ η2

H∑
h=1

ξ∑
t=1

ℓh,z(t)T

tend − tstart
+ η3

ξ∑
t=1

( e
Temk,z(t)−1
e−1 )ℓkt ′,z

ξ∑
t=1

ℓkt ′,z

,

∀t ∈ T sch,H = N +M , ∀z ∈ Z (1)

The following are the corresponding constraints of the
three types (TL, IL, TCL) of domestic load. Equation (2)
represents the maximum and minimum limitations of the
energy of the three types of domestic load during the start
time and end time of the device set by the home user.

Pnmin ≤ Pnt ≤ Pnmax

Pmmin ≤ Pmt ≤ Pmmax

Pkmin ≤ Pkt ≤ Pkmax,

∀t ∈ [tstart, tend] (2)

The operating state of domestic appliance (TL, IL) is
expressed by Equation (3). Note that ℓt is a binary variable.
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If ℓt is equal to 1, the household appliances start working,
if ℓt is equal to 0, the household appliances exit working.

ℓ
n/m
t =

{
0, other case
1, t ∈ [tstart, tend] and t ∈ T sch

(3)

The constraints governing the initiation of TL and IL are
denoted by Equation (4). This expression stipulates that the
temporal differential between the actual initiation of TL and
IL and the user’s power command time must not exceed the
maximum delay time for device completion γ set by the user.
Should the differential exceed the value specified by the user,
this would imply that the power command cannot be executed
within the user-specified timeframe.

tstart+γ∑
0=tstart

ℓ0
n/m ≥ 1, 0 ≤ γ ≤ tend − tstart − ttotal (4)

Since the IL can be turned off freely during operation
without significant impact on the user’s usage, the operational
status during dispatching is as shown in Equation (5).

0+T sch∑
t=0+1

ℓmt ≥ ttotal, 0 ∈ [tstart − 1, tend − ttotal] (5)

Given that TL cannot be interrupted during operation, its
running time must be continuous, and the total running time
cannot be less than the rated working time of TL. The running
state during scheduling is shown as Equation (6).

0+T sch∑
t=0+1

ℓnt ≥ ttotal(ℓ0+1
n − ℓ0

n ), 0 ∈ [tstart − 1, tend − ttotal]

(6)

The operational status of TCL household appliances is deter-
mined by monitoring temperature changes in their service
targets, as shown in Equation (7).The trend of temperature
change is affected by ambient temperature θen,t , the thermal
capacity Gk and thermal resistance parameters Dk of the
home, as well as the temperature of the device θt in the
previous moment.

θt+1 = θen,t − Pkt Dk − (θen,t
−Pkt Dk − θt )e−(ton+toff)/(DkGk ), ∀t ∈ [tstart, tend]

toff = DkGk ln
(

θen,t − θmin

θen,t − θmax

)
ton = DkGk ln

(
DkPkt ω − θen,t + θmax

DkPkt ω − θen,t + θmin

) (7)

After determining the operational and downtime lengths
of TCL devices during each time interval throughout the
scheduling period, the overall operational state of the devices
can be obtained as shown in Equation (8).

ℓkt ′ =

{
0, other case
1, t ′ ∈ [t, t + ton],t ∈ [tstart, tend] ∩ T sch

(8)

Specifically, Equation (9) expresses the temperature con-
straint of the TCL, and θmin and θmax are set by the user
according to his own preferences.

θmin ≤ θt ≤ θmax, ∀t ∈ [tstart, tend] (9)

Equation (10) reflects the user’s comfort level with respect
to temperature, which is determined by the relationship
between the actual temperature in the house and the temper-
ature set point.

Temk (t) =

2
∣∣∣θt −

θmax+θmax
2

∣∣∣
θmax − θmax

(10)

B. DYNAMIC BANDWIDTH ALLOCATION STRATEGY
The previous section described a scheduling model for three
types of loads within a single household. However, each
HEMS user’s request sent during the scheduling period con-
sumes one unit of bandwidth resources [28], i.e.Pnt ,P

m
t ,Pkt =

1Mbps. We assume that the electricity usage data of each
hems can be uploaded successfully. When a large number of
users participate in DR, it will result in a significant demand
for bandwidth, especially when bandwidth resources are
limited, causing transmission delays. Therefore, considering
bandwidth constraints is crucial when designing DR schemes
for HEMS users. In this section, we focus on the band-
width issue in dispatchable resource scheduling. Based on
historical bandwidth demand data, we propose a time-series-
based bandwidth predictionmethod tominimize transmission
delay under limited bandwidth resources, which is of great
significance.

Before formulating the bandwidth allocation model, the
sampling interval T should be quantitatively analyzed.
We periodically sample the bandwidth sequence at different
time intervals for the time sequence {t0, t1, t3, . . . , tζ } where
tζ −tζ−1 = T , especially T = κ1t , and κ is the length of his-
torical Bandwidth Sequence Bthistory or predicted bandwidth
demand values for the next phase Bthistory. Predicting the next

bandwidth value B
tpre
next = {b

tpre+1t
next , b

tpre+21t
next , . . . , b

tpre+k1t
next }

from the received historical bandwidth sequence Bthistory =

{bt−(κ−1)1t
history , bt−(κ−2)1t

history , . . . , bthistory}, e.g. for prediction
starting from the moment t0, the solid line indicates
the historical bandwidth sequence

[
bt0−(κ−1)1t
history , bt0history

]
and the dashed line indicates the prediction sequence[
bt0history, b

t0−κ1t
next

]
. Forecasting for each time point during

the scheduling period, we transform the time sequence
{t0, t1, t3, . . . , tζ } into {t0, t0 + T , , . . . , t0 + (ζ − 1)T }.
The ARIMA model was adopted to predict the bandwidth

demand of node during the next scheduling period. The
ARIMA model is denoted as ARIMA (ARP, d , MAq), ARP
is the number of autoregressive (AR) terms, MAq is the
number of moving-average (MA) terms, and d is the number
of differences made when the time series becomes smooth.
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FIGURE 3. Flow of dynamic allocation of bandwidth resources.

The specific form of the ARIMA formula is as follows (11):

(1 −

ARp∑
i=1

δiLi)(1 − L)dXt = φ + (1 +

MAq∑
i=1

ϕiLi)λt (11)

The steps for solving the ARP, d, MAq parameters in the
whole ARIMA process are shown below:

First of all, since the bandwidth data is transformed from
the electricity consumption data of the users, the stability
of the time series data should be checked, and this paper
adopts the test of normality using the Kolmogorov-Smirnov
(K-S) test, and the smoothness using the ADF test. If the
examined data is non-stationary then the non-stationary data
is transformed by means of differencing and this data series
is examined again and if this data is still non-stationary then
differencing is performed until the time series is transformed
into a stationary series. When the input bandwidth data is
transformed into smooth data, the number of differencing is
taken as the value of d .

The next step is to explore the correlation between pre-
dicted and historical values using Autocorrelation Function
(ACF) and Partial Autocorrelation Function (PACF) with
values of [−1,1], when the value is 1 it means positive
correlation and conversely it is negative correlation. With
the already determined parameters d , the Akaike Information
Criterion (AIC) is used to determine the most appropriate
values of the parameters ARP andMAq. The process is shown
in Equation (12):

AIC = 2ϑ + ln(l)

l ∝ (δ2)−
n
2 exp{−

1
2δ2

(εt )2}

εt = yt −

p∑
i=1

φiyt−1 −

q∑
i=1

θiεt−i

(12)

Third, to verify the accuracy of the bandwidth predicted
values, we apply a statistically based measurement average
absolute percentage error (MAPE) to represent the devia-
tion between the predicted and actual values. The process is

known as Formula (13):

MAPE =
1
κ

κ∑
t=1

∣∣∣∣Btreal − Btnext
Btreal

∣∣∣∣, ∀t ∈ T sch (13)

C. CLOUD-EDGE COLLABORATION-BASED OFFLOAD
STRATEGY
In this section, we discuss the queuing delay caused by the
lack of EN computational capacity, and to mitigate the queu-
ing delay, we determine the offloading scheme by using the
transmission delay between nodes determined in Section B.
Compared with the cloud-edge collaboration framework, the
offloading strategy based on cloud-edge collaboration is
determined based on the task information sent by the BN to
the EN, such as the size of data to be uploaded, the number
of required CPU clock cycles, and the physical address of
the task, as well as the resource information of the EN and
the cloud center, and the result is sent to the BN. The pur-
pose of using a cloud-edge collaborative offloading strategy
is to reduce the flexibility loss caused by queuing delay,
so energy optimization is not considered in this article, and
the optimization goal is queuing delay. There are Y BNs
that generate Y pending flexibility resource scheduling tasks
Task =

{
BN1,BN2, · · ·,BNy

}
, Y = {1,2,3,···, y}, each with

six basic attributes:

BNy = {wy, fmin,y, cpuy,memy, datay, tmax,y} (14)

Since each EN and cloud center has limited computing
resources, each flexibility resource scheduling task may be
executed on the EN to which it is assigned or offloaded to
other ENs or cloud center. The dispatchable resource schedul-
ing task requests from BNs must be offloaded to the ENs
or the cloud center in order to achieve the minimum total
delay under the cloud-edge collaborative offloading policy.
The offloading problem is more specifically expressed as
Equation (15).

min
Y∑
y=1

xLET LE
y,t + xOETOE

y,t + xCDTCD
y,t , ∀t ∈ T sch

s.t. xLE + xOE + xCD = 1 xLE, xOE, xCD ∈ {0, 1} (15)

In the cloud-edge cooperative offloading strategy, the set
of Q edge servers is Edge = {Ed1,Ed2, · · ·,Edq},Q =

{1, 2, 3, · · ·, q}, and the basic attributes of each edge server
are shown in Equation (16).

ENq = {fq, cpuq,memq,Rq,y} (16)

When the dispatchable resource scheduling task is
uploaded to the EN q to which it belongs, task y is executed
at this EN if the EN’s current remaining computing resources
meet the computing resources required for the current task
computation and the overall time delay T LE is as shown in
Equation (17).

T LE
t = T td

BN→LE,t + T cd
LE,t , ∀t ∈ T sch
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s.t.


cpuy,t ≤ cpuq,t
memy,t ≤ memq,t
fq,t > fmin,y,t

T LE
t < tmax,y,t ,

∀y ∈ Y, ∀q ∈ Q, ∀t ∈ T sch (17)

Equation (18) depicts the transmission delay from the BN
to the EN to which it belongs. Each BN selects the link with
the shortest transmission delay between the BN and the EN.

T td
BN→LE,t =

datay,t
Rq,y,t

, ∀y ∈ Y, ∀q ∈ Q, ∀t ∈ T sch (18)

Transmission speed Rq,y is obtained from Shannon’s for-
mula as Equation (18), where Btnext,q,y is the bandwidth
between channels, pl denotes the transmit power of the
mobile device, n0 denotes the noise parameter.

Rq,y,t = Btnext,q,y log2 (1+
pl

n0Btnext,q,y
),

∀y ∈ Y, ∀q ∈ Q, ∀t ∈ T sch (19)

The computational delay of the EN is shown in
Equation (20).

T cd
LE,t =

wy,t
f ′
q,t

, ∀q ∈ Q, ∀t ∈ T sch (20)

where the computing power of the ENs f ′
q will decrease with

the number of BN tasks processed.

f ′
q,t = fq,t − fmin,y,t , ∀y ∈ Y, ∀q ∈ Q, ∀t ∈ T sch (21)

When the dispatchable resource scheduling task y arrives at
EN q, if the current remaining resources of the EN it belongs
to are less than the resources used for task computation. Task
q will be offloaded to other ENs and will not participate
in the computation until the other ENs have executed the
task with higher priority, and its completion time is given by
Equation (22). The established task execution matrix can be
used to calculate the queuing time Equation (23).

TOE
t = T td

BN→OE,t + T cd
OE,t + T queuet , ∀t ∈ T sch (22)

T queuet = T cd
front,t +

∣∣∣T td
front,t − T td

behind,t

∣∣∣ , ∀t ∈ T sch (23)

where the principle of the two parts T td
BN→OE, T

cd
OE in

Equation (22) is consistent with T td
BN→LE, T

cd
LE in Equation

(23). The queuing delay has two components: the first is the
BN that was initially contained in the EN, and the second is
the priority between the tasks of the initial BN and the tasks
of the offloaded BN.

The cloud-edge collaborative offload policy includes a
remote cloud center, and because the cloud center’s CPU and
memory resources are much greater than those of the ENs,
only two cloud center attributes are considered in this paper,
as shown in the following Equation (24).

Cp = {fp,Rp}, ∀k ∈ P (24)

When all ENs’ computing resources don’t really encounter
the computing requirements of the dispatchable resource
scheduling task to be offloaded, the delay of task offloading

to the cloud center is Equation (25), Equation (26) represents
the time of task offloading from themobile device to the cloud
center, and Equation (27) represents the execution time of
task in the cloud center.

TCD
t = T td

EN→CD,t + T cd
CD,t + T td

BN→LE,t ,

EN ∈ Edge = {Ed1,Ed2, · · ·,Edq}, ∀t ∈ T sch (25)

s.t. TCD
t < tmax,y,t

T td
Ed→CD,t =

datay,t
Rp,t

, ∀y ∈ Y, ∀p ∈ P, ∀t ∈ T sch (26)

T cd
CD,t =

wy,t
fp,t

, ∀y ∈ Y, ∀p ∈ P, ∀t ∈ T sch (27)

In this case, the transmission rate is constant regardless
of the bandwidth value because information is exchanged
between the ENs and the cloud center via wired transmission.

D. EDGE NODE DEPLOYMENT MODEL
Since, the different affiliations between BNs and ENs
will affect the offload scheme, this section will discuss this
issue. The transmission delays and queuing delays obtained
through Part B and Part C are used to determine the deploy-
ment of the EN. Equation (28) represents the sum of wired
transmission delay T td

BN→LE and wireless transmission delay
T td
Ed→CD between the BN, EN, and cloud center. As seen

in Equation (28), xyqp is a binary variable representing the
diversity of inter-level affiliation problems between cloud
edge collaboration frameworks, especially between ENs and
BNs.

min
Y∑
y=1

Q∑
q=1

P∑
p=1

xyqp(
T sch/T∑
t=1

(T td
BN→LE,t + T td

Ed→CD,t )/t),

xyqp ∈ {0, 1}, ∀t ∈ T sch (28)

where if xyqp is equal to 1, it means that BN y sends informa-
tion to the cloud center p through EN q.

The constraints are used to avoid one BN sending infor-
mation to multiple ENs or one EN sending information to
multiple cloud centers by Equation (28) to (33). Equation (29)
and Equation (30) indicate that there is only one link for BNs
to receive scheduling tasks and send messages from the cloud
center, respectively.∑

q∈1+

(p)

∑
y∈Y

xyqp = 1, ∀p ∈ P, ∀q ∈ Q (29)

∑
p∈1−

(P)

∑
y∈Y

xyqp = 1, ∀p ∈ P, ∀q ∈ Q (30)

where 1+

(·) denotes the set of links emanating from node, 1−

(·)
denotes the set of links from back to node. Equation (31)
represents the same link between the cloud center p and the
EN q for information upload and download.∑

p∈1−

(q)

xyqp −

∑
p∈1+

(q)

xypq = 0, ∀y ∈ Y , ∀q ∈ Q (31)
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Equation (32) represents the same link between the EN q
and the BN y for information upload and download.∑

p∈1−

(y)

xyqp −

∑
q∈1+

(y)

xqyp = 0, ∀y ∈ Y , ∀q ∈ Q (32)

Equation (33) Indicates that ENs upload and download
information from the same cloud center, where 1+

(·) ∪ 1−

(·) =

1(·). In other words, the EN q is belonging to a cloud center p.∑
p∈1(q∈Q)

x0qp = 1, ∀y ∈ Y (33)

Equation (34) Indicates that the BN y will only belong to
one EN q. ∑

q∈1(y∈Y )

xyq0 = 1, ∀y ∈ Y (34)

III. CASE STUDY
We use MATLAB 2021b for simulation, the hardware used is
Legion R7000P, AMD Ryzen 5 5600H with Radeon Graph-
ics. We assume that the user’s power usage habits as well
as the uploading and downloading of the data from each
node within the Cloud Edge Collaboration framework are
successful.

In this paper, 6:00 p.m. to 8:00 p.m. is selected as the
scheduling time period, and the related parameter settings
as well as the reasons for the selection are shown in the
Appendix A.

A. FLEXIBILITY RESOURCES OF HEMS
Fig. 4 illustrates the dispatchable resources (TL, IL, and
TCL) generated by all nodes that are received by the cloud
node during the scheduling period. The dispatchable demand
gap of the power distribution network occurs from 6 pm to
8 pm. The start time of household electrical devices (TCL
and IL) is before 6 pm (i.e., the scheduling start time), but
their operating time is within the scheduling period, which
leads to a large amount of data in the early scheduling stage
(0-10 minutes) despite the increase in dispatchable resources.
The reason why the dispatchable resources of TL devices are
relatively lower than TCL and IL in the early scheduling stage
is that these devices cannot be scheduled during operation.
For TCL devices, the external temperature values are shown
in Table 4. Taking node 38 as an example, the air conditioner’s
shutdown time during the scheduling period is shown in
Fig. 5, where the red colour indicates that the air conditioner
is not in operation. The shutdown time represents the reduced
operating time of the HEMS user’s air conditioner under the
premise of not affecting the user experience. Fig. 6 shows the
dispatchable resources of all nodes’ EV users, with the charg-
ing power of EV being 52 kWh, and the charging time from
0% to 100% battery capacity is 180 minutes. Fig. 7 shows the
dispatchable resources of all nodes’ washing machine (WM)
users, with the operating power of 0.39 kWh and operating
time of 60 minutes. Single user scheduling results will be
reflected in Appendix B.

FIGURE 4. The maximum dispatchable household load within all nodes.

TABLE 4. Ambient temperature.

FIGURE 5. Air conditioning downtime for HEMS users within node 38.

B. BANDWIDTH ALLOCATION SCHEME (MULTIPLE TIME
SCALES)
Appendix C shows the bandwidth prediction results for
different scheduling intervals. The evaluation method for
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FIGURE 6. EV user dispatchable resources within all node.

FIGURE 7. WM user dispatchable resources within all node.

bandwidth utilization is consistent with [29]. Fig. 8 shows a
graph of the predicted value of bandwidth versus the actual
value of bandwidth at node 117 in the second scheduling time
slot. According to the adopted algorithm, the trend of the
curve of the predicted value of bandwidth of each node in
the second scheduling time slot is consistent with the trend of
the actual value, and most of the nodes’ predicted values are
accurate with the actual value, the error rate is within the inter-
val of 6%∼10%. The bandwidth allocation scheme based
on predicted values within the allowed bandwidth range
during scheduling is illustrated in Fig. 9. Fig. 10 describes
the allocation scheme under fixed bandwidth, which results
in three possible scenarios. The first scenario is when the
bandwidth utilization is relatively high. In Fig. 12, the highest
bandwidth utilization rate is 1.845, which is caused by a
large amount of dispatchable data generated at the node dur-
ing dispatchable scheduling. The fixed bandwidth allocation

FIGURE 8. Bandwidth error during second dispatch.

scheme cannot meet the actual demand, which exacerbates
transmission delay. The second scenario is when the band-
width utilization rate is relatively low. The lowest bandwidth
utilization rate in Fig.12 is 0.325, indicating that the node has
been allocated too much bandwidth, which does not reduce
transmission delay as the node’s data volume remains con-
stant, but onlywastes bandwidth resources. The third scenario
is when the bandwidth is fully utilized (defined as a band-
width utilization rate within the range of 0.9 to 1.0). Fig. 11
depicts the bandwidth utilization rate of each node after
implementing the bandwidth allocation scheme. It can be
seen that the bandwidth utilization rate range decreased from
0.325-1.845 to 0.9-1.102, indicating that the nodes made full
use of bandwidth resources during scheduling. As shown in
Fig. 13, taking the second scheduling moment as an example,
after the dynamic allocation of bandwidth, the surplus band-
width resources of the nodes with low bandwidth utilization
are allocated to the nodes with high bandwidth utilization,
which reduces the transmission delay (the maximum trans-
mission delay is reduced from 1.0s to 0.2s), especially for
the nodes with surplus bandwidth resources, whose band-
width allocation values can still satisfy the data transmission
without increasing transmission delay requirements of the
task. This strategy ensures that the transmission delay of the
scheduling task information of each node is minimized while
increasing the bandwidth utilization.

C. SOLUTIONS FOR OFFLOADING
This section selects a reasonable offloading strategy to mit-
igate the queuing delay based on the transmission delay
of each node during the scheduling period obtained in the
previous section. The Cloud Edge Collaboration Framework
edge nodes and their governing node schemes are shown in
Appendix D. To alleviate queuing delays caused by insuffi-
cient computing resources at ENs, we adopt an offloading
strategy based on cloud-edge collaboration framework, and
the partial results of the offloading are shown in Fig.14, while
the overall offloading results can be found in Appendix B1.
Specifically, we first determine the BNs that need to be
offloaded, and define them as the offload nodes. Specifically,
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FIGURE 9. Bandwidth allocation scheme under the allowed range of
bandwidth.

FIGURE 10. Statistics of the fixed bandwidth.

FIGURE 11. Bandwidth utilization of the allocation scheme.

as the computing resources of the cloud center (128 GB) are
much higher than those of the ENs (10 GB) [40], we pri-
oritize the allocation of the offloaded BNs to the cloud
center. When the computing resources of the cloud center
are exhausted, the remaining offloaded BNs are allocated
to the ENs with the minimum propagation delay and suffi-
cient computing resources. As shown in Fig.14, most of the

FIGURE 12. Bandwidth utilization of fixed bandwidth.

FIGURE 13. Transmission delay in the second scheduling interval.

FIGURE 14. Comparison of delay before and after offloading.

offloaded BNs are allocated to the cloud center, with node
118 designated as the cloud center. Due to relatively sufficient
computing resources at ENs 44 and 46 during the scheduling
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FIGURE 15. Comparing the timeliness value of dispatchable resources in multiple nodes across multiple time periods and scenarios.

FIGURE 16. Comparison chart of schedulable resources.

process, the remaining offloaded BNs are allocated to these
two ENs. Fig.14 shows the comparison of delay before and
after offloading. The orange bars represent the delay before
offloading, and the blue bars represent the delay after offload-
ing. Among other things, after offloading, node 84 reduces
the time to complete an upload from 2.25s to 1.83s for
schedulable resources within the node. The reduction in total
delay is particularly significant for the BNs offloaded to the
cloud center. The propagation distance between nodes will
be detailed in Appendix E2. The overall time delay is greatly
improved by the offloading strategy based on cloud-side col-
laboration as shown in Appendix E2, which will facilitate the
subsequent timeliness analysis of schedulable resources.

D. THE TIMELINESS VALUE OF DISPATCHABLE
RESOURCES
Fig. 15 shows a comparison of the timeliness value of dis-
patchable resources in different nodes during the period of
dispatchable resource scheduling in three different time peri-
ods. We have set up three different scenarios, namely the
ideal state, the proposedmethod, and the initial method (fixed
bandwidth, without offloading strategy). As the setting of
wind and solar power stations varies among nodes, and the
dispatchable energy in each node can directly alleviate the
shortage of dispatchable resources, the value of dispatchable

energy in such nodes is set to 0.9-1. For nodes with only
one type of new energy power station, the value of dis-
patchable energy is set to 0.8-0.9, while for nodes without
any new energy power station, it is set to 0.7-0.8. The dis-
patchable resource timeliness value is shown in the following
Equation (35) [38]:

Valuei(t) = ϖi log[T LE(t) + TOE(t) + TCD(t)], ∀i ∈ Y ∪ Q

(35)

Compared with the initial approach, the proposed method
has increased the overall timeliness value of dispatchable
resources by 19.2%, 17.2%, and 18.6% at the 1st, 12th,
and 24th stages respectively. In the 1st stage, 52 nodes
are ENs, and there is no transmission delay or propagation
delay in the data transmission process, so these nodes do
not need to consider bandwidth and computing resource
issues. However, for nodes 49, 50, and 51, the proposed
method significantly improves the timeliness value compared
to the initial approach. For example, in the initial approach,
the timeliness value of dispatchable resources within node
49 was only 1.71, while after implementing the proposed
method, the timeliness value increased to 2.95, representing
a 72.5% improvement. The overall timeliness value results
can be found in Appendix F. Improvement in the timeli-
ness of schedulable resources means that users can respond
faster to the aggregator’s scheduling commands, increasing
the amount of actual schedulable resources for a single user,
which means more schedulable resources for the aggregator
and more revenue for the user, as shown in Figure 16.
The above analysis shows that the proposed framework can

effectively improve the timeliness of dispatchable resources
in each node, but it still has some limitations. For example,
this paper only considers the lack of new energy during
the scheduling period, which reduces the power demand of
users, but fails to consider the situation when the new energy
output is too much, which increases the power demand of
users; for the overall scheduling, the relevant scheduling
model should be constructed according to the size of the time
delay; in terms of the bandwidth prediction, only the ARIMA
model is considered, which fails to compare the prediction

46340 VOLUME 12, 2024



W. Zhang, C. Huang: Timeliness Study of HEMSs Based on Dynamic Allocation of Bandwidth

with the existing algorithms such as the machine learning
algorithm and so on, which makes the prediction results more
convincing.

IV. CONCLUSION
To improve the timeliness of dispatchable resources in home
energy management systems, this paper proposes a strat-
egy. This strategy reduces the delay in the transmission of
schedulable resource information to the scheduling center,
which will help to improve the timeliness of schedulable
resources within each node as well as the amount of schedu-
lable resources for each home user. In dispatchable resource
management, there are two main timeliness issues: transmis-
sion delay and queuing delay. To address these issues, two
solutions are proposed in this paper:

First, for transmission delay, this paper uses a differen-
tial integral moving average autoregressive model based on
historical bandwidth demand data to identify the optimal
solution for bandwidth allocation. This approach optimizes
bandwidth utilization efficiency, thereby improving infor-
mation transmission speed. We stabilized the bandwidth
utilization rate of each node during scheduling within the
range of 0.9 to 1.102, avoiding high transmission delay
caused by high bandwidth utilization rates and excessive
idle bandwidth caused by low bandwidth utilization. And
the transmission delay of the node is greatly alleviated the
highest transmission delay from 1s to 0.18s, which will
greatly improve the timeliness of data transmission and make
effective support for the determination of the subsequent
offloading strategy.

Second, for queuing delay, this paper adopts a cloud-edge
collaborative framework and an offloading strategy. Specifi-
cally, this paper offloads computing tasks from ENs to cloud
nodes and ENswith assigned computing resources to improve
resource utilization and minimize queuing delay. In this part,
the transmission delay between each part determined in the
above part is used as a basis and combined with the counting
of the remaining computing resources of each edge node
for decision making, as seen in the algorithmic analysis, its
overall delay rushes down from 2.25s to 1.83s. the decrease
of the overall time delay implies that the amount of resources
that can actually be dispatched by the scheduling center will
be improved.

To verify the effectiveness of the proposed strategy, exper-
iments were conducted that considered factors such as the
number and value of dispatchable resources, transmission
delay, and queuing delay of nodes. The experimental results
show that the proposed strategy can significantly improve the
timeliness of dispatchable resources in home energy manage-
ment systems, with a 19.2%, 17.2%, and 18.6% improvement
in timeliness value observed in three different time periods
before, during, and after the experiment. And three simula-
tion models are analyzed to analyze the actual schedulable
resources of a single household, and the adoption of the
scheme proposed in this paper will effectively improve the
schedulable resources of a single user.

FIGURE 17. Day-ahead output of 6kW PV and 10kW wind power.

FIGURE 18. Total load of 117 nodes at 16pm∼18pm.

TABLE 5. The locations of nodes for the installation of PV and wind
power plants.

The determination of the actual value of dispatchable
resources will help the scheduling center to be more reason-
able in generating the scheduling plan, avoiding the actual
response value to be much lower than the pre-set value of
the scheduling plan, and the actual benefit of the user will be
enhanced.

However, this paper only considers the impact of time
delay on the timeliness value of each node, but ignores
the scheduling strategy of time delay on the schedulable
resources of each node in the demand response process,
which is what we will study subsequently. In addition, in the
cloud-edge collaboration framework, edge computing can
process the data uploaded by each BN to reduce bad data
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FIGURE 19. Single user scheduling results.

and unsuccessfully sent data, etc. to relieve the computational
pressure on the cloud center, but this is not consistent with
what is discussed in this paper, so it is not reflected in the
paper. These are the directions of our subsequent research,
and we will improve these studies to better enhance the
real-time response of schedulable resources and the integrity
of the scheduling and communication process.

APPENDIX
A. SCENARIO DESCRIPTION
The IEEE 118 node system diagram has been employed in
this article, alongside node 1 representing the cloud node.
A time range of 2 hours from 6 pm to 8 pm is used to
test the performance of the proposed model. Fig. 17 depicts
the electricity production statistics of individual photovoltaic
and wind power plants, with a 15% margin of error. Domes-
tic photovoltaic and wind power stations have capacities of
0.6 MW and 0.8 MW, respectively, and these values are
converted to kW for ease of analysis. Table 5 shows the node
locations within the station area where photovoltaic and wind
power stations are installed. Fig. 18 depicts the 117 nodes’
load conditions between 6 and 8 p.m. It can be deduced that
during the two hours after households return home around
6 p.m., such as nodes 4, 8, 9, 41, 58, and 68, etc., the output of
new energy remains constant. The overall load will far exceed
the new energy power station’s output limit, resulting in a
significant power shortfall.

B. SINGLE USER SCHEDULING RESULTS
Figure 19 shows the load profile of a single user before and
after participating in the dispatch, and it can be seen that the
load profile decreases significantly and is regionally smooth.
The customer’s comfort level for temperature is 0.60417,
the comfort level for electricity consumption is 0.34259,
and the total price of electricity during the scheduling period
is 19.942.

C. SCHEDULING INTERVAL SELECTION
Results of the proposed method with diverse time scales of
bandwidth allocation scheme are presented in Figs. 20-21.

FIGURE 20. Predicted bandwidth of each node under diverse sampling
interval.

The Fig (a), (b), and (c) in Fig. 20 represent the band-
width allocation results for different nodes during a 2-hour
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FIGURE 21. 5 minute and 10 minute sampling periods: Average, Max and
Min delay of each node during the simulation.

scheduling period with sampling periods of 1 minute,
5 minutes, and 10 minutes, respectively, where the bandwidth
demand of each node is derived from the data volume of the
hems dispatchable resources. During the 1-minute sampling
interval, some predicted bandwidth values fall below the
lower limit of the allowable bandwidth range, resulting in
actual bandwidth allocation significantly lower than the true

FIGURE 22. Inter-node transmission delay and propagation delay.

values of the nodes, with a large peak-to-valley difference
in bandwidth allocation. This is due to the fact that the
1-minute sampling interval is much shorter than the device’s
operating time and the randomness of user-generated power
consumption data. When household devices stop running
or there are no dispatchable devices (FL) at time t, there
will be a sudden decrease in data volume, which increases
the computation time of bandwidth prediction. Fig. 21 dis-
plays the average, maximum, and minimum delays for each
node during the simulation process. When a 5-minute sam-
pling interval is used, most nodes have average, maximum,
and minimum delays smaller than those observed with a
10-minute sampling interval. Therefore, this paper will adopt
a 5-minute sampling interval.

D. LAYOUT OF EDGE NODES
According to the bandwidth allocation scheme for each node
determined in Fig. 22, the delay of data transmission between
nodes is composed of two parts: one is the transmission delay
caused by the bandwidth, and the other is the propagation
delay between the two nodes. In the IEEE 118-node diagram,
a single node can exchange data with multiple nodes. In this
paper, it is assumed that the data transmission rate between
nodes is the same as the medium. Under this premise, the fac-
tors that cause data transmission delay between nodes are the
bandwidth of the data sending node and the distance between
nodes. As shown in Fig. 22, the minimum delay for data
transmission between nodes is 0.9 seconds, and themaximum
delay is 1.088 seconds. In order to avoid choosing nodes
with high delay or sending to multiple nodes during data
transmission, suitable ENs need to be selected to be respon-
sible for data reception. The selection of ENs is shown in
Table 6. Node 1 is designated as the cloud center, so the ENs
and their responsible nodes are counted starting from node
2 in Table 6. Under this scheme, while keeping the lowest
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FIGURE 23. 24 moment BN offload solution.

TABLE 6. Edge node and business node affiliation & delay.

delay unchanged, the highest delay decreases to 1.0675,
and most of the nodes have a delay of less than 1 second.

FIGURE 24. 24 moment BN offload solution.

The evaluation method for transmission rate is consistent
with [30].

E. OVERALL OFFLOAD RESULTS
In this section the offloading of all BNs and the distance
between each node will be shown.

1) OFFLOAD SCHEME DURING THE DISPATCH PERIOD
Fig.23 illustrates the offloading of each BN for 24 schedul-
ing moments. It is worth noting that the delay experienced
before the initial offloading moment differs considerably
from the delay encountered after the offloading. This dis-
crepancy arises due to the presence of a substantial number
of dispatchable resources during the first moment, leading
to the generation of a large volume of data. Consequently,
the original bandwidth and computational resources become
inadequate. However, with the adoption of the strategy pro-
posed in this paper, a significant reduction in delay is
achieved. Furthermore, as the dispatching period progresses,
the delay tends to stabilize, resulting in a smoother operation.

2) DISTANCE BETWEEN NODES
Fig.24 displays the distances between 118 nodes, where a
distance of 0 indicates the node itself. The interconnected
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FIGURE 25. 24 moment‘ each node timeliness value.

nature of the nodes within the IEEE 118 node graph results in
varying distances between them, leading to diverse propaga-
tion delays. These propagation delays is insignificant but still
play a crucial role in determining the affiliation confirmation
between ENs and BNs.

F. OVERALL TIMELINESS VALUE
This section will show the timeliness value of dispatchable
resources at each node for 24 moments.
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