IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 12 February 2024, accepted 16 March 2024, date of publication 25 March 2024, date of current version 29 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3381782

== RESEARCH ARTICLE

Can We Run Our Ethereum Nodes at Home?

MIKEL CORTES-GOICOECHEA'!, TARUN MOHANDAS-DARYANANI',
JOSE LUIS MUNOZ-TAPIA““2, AND LEONARDO BAUTISTA-GOMEZ>

!Barcelona Supercomputing Center, 08034 Barcelona, Spain
2Universidad Politécnica de Catalunya, 08024 Barcelona, Spain
3Status.im & MigaLabs, 08004 Barcelona, Spain

Corresponding author: Mikel Cortes-Goicoechea (mikel.cortes @bsc.es)

This work was supported in part by the Lido Ecosystem Grant Organization (LEGO), in part by Spanish TCO-RISEBLOCK Project under
Grant PID2019-110224RB-100, in part by the Ethereum Foundation under the Research Grant FY21-0356, and in part by Protocol Labs

under its Ph.D. Fellowship Program under Grant FY22-P2P.

ABSTRACT Scalability is a common issue among the most used permissionless blockchains, and several
approaches have been proposed to solve it. However, tackling scalability while preserving the security and
decentralization of the network is a significant challenge. To deliver effective scaling solutions, Ethereum
achieved a significant protocol improvement, including a change in the consensus mechanism towards
Proof of Stake. This improvement greatly reduced the hardware requirements to run a node, leading to
significant sustainability benefits with a lower network energy consumption. This work analyzes the resource
usage behaviour of different clients running as Ethereum consensus nodes, comparing their performance
under different configurations and analyzing their differences. Our results show higher requirements than
initially claimed and show how different clients react to network perturbations. Furthermore, we discuss the
differences between the consensus clients, including their strong points and limitations.

INDEX TERMS Ethereum, consensus clients, hardware requirements, proof of stake.

I. INTRODUCTION
Ethereum [1] has been a remarkable achievement on the road
to ubiquitous blockchain technology. It led to considerable
growth in decentralized applications and the Web3 space
due to its pioneer multipurpose Ethereum Virtual Machine
(EVM) [2] and its dedicated programming language Solid-
ity [3]. With an extended network of more than 10.000 active
nodes [4] and its capabilities to process Smart Contracts,
it currently handles above 1 million transactions per day
from 600.000 active accounts [5]. These characteristics have
set the conditions for a solid community of developers
and continuous advancements, as well as introducing new
technological possibilities. As the adoption of Ethereum
increases, its usability is threatened by rising transaction
volume and network clogging.

Following the highly tested consensus mechanism at the
moment, initially, Ethereum relied on Proof of Work (PoW)
to reach consensus [6] among its participants. However, as the

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen

very first blockchain ever presented to the world, Bitcoin [7],
Ethereum shared a similar set of limitations in terms of
scalability and sustainability [8].

In an attempt to make the network more sustainable
while presenting a solid foundation to scale up the network
capabilities, in 2020, Ethereum embraced a live consensus
transition towards a more sustainable Proof of Stake (PoS)
[9] based on Casper FFG for finalization [10] and LMD
GHOST [11] as a fork-choice rule. With this transition,
network participants no longer had to compete with each
other to be the first ones to find a block with a valid hash,
as the block proposers are randomly selected from the set of
active validators using the RANDAO! algorithm.

Due to the complexity of introducing this consensus mech-
anism, the transition was divided into different phases, where
all the changes were gradually applied and tested before
the final merge happened. In the first phase, in December
2020, PoS was implemented on the Beacon Chain, a live
and independent blockchain running in parallel to Ethereum’s

1 https://github.com/randao/randao

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 44401

https://orcid.org/0000-0003-3167-6014
https://orcid.org/0000-0001-6442-437X
https://orcid.org/0000-0003-3181-4480

IEEE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

Smart Contracts
Execution Layer
PoW (2015)

Address Balances

Ethereum PoS
Merge |

Consensus Layer
PoS (2020)

Validator Interaction

1 (2022)

FIGURE 1. Ethereum transition from PoW to PoS.

PoW main network. To participate in Ethereum’s PoS
consensus as a validator, users or entities must deposit the
Ethereum PoS’s smart contract [12], activating new validators
into the chain.

In the beacon chain, only active validators can participate
in block proposals and attestation committees, assuming
the duty and responsibility to participate in the consensus
over each proposed block. Based on the previous state of
the chain and the balances, a randomly chosen validator
has a time window of 12 seconds to propose a new block.
This time window, or slot, also represents the time range
other committee participants had to perform their attestations
(visually represented in Figure 2). If a validator does not
perform its duties, it gets exposed to economic penalties,
while honesty and participation get rewarded. The current
PoS model requires the participation of 2/3 of the active
validators to consider previous blocks finalized (immutable,
as they achieve enough support from the validators). In fact,
the network organizes the slots in epochs, where each epoch
includes 32 slots.

At the first stage of the transition, the only link between
both blockchains was the activation smart contract. But
later on, with the Merge on September 15th, 2023, both
chains merged into a single one (see Figure 1). However,
as Figure 3 shows, the blockchain keeps two distinct layers:
i) the execution one and ii) the consensus one, remaining
with one blockchain, one block on each slot, and two
layers underneath. The Execution Layer (EL) works like
the previous Ethereum network, where users broadcast
transactions while interacting with the EVM. On the other
hand, the Consensus Layer (CL) keeps track of the duties,
balances, state, and performance of each validator in the
beacon chain.

Each layer has specific requirements and has specific
software or clients to participate in. However, each layer’s
clients can’t work alone without a direct pair from the other
layer, creating a tandem. Even though the execution layer
node could receive the transactions over the network, it won’t
certainly know which is the last finalized slot that defines the
balance at a given Ethereum address. In the same way, if the
consensus client doesn’t have a connection with the execution
layer client, it won’t be able to validate the transactions
from any proposed block or even fill up blocks with valid
transactions if a hosted active validator becomes a block
proposer. On top of that, if a user or the entity wants to

44402

contribute to the chain’s consensus, they will have to plug a
third client on top of the beacon node (consensus layer client),
a validator client. This third client will be responsible for
signing the validator duties for each validator it hosts, as it
can run thousands of validators under the same beacon node.
The idea behind running a third software on top of the beacon
node is to preserve the anonymity of validators in the peer-to-
peer network, which makes targeted attacks harder as there
is no direct link between which beacon node hosts which
validators.

In the original track of the beacon chain?, there was a
second underlined solution to tackle one of the most common
limitations of blockchain protocols: the protocol’s scalability.
The original idea of increasing Ethereum’s scalability was
adding blockchain shards on the consensus layer, where
the whole list of active validators could split across the
available shards and limit their activity to the same one. This
sharding schema was postponed due to the large complexity
of the model. However, thanks to the current stability of the
network after the merge, new sharding alternatives have been
proposed, i.e., data sharding [13], [14].

Ethereum’s approach to updating its consensus mechanism
starts from the major shortcomings of the previous PoW.
PoW is known for being a resource-intensive consensus
mechanism [15], where users need to invest significant
amounts of money on hardware to increase their chances of
being a block proposer, thus being more profitable. However,
this also means that, as the hardware improves the mining
capabilities over time [16], the more obsolete the previous
hardware becomes. This highly incentivizes the acquisition
of newer mining devices, indirectly increasing the network’s
overall energy consumption [17] over time.

Ethereum’s transition to PoS has been highly motivated
by this drawback. Although you still need to invest money
to be profitable (you need 32 Ether to activate a validator),
the hardware requirements to run multiple validators barely
change from the node’s perspective, as a single beacon node
can host up to thousands of validators. The motivation of the
community and the core developers is clear: try to reduce the
requirements to run a node so that it becomes more accessible,
improving the sustainability aspect and the resilience of the
network, as having a full Ethereum node at home became less
restrictive (from an infrastructure point of view).

2https ://notes.ethereum.org @ vbuterin/SkeyEI3xv

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

Epoch 1
Slot 1 Slot 2 Slot 3 Slot 32
-
Committee 1 Committee 1 Committee 1 Committee 1
Validator 3 Validator 5 Validator 2 Validator 1
u
-
Committee 64 Committee 64 Committee 64 Committee 64
Validator 6 Validator n Validator 4 Validator 7
N
Active Validator Pool
Validator 1 Validator 2 Validator 3 Validator 4 Validator 5 Validator n

-

FIGURE 2. Assignation of active validators into attestation committees.

—
Host 2
Consensus

N

Host 1 Client 2 Host 3
Consensus
Validator layer Execution Validator
Client 1 Client 2 Client 3
\ J
Consensus |1 Consensus
Client 1 ‘ Client 3
Execution | Execution
Client 1 Execution Client 3
layer
Block 1 Block 2 Block 3
Consensus Consensus Consensus
Ethereum Data Data Data
Blockchain
Execution Execution Execution
payload payload payload
J J J

FIGURE 3. Subdivision in layers of Ethereum after the merge.

This paper thoroughly introduces the hardware require-
ments that the main beacon chain clients need over the
different stages of their lifetime and over multiple hardware
combinations. We empirically demonstrate and quantify the
minimum resources needed to run a full Ethereum node after
the merge, and we extensively associate the relation of each
event in the network with the specific hardware it requires.
By doing this, we present i) the impact of the different
approaches each client developer team made into the user’s
hardware, ii) the importance of these measurements to spot
bugs and misbehaving clients under specific network states,
iii) the possibility of understanding the healthiness of the
chain in past periods only by looking at the synchronization
of the chain at that particular time range, iv) the evolution
of this requirements as the chain keeps operating. We want
to mention that this work has been carried out in close
collaboration with the Ethereum Foundation and the client
core developer teams. Some of these teams have benefited
from this collaboration by identifying bottlenecks and
implementing some of the improvements raised by this study.
The contributions of this study have also been considered
attractive by the Ethereum Foundation, which has asked to
perform it continuously, offering a real-time dashboard that
can help future users understand which client must be the best
fit for their needs.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III explains
the methodology used for the evaluation. In Section IV,

VOLUME 12, 2024

we introduce the measured hardware resource the clients
need on different hardware platforms. Section V presents the
correlations and insights of the study. Section VI discusses
the paper’s main findings. Finally, Section VII concludes this
work and presents some future directions.

Il. RELATED WORK

PoW’s security comes with the aggregation of more hashing
power to the network since more people honestly participat-
ing means more resources an attacker has to invest to achieve
51% of the mining power [18]. However, this is a double-
edged sword, as the hardware requirements and the energy
consumption increase as more users participate in the PoW
consensus mining.

This was clear first in Bitcoin and later on in Ethereum,
where the total hashing power of the network has been
constantly increasing over time [19], [20], [21]. Lots of efforts
in the research and industrial communities were dedicated
to optimising and speeding up the process of hashing [22],
[23]. Furthermore, the direct application of those hashing
methodologies on mining [24] defined a rapid hardware
evolution in the field. Starting from the usage of GPU
accelerating techniques [25], [26], and reaching, in some
cases like Bitcoin, the development of custom ASICs [16].

However, as we have already pointed out, this has a
significant drawback, as the scalability remains the same
while the network requires more resources. Ethereum’s PoW
network’s security and vulnerabilities have been highly tested
in the past [27]. But the transition to PoS adds more complex
logic to the already existing protocols, as this mechanism
presents a few critical points that could potentially be
exploited in the future.

In the first place, blockchains relying on proof of
stake consensus mechanisms highly depend on the network
latency [11], and Ethereum is not an exception [28],
[29]. Whiling to have hundreds of thousands of messages
distributed in a time window of 12 seconds puts a lot of
pressure on its peer-to-peer networking layer [30].

Prior research work has tried to consolidate blockchain
technology in the Internet of Things (IoT) field [31], [32].
This showed that despite both fields having common native
synergies and popular applications such as distributed and
trustless ledgers or identity verification. Authors showcase
the computation limitations of the IoT devices that could
directly compromise the security or the consensus of
the network if the resources are not adequately handled,
proposing in some occasions to sacrifice in some degree the
decentralization in favour of increasing the security [33].

Following the IoT line, Ethereum embraces the tran-
sition to PoS, proposing a more complex but less
hardware-demanding consensus mechanism, maintaining,
meanwhile, its previous security and decentralization. One
major target is reducing the hardware requirements for
participating in the consensus. The more accessible it is
for users to contribute to the protocol, the more resilient
it becomes. Previous works have shown how the ranges

44403

IEEE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

of routable nodes participating on the Ethereum network
oscillate between the 11.000 for the PoW network [34] and
9.000 for the young PoS beacon chain [4]. However, this
can’t ensure that all those nodes actively contributed to the
consensus.

The software industry has always identified diversity as
a resilience enhancer method that prevents single points of
failure [35], [36]. The diversity concept has been widely
used in many industries like the military and the aerospace
ones [37], [38], providing resilience even to computer
networks [39]. In an effort to make the network as resilient
as possible, Ethereum understood that providing software
diversity could become a resilience game changer for the
network upon future network attacks [40]. Code diversity
in the blockchain space has been previously analyzed [41],
showing a non-promising conclusion where a significant
part of the software is reused for further cryptocurrency
projects. However, the study shows that most code reuse
generally happens from more mature projects such as Bitcoin
or Ethereum to less mature ones. In the Ethereum consensus
layer’s case, the main specifications are implemented by five
main implementations (with an extra non-open-source one),
each written in a different programming language.

Finally, previous works have shown the importance and
effectiveness of monitoring the hardware resource utilization
to identify memory leaks, bugs, and edgy case scenarios that
can become a bottleneck for the correct performance [42].
Of course, there is a direct link between the hardware
utilization and the overall energy consumption of the
machine. Larger hardware needs come at a cost: more energy-
hungry hardware. Thus, monitoring these requirements can
help understand the overall energy consumption of the
software and the network [43]. This is the case of Ethereum,
coming from a former PoW scenario, where monitoring the
resources of PoS clients can showcase the energy reduction
that PoS means to the total carbon fingerprint of the network.

As the network’s resilience now relies upon the online
and honest behaviour of the validators [44], the software
that runs the PoS logic and interacts with the rest of the
network becomes a more central piece in the equation.
While the execution clients were analyzed in the past [45],
in this paper, we study the resource utilization of consensus
clients. In particular, we aim to fill the existing lack of a
hardware resource analysis of the first transition of consensus
mechanism in a live network. The paper presents the
evolution of the hardware requirements from the available
software to participate in Ethereum’s PoS. We showcase
the vast reduction of the requirements, deny some myths
around the minimal requirements to run an Ethereum node
and present the possibility of predicting what is going on in
the chain just by checking the allocated resources from the
clients.

Ill. METHODOLOGY
To study differences in the behaviour of the Ethereum
CL clients, we have monitored the hardware resource

44404

utilization of the six main consensus clients, Teku?, Nimbus®,
Lighthouses, Prysm6, Lodestar’, and Grandine®, in different
machines with the most common hardware combinations.
Among the studies we have performed, we can distinguish
two main phases to monitor the run-time of a client: the
synchronization phase and the chain-head following phase.
In the first phase, the clients aim to reach the latest state of
the chain. Generally, by syncing and verifying each of the
blocks in the chain from the Genesis block, clients have to
re-compose the chain by asking peers in the network to share
the blocks with them. To finally reach the point where they
are already up with the head. This process might be more
stressful for the machine, as most of the time, the client has
to download, process, and verify as many blocks as possible
in the shortest possible time. In the second phase, clients are
less stressed, as the number of blocks to process happens once
every 12 seconds.

By monitoring the hardware resources of consensus clients
in different types of machines, this paper aims to track
and understand the client’s needs, limitations, behaviours,
and, thus, performance while participating in the Ethereum
network. To do so, the metrics that have been monitored are:

« CPU

+ Memory Usage

o Disk Usage

« Network outgoing traffic

o Network incoming traffic

o Syncing time

« Peer connections

A. DIFFERENT USERS, DIFFERENT HARDWARE

To achieve a reasonable comparison of the different clients
and, even more importantly, to understand and highlight
the minimum requirements for running an Ethereum beacon
node, we have selected three different sets of hardware com-
binations that, from our perspective, summarize the different
users that would run a beacon node in Ethereum: enthusiasts,
solo stakers, staking companies or node operators.

o The first category, enthusiasts, are individuals who
follow the development of the Ethereum protocol
and want to actively support it by running a node
in low-power or energy-efficient devices. They don’t
necessarily need to run a validator but want to find a
productive task for their “dusty” Raspberry Pi.

« Solo stakers, on the other hand, are passionate individ-
uals who want to contribute to the chain’s consensus
and run one or a few validators at their own place. They
generally have a dedicated personal machine such as an
Intel NUC or a built PC with the standard components
for the personal PC market.

3 https://github.com/consensys/teku

4https ://github.com/status-im/nimbus-eth2
5 https://github.com/sigp/lighthouse

6https ://github.com/prysmaticlabs/prysm
7https ://github.com/ChainSafe/lodestar
8https ://github.com/sifraitech/grandine

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

o The final target user is the most professional-oriented
one, involving users like staking entities and node oper-
ators. These network participants generally participate
in the network with a lucrative interest. They generally
run hundreds to thousands of validators. Thus, they don’t
stay short on hardware resources to run them.

TABLE 1. Hardware configuration of the control machines.

Name CPU Memory Storage Network
Raspberry Pi 4b 4c 8GB 256GB 100Mbit/s
Default node 4c. 15GB 100GB SSD 250Mbit/s
Default node 2 4c. 32GB 900GB SSD 250Mbit/s
Fat node 32c. 120GB 400GB SSD 10.000Mbit/s
Medalla node lc. 6GB 34GB SSD 100Mbit/s

The hardware resources chosen to test the clients are
summarized in table 1. Each of the six main clients
ran independently (alone on a dedicated machine) but
concurrently on the three available platforms, except for
the synchronization of the Medalla testnet, which was done
sequentially on a single machine. Of course, the testing
times highly depend on the synchronization speed of each
client and platform, and each of the three platforms has
been monitored on separate dates between 2022 and 2023.
Each respective performance phase and platform has its
independent subsection in section IV, where the analysis of
the results is extended.

B. CLIENT CONFIGURATIONS

In an attempt to increase the network’s resilience to
human-generated bugs on code, Ethereum has put a consid-
erable emphasis on client diversity. Despite the wide range
of client options that users can choose from, finding the
right combination of parameters becomes an essential step
for node operators to ensure an optimal operation of the
nodes. In a complex consensus protocol like Ethereum’s,
each client can easily exceed the 50 distinct parameters.
To reduce the complexity of configuring those parameters by
hand without knowing which repercussions they could have
on most occasions, clients offer a wide set of pre-defined
configurations. Among the most important ones, we can find
the following ones:

o Default: The default configuration is the base on which
each client could work out of the box. It only requires the
user to define essential parameters such as the endpoint
of the EL, the logging level, the destination of the
database, whether the user wants to save the logs on a
file or if the user wants to serve debugging metrics on a
specific port (for internal monitoring dashboards).

« All topics: Using the base configuration as a reference,
most clients provide the possibility to subscribe to
all the attestation subnet topics. This ensures an
optimal network presence of the node, ensuring that
the attestation of a validator can easily propagate over
the network. This mode is generally targeted for node
operators with multiple sets of validators. However,
it has a few drawbacks: i) as more messages arrive from

VOLUME 12, 2024

an increased number of GossipSub [46] topics there is
a noticeable increase in the CPU usage for validating
those messages, and ii) as the number of messages that
the node has to receive and then propagate back to the
network increase, so does the bandwidth usage of the
node (both in and out network traffic).

o Archival: The primary objective of the beacon chain is
to finalize beacon states as the chain grows, meaning
that the status of all validators is immutable as the
chain keeps evolving. The consensus contemplates the
possibility of not finalizing, as the network could be
divided across forks and eventually would have to
converge on one of them as canonical. In such scenarios,
clients save beacon states on disk as checkpoints in
case they need to roll back or recompose anything in
the past. In their default configuration, clients have a
frequency at which these checkpoints are stored locally.
This frequency, which tends to be around the 8192 slots
by default, can be adjusted at the client’s parameter.
Reducing this parameter between 1 and 4 epochs (32 to
128 slots) is considered spawning an archival node.
This mode considerably improves the response time of
queries through the REST API, and it is generally the
preferred mode for researchers or chain indexers despite
the larger storage usage.

Client developers ensure that their client works optimally
on the default configuration, i.e., setting a proper target
of peer connections, a proper beacon state check-pointing
frequency, or an optimal cache sized, even the simplest
database schema that could fulfil most of the use cases. Thus,
for most users, it is recommended to stay within the margins
of these default parameters, changing only those ones they
know they need for their particular needs.

C. WHY ETHEREUM HAS SO MANY NETWORKS?
Complex protocols such as Ethereum are not easy to
consolidate in the technical or the human aspects; they
have too many parts and contributors. Thus, organising any
possible upgrade for the protocols is even more complex,
as the community must coordinate which changes have to be
done, who reviews them, and how to test them. Like many
other projects in the web3 ecosystem, Ethereum adopted a
basic methodology of splitting all the ideas into features or
Ethereum Improvement Proposals® (EIPs). When a group of
proposals or EIPs are considered mature enough and align
with the public roadmap of the protocol, they are tested on
development environments such as testing networks or, as we
refer to them, testnets.

The large trajectory of Ethereum means that there have
been many EIPs and, therefore, testnets. This testing
environment represents an isolated environment where a few
specific changes, events or transitions can be stress-tested.
Although the testnet aims to represent the reality of a main
network as closely as possible, some aspects or events, like a

9https :/leips.ethereum.org/

44405

IEEE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

Q \
Q e
QK\@% Pg\
o0——-
Beacon Chain
[O 0 O [} O [} O
Medalla Kintsugi Kiln Zhejiang
\
PoW Goer e\@i .
NI A
PRGN @
¥ X
L } >
PoS Goerli

FIGURE 4. Ethereum network’s hard-forks organization, public testnets in
red.

sudden peak in user interaction, can’t be entirely replicated in
these environments. However, because these testnets justify
their presence by testing the limitations of the changes,
it doesn’t mean that their results are negligible. In fact, they
are generally stress-tested to find the weak points of the
protocol or the implementation. Figure 4 shows the road
map of the main public testnets around the consensus layer’s
hard-forks timeline, showcasing how each major upgrade on
Ethereum was previously tested on a testnet. It is important
to notice that in public testnets such as Goerli,!? participation
is not monetarily incentivised. Thus, participation tends to be
lower than on the main networks. This might not sound that
critical if it stays above the 66%. However, these networks
became the best method to test “unexpected” scenarios like
forks and non-finality periods originating from code bugs or
weird interactions. As these edgy cases generally exercise the
hardware of the nodes in unusual patterns, they are relevant
to visualize which are the maximum requirements.

D. EXPERIMENTS TIMING SETUPS

This paper presents a large number of experiments, includ-
ing multiple client configurations, operational stages, and
different stages or hardforks of the chain. The following
paragraphs summarize all the information about when we ran
these experiments, for how long, and which hardware where
they were running on.

1) SYNCHRONIZATION ON DEFAULT AND FAT NODES
The chain synchronisation from genesis was performed using
the available six clients on default mode 111-B in a “‘default
node” and ““fat-node” from Table 1. The data was collected
between the 8th and the 18th of March, 2022, with the
following client versions:

e Prysm: 2.0.6

o Lighthouse: 2.1.4

o Teku: 22.3.2

« Nimbus: 1.6.0

o Lodestar: 0.34.0

o Grandine: 0.2.0

10https:// 'goerli.net/

44406

2) REGULAR PERFORMANCE ON A REGULAR NODE
The experiment included running an Execution Client and
the Consensus Client on the same machine. To promote a
fair comparison between the CL clients, we paired all of
them with a Nethermind node. The study was performed
between the epochs 201699 and 202699, or in a human-
readable format, between the 17th of May 2023 and the 21st
of May 2023. The experiment was conducted in the Goerli
network, running each of the clients’ pairs (listed below) on a
“default node 2" from Table 1, using the client versions listed
in the following list.

e Prysm: 4.0.3

o Lighthouse: 4.1.0

o Teku: 23.4.0

o Nimbus: 23.5.0

o Lodestar: 1.8.0

3) SHYNCHRONIZATION OF THE MEDALLA NETWORK
The synchronization of clients in the Medalla testnet was
performed between the dates displayed in Table 2 (prior even
to the official launch of the Beacon Chain). The clients were
run sequentially in a “Medalla node” from Table 1 using the
following list of versions:

o Teku: v0.12.14-dev-6883451c

o Prysm: v1.0.0-beta.1-4bc7cb6959aleaSb

« Lighthouse: v0.3.0-95c96ac5

o Nimbus: 0.5.0-9255945f

o Lodestar: commit 40a561483119¢14751

TABLE 2. Running dates of each client during the synchronization of the
Medalla network.

Client Start Time End Time
Teku 2020-11-09 17:25:12 2020-11-10 17:34:45
Prysm 2020-11-04 18:34:12 2020-11-06 09:34:34
Lighthouse ~ 2020-11-02 17:17:51 2020-11-04 02:57:38
Nimbus 2020-11-04 18:40:35 2020-11-06 10:23:04
Lodestar 2020-11-08 20:19:02 2020-11-09 08:54:04
E. TOOLING

This paper relied on sophisticated and well-tested tools to
generate and measure the data presented in evaluating the CL
clients with precision and reliability.

1) NODE EXPORTER

Each control machine we have used to perform the study
has been entirely monitored by the software tool Node
Exporter [47], giving us access to the whole list of metrics
mentioned in the previous paragraphs. Combined with a
central Prometheus [48] time-based database service that
scrapes each of the exported endpoints every 15 seconds,
it can accurately provide the resources in use for an entire
machine.

As calibration for the software tool, we have benchmarked
the results obtained from the node exporter with the ones
taken from a Python script that reads the same metrics in
run-time from the machine every second. The successful

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

comparison between the values of each gathering tool demon-
strated that the node exporter showed a negligible overhead
to the measurements while providing the confidence of using
a reliable, unbiased, and well-tested tool to monitor the
resources of each machine.

2) APl WORKLOADER

It is essential to mention that running an Ethereum node
doesn’t only concern users or entities that want to run
validators on top of them. Accessing data from the blockchain
is as important as reaching a consensus on the chain. Thus,
many companies and researchers are actively participating
in the network with the final goal of accessing, analyzing,
or simply selling chain-related data.

Most users access on-chain data such as transaction
status, chain status, and validator performance through chain
explorers such as Etherscan,!! EthSeer'? or Beaconcha.in. !
However, to support these web applications, they must
interact with chain data through the REST API that most
clients offer. There is a defined standard number of endpoints
[49], [50] that the clients are supposed to offer. However,
the performance and reliability of retrieving that information
from the API are not standard among the clients.

Since quick access to this data might be essential for
some users, as we define the performance of an API,
we developed an API Benchmarker tool [51] that assesses any
given REST API endpoint’s responsiveness and robustness
under varying conditions and workloads. Intending to make
the fairest comparison across clients, we benchmarked the
response time of each client’s APIs using their archival
mode (only for those who had it). The benchmark was
implemented by performing multiple queries at the same
endpoint for different clients. The selected query was
/eth/v1/beacon/states/[slot]/validator_balances?id =
[validator_id], which forces to recalculate a beacon state in
the past, returning the balance of a given validator. All the
clients were asked the same queries in the same order, which
were selected at random to ensure the recalculation of the past
beacon state.

IV. HARDWARE RESOURCES’ EVALUATION

To extend into a larger and more detailed analysis of how
the Ethereum PoS transition has impacted the hardware
requirements to participate in the network and consensus,
we have accumulated almost 30,000 CPU hours (3.4 CPU
years) across Ethereum’s CL clients in different hardware
and configurations. The study includes data from over a year,
where we have collected over 735 million data points, from
which we extracted almost 150 million data points to plot
about a thousand different figures showing how the other CL
clients perform.

1 https://etherscan.io/
12https://ethseer.io
13 https://beaconcha.in/

VOLUME 12, 2024

The following section discusses our findings, reviewing
the most critical points that we identified in our journey
into Ethereum’s PoS transition. We have summarized or
compressed the graphs and plots to the minimum for time
and space reasons. However, following the transparency
and open-source standards of the Ethereum community,
all the figures are accessible on the following GitHub
repository [52].

100

A 40X +

801 Prysm

Teku

60 1

40 -

CPU utilization (%)

20

T T T
1600000 2400000 3200000

Slot

T
0 800000

FIGURE 5. CPU utilization while syncing the chain from a default node.
Comparison across clients.

16000

14000 -

A r o4 X 4

Prysm
Teku

12000

10000 ~

8000 +

6000 ~

4000

Memery utilization (MB)

2000+

1600000 2400000 3200000

Slot

Q 800000

FIGURE 6. Memory utilization while syncing the chain from a default
node. Comparison across clients.

A. SYNCHRONIZATION PROCESS

The entire chain synchronisation is the event of downloading
and verifying the historical blockchain from the genesis block
to the head of the same one. It is a process that only gets
done at the beginning of the client’s lifetime and that could
be repeated on rare occasions, such as when this client is
changed to a different one. Nevertheless, it is still essential
for the network to ensure the existence of full nodes in the
network with all the historical data downloaded. Thus, the
community needs to monitor the chain synchronization from
Genesis, as it can help users better estimate the preparation
time of each node before they can host any validator.

44407

IEEE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

100

<
Grandine < s
Ligthouse « x ? ®
x
Lodestar XK <

Nimbus
Prysm
Teku

80

AF 4 X E

60

40 4

Disk read operations (op/s)

T
3200000

ookt
1600000
Slot

T
0 800000 2400000

FIGURE 7. Disk read operations/s while syncing the chain from a default
node.

Full nodes ensure the blockchain is composable and
verifiable at any given time. Therefore, it is essential to
ensure that the process is not slow, long, and tedious if
users want to sync the entire chain from scratch. Mainly
when the downtime of an already activated validator might
depend on the downtime of the Beacon Node. To measure
the different synchronization techniques proposed by the
community, we have monitored this process for the leading
clients in the Ethereum CL ecosystem.

The following evaluation paragraphs refer to the gathered
under the details described in Section III-D1. It is essential to
mention that by the time we made this measurement, it wasn’t
necessary to pair each CL client with an EL client to keep the
head of the chain correctly. Thus, all the metrics displayed in
this section will refer only and exclusively to the resources
used by the CL clients.

1) CPU UTILIZATION

500 -

*

e Grandine
1 x Ligthouse
Lodestar
Nimbus
Prysm
Teku

<

>

Y
o
S

<

N w
=}
g 8

Disk write operations (op/s)
5
[=]

3200000

0 800000 1600000

Slot

2400000

FIGURE 8. Disk write operations/s while syncing the chain from a default
node.

The implementations of Ethereum’s CL specifications
are written in different programming languages, which can
ultimately determine critical parameters such as the level of
concurrency the program can achieve or the optimization
level for the validation and underlying processes. Figure 5

44408

shows the CPU utilization degree achieved by the CL clients
using the chain slots as a reference; this helps to have a
fair comparison between clients, as some finished sooner
than others. In the figure, we can appreciate different CPU
profiles, where Grandine follows a different recognizable
pattern, using around the 80% of the CPU while syncing.
Teku follows the lead on CPU utilization with a slightly
increasing ratio reaching the 60% of the CPU. The figure
shows similar CPU profiles for Prysm, Lighthouse, and
Nimbus, leaving Lodestar as the client that requires less CPU
to synchronize the chain.

There is a crucial point to highlight here; although we could
associate a high CPU utilization with a drawback to a CL
client (we come from a premise where reaching consensus
in PoS requires very few resources), it isn’t necessarily bad.
Not at least if the CPU cycles are optimized to sync the
chain faster. Remember that the sooner we can sync the chain
from Genesis, the lower the downtime users could experience
on their validators. Thus, we support the idea of squashing
the available resources during the synchronization phase if it
reduces the duration of the same one.

2) MEMORY UTILIZATION

In terms of memory, all the clients presented different
behaviours. Figure 6 shows the memory allocation patterns
from the CL clients. The figure shows that most of
them allocate more memory throughout the synchronization
process. This is an expected pattern, as the beacon state!*
grows as time passes, and more validators tend to join
the chain. Among all the recorded patterns, it is clear
that Lighthouse has an unusual, constantly increasing one.
Reaching even the limits of the machine, what we can identify
as a possible memory leak, leading to a crash and a forced
restart of the machine. Of course, the incident was shared
and reported with the Sigma Prime team!> (developer team
of Lighthouse), and it is known to be fixed in the following
version v2.2.0.

On the other hand, it wasn’t the only client that reported
some difficulties when setting it up. Teku and its associated
JVM are somehow tedious to configure. The JVM requires
a minimum amount of memory to work and experiences
sudden crashes if not enough memory is provided. However,
we could achieve a steady performance by assigning 6GB
of memory to the JVM. As represented in the figure, Teku
maintains reasonably constant memory utilization, never
exceeding 7GB of memory. The memory profiles get more
stable with the rest of the clients, where only Prysm reaches
the same level as Teku, and Lodestar, Grandine, and Nimbus
keep a lower profile at a lower limit of 4GB. It is worth
mentioning that Prysm is written in Go, which tends to
allocate and keep the memory for the processes until the OS
asks it back. Thus, this makes the comparison a bit unfair for

14The beacon state represents the state of the chain at a given slot.
It includes the status, balance, and information of each validator.
15 https://sigmaprime.io/

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

Prysm, as part of the measurement might belong to unused but
still allocated memory by Go. In these lower memory profiled
clients, Nimbus has the lowest memory consumption, with a
steadily increasing profile that keeps under 2GB of memory
allocation and shows an incredible memory optimization for
such an intense process.

Similarly to the CPU utilization profile, we can identify
where most clients start to behave differently. Around
slot number 2.4 million, this point refers to the transi-
tion to Altair’s hard fork in the Beacon Chain. From
Altair, the CL clients need to track sync committees and
other significant changes in slashing conditions, which
explains the difference in resource consumption. The overall
block size also increased, making it heavier to down-
load and slower to process while keeping more bytes in
memory.

350

— Grandine
— Ligthouse
300 4 — Lodestar
— Nimbus
— Prysm
Teku

)

N
w
o

200 -

150 +

Net received (GB

100 1

50

=

0 800000 1600000 2400000 3200000
Slot

FIGURE 9. Network inwards utilization while syncing the chain from a
default node.

100

— Grandine

— Nimbus
— Prysm
Teku

80

60 1

40 -

Net sent (GB)

201

0———/

0 800000 1600000 2400000 3200000
Slot

FIGURE 10. Network outwards utilization while syncing the chain from a
default node.

3) DISK UTILIZATION

The differences are pretty impressive when comparing the
distinct size it took to keep the entire chain by the clients.
Table 3 shows the average disk usage using the slots as a

VOLUME 12, 2024

reference. Although all the clients have run on their default
configuration, the figure shows that there is an important
difference in how much storage the different clients require;
for instance, Lighthouse takes over three times the storage of
Teku, which is the CL client that requires the least storage
followed by Nimbus. There is a catch: although all the clients
are in charge of keeping the whole set of raw blocks on disk
(raw blocks databases barely change in size across clients),
there are differences in the frequency of maintaining beacon
state checkpoints. We have already mentioned that the beacon
state represents the chain snapshot at a given slot. It changes
over time as more blocks are added to the chain. Thus, there
is no need to keep it in disk with a super low frequency, as its
size generally is much larger than a single block. For this
reason, beacon nodes keep track of beacon state checkpoints,
and when they need to access a specific state from the past,
they can load the closest state they have stored, applying the
subsequent list of blocks until they can regenerate the desired
state.

All this said, we can deduce from Table 3 that the
default checkpointing in Lighthouse has a higher frequency,
keeping in disk more checkpoints for the same range of
slots, which ultimately helps access faster any state in
the past. It is important to note here that this parameter
is adjustable for all clients, and it might be important to
tune it up based on the necessities and resources of each
user.

TABLE 3. Total disk usage of the beacon node’s database keeping beacon
blocks and states after syncing the chain on the default mode.

Grandine Lighthouse = Lodestar Nimbus Prysm Teku
64GB 105GB 81GB 46GB 62GB _ 34GB

The disk utilization has some other peculiarities, though.
With a wider focus on disk write operations in Figure 8§,
most clients, and in particular Prysm, have a higher number
of disk write operations per second at the beginning of
the syncing process, and this decreases gradually until it
plateaus after Altair. This is explained by the fact that at
the beginning of the Beacon chain, the number of validators
(21.063) was significantly lower than 3.2 million slots later
(295.972), making the whole slot processing of the blocks
much faster. Both figures 8 and 7 are inversely correlated;
the increase in disk reads is relatively low in the first
half and accelerates in the second half, as the number of
validators and attestations in the network increases. The
measurements in Figure 7 show that disk read operations
increase dramatically for most CL clients, except Teku. This
is not an issue because it does not affect the performance. But
it happens virtually simultaneously for most clients around
slot 900K, being Prysm client to more clearly expose this
behaviour.

We attribute this pattern to some falling caching techniques
that might force the client to read the needed informa-
tion from the internal client cache, producing more read
operations.

44409

IEEE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

4) NETWORK BANDWIDTH

Network connectivity in a distributed network is a parameter
highly associated with the number of concurrent connections
the node keeps with others in the network. Despite being
in the synchronization phase, Ethereum is not different
from other networks in that aspect. Figures 9 and 10
show the aggregated received and sent GB throughout the
synchronization of the chain.

Figure 9 shows that most of the clients follow a similar ratio
of total downloaded GBs to sync the chain around the total of
50GB. Grandine, on the other hand, outstands its competitors,
requiring five times more bandwidth to perform the same
task. Handling more concurrent downloads to sync the chain
faster seems to be a not-that-optimized deduplication of
downloading multiple times the same blocks.

Regarding sent GBs, Figure 10 shows that only Lodestar
and Lighthouse are above the rest of the clients with around
five times more output bandwidth than the “quieter’ clients.

TABLE 4. Target of peer connections for each client during the chain
synchronization on a default configuration.

Lighthouse Lodestar
45 25

Nimbus Prysm Teku
155-160 45-55 75

As mentioned, bandwidth usage highly depends on the
number of simultaneous peers each client has. Table 4 shows
the target of peers each client got during the syncing process.
The table shows that by default, Nimbus looks for stable
150 peers from where to fetch blocks. Followed by Teku
with 75, Prysm with 50, and Lighthouse and Grandine, which
share a peer target of 45. To finish, Lodestar has shown the
lowest ratio of clients with a stable target of 25 concurrent
peers.

5) PERFORMANCE

We have presented many insights about how each client
operated over this first step of connecting to Ethereum’s
network and synchronizing the chain. We have seen many
different design choices to perform this same task, like
choosing to keep more data in the cache to reduce the
number of interactions with the disk (the slowest task of a
computer), increasing the number of concurrent processing
tasks to minimize the total time, or optimizing the process to
make it as light and fast as possible. Under our interpretation,
we define as “performance” the ability of a client to sync
the chain in the shortest time possible without capping the
hardware resources of the matching running it.

Figure 11 shows each client’s total duration of the
synchronization process. The figure shows that concurrency
clearly benefits the process. Grandine was the fastest client
to catch up with the head of the chain in almost 50 hours.
The fastest clients are closely followed by Nimbus and
Prysm, with around 90 hours, displaying that it is possible to
achieve great timings if optimization, concurrent downloads
from multiple clients, and a mild level of CPU usage are
achievable. Lighthouse and Teku have also achieved similar

44410

results with around 135 to 150 hours-long process. It is
not a fair comparison for Lighthouse, as it crushed for an
over-allocation of memory and had to be restarted. However,
the figure clearly shows that it might be the most trustless
client of the set, investing in keeping more states on disk
more often in case a chain reorganization happens. Teku and
Lodestar are the least optimized clients catching up with
the chain’s head. Despite the highest memory allocation,
the second highest CPU utilization, and the second highest
number of peers from Teku, it still got in fifth place. In the
last place, the measurements show that Lodestar has one of
the lowest profiles of the clients, perhaps aiming for a light
client that could run in the background.

B. THE BIGGER, THE BETTER?

As anyone could expect, having a more capable machine
has its benefits. The majority of the tested clients take
advantage of parallelization techniques to speed up the
entire synchronization process. However, some implement
concurrency techniques better than others, taking a huge
advantage as they can sync up the historical chain sooner.
With that many parameters involved in the performance of
a client, increasing each of them individually can vary the

benefits differently:
o A faster CPU with more cores allows the client to

process attestations at a higher rate and, therefore, more
blocks simultaneously. However, there is a point that
having many CPUs is not useful since many cores may
stay idle if there aren’t that many events to process and
validate.

« A bigger memory available while syncing increases the
number of items the client can keep without performing
slow read and write operations to disk.

o A higher network bandwidth can allow us to keep more
simultaneous connections with peers in the network,
enabling the concurrent download of more blocks from
the chain.

o A faster disk can reduce the bottleneck originated by
writing such a long chain as the Beacon Chain.

1) SYNC SPEED

Our measurements show that machines with superior hard-
ware resources can synchronize the chain faster. However,
with the apparition of checkpoint syncing, the whole
operation of syncing the chain from Genesis can be reduced to
almost zero times. Some CL clients offer a back-filling sub-
process to fetch the historical chain backwards from the given
checkpoint. However, this is not the case for all of them, and
if users want to have faster access to on-chain data, known
as “‘archival node”, they might still be forced to perform
a full synchronization from Genesis. This “archival” mode
increases the frequency of the chain checkpoints being stored
in the database, making all the RPC queries generally faster
as it takes less time to recompose intermediary states. It is
ideal for users who want faster access to chain data. The
whole concept of checkpoint syncing relies on the node’s

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

35

3.0 _/

‘g
5 2.5
£
= 2.0
ﬂ
o
W o154
o
[0
2
S 104 — Grandine
n — Ligthouse
— Lodestar
0.5 — Nimbus
— Prysm
Teku
0.0 T T i T T
0 80 120 180 240

Syncing hours

FIGURE 11. Chain synchronization speed as the number of slots
downloaded and processed since the node on standard hardware was
run.

4.0

3.5 1

3.0

2.5 1

2.01

1.5 +

Synced slots (millions)

1.0 4

0.5

0.0 T T T
0 8 16 24

Syncing hours

FIGURE 12. Chain synchronization speed as number of slots downloaded
and processed since the fat node was run.

single need to access the last beacon’s finalized state to
operate. This process allows a node to fetch the last finalized
Beacon State and Signed Beacon Block from a trusted node,
allowing it to process and validate incoming new blocks
after the process has been accomplished.'® Nevertheless,
although checkpoint-syncing is the recommended operation
to catch up with the chain’s head, not all users can access
an already synced beacon node from where to fetch the last
finalized checkpoint, making the full synchronization speed
still important.

Figure 12 shows that clients achieve a better synchroniza-
tion speed with more capable hardware. On average, our
measurements show a speed improvement of the 135%, with
Lodestar showing a disappointing performance decrease of a
10% and Grandine syncing a remarkable 178% faster. All the
measured slot processing ratios per second are displayed in
Figure 13, where we can appreciate the average performance

16Although the beacon node or the CL client can process new incoming
blocks after a checkpoint sync, its performance is still subjected to the
synchronization of the paired EL client. EL clients, when writing this paper,
can not sync from a checkpoint state. Thus, the time needed to have an
operative EL + CL client relies on how fast the EL can catch up with the
head of the chain.

VOLUME 12, 2024

of Teku, Nimbus, Prysm, and Lighthouse, and the outlying
one from Grandine and Lodestar.

2) DISK UTILIZATION

Of course, having more and faster processing power implies
more disk reading and writing operations (if no disk bottle-
neck is hit). In the previous subsection IV-D, we appreciated
how, around slot 900.000, the disk reads spike until the end
of the process. Controlling the same metric on the fat nodes,
Figure 14 shows almost the same behaviour, but this time,
the pattern started much later, around slot 2.000.000. The
fact that the phenomenon occurs later on in nodes with more
memory makes us believe that some memory caching process
is originating or preventing these disk read operations.
For this reason, when the client reaches its buffering
limit, it starts generating a significant amount of disk
reads.

On the other hand, disk write operations remain on the
same pattern as Figure 33 represents, increasing its offset
with the faster synchronization speed. This showcases that
although we need a proper or fast enough disk to handle an
Ethereum CL node, unless we want to set up an archival node,
there is not much impact on disk usage that originates from
increasing the rest of the hardware components.

200

*

175 A

wFFF

150

125

T [+

%

100 -

syncing speed (slots/s)

0 8 16 24
Syncing hours

FIGURE 13. Slot synchronization ratio per second for the different clients.

C. HOW SMALL COULD WE GO?

Despite the complexity increase that shifting from PoW
to PoS means, the protocol has bragged about requiring
less computational power to reach consensus than its PoW
predecessor version. Going even to the limit of stating that
a Beacon client could run on a Raspberry Pi. We have
tried syncing up the mainnet chain from Genesis using the
different clients, with the unanimous conclusion that it is an
impossible task to achieve, based on the large time it takes
to finish it (exceeding the 15 days to sync on the fastest
client). The beacon chain at that point, March 2022, had
around 3.400.000 slots, which presented a major problem
to the restricted hardware of the Pi. The chain at that time
had around 550.000 validators, making the last steps of

44411

IEEE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

10 % —
—— x n
+ Grandine o A oo a4t X xx
x Ligthouse » c Cae s < 0k
v Lodestar A Aooat Uk IR e
4 Nimbus X s R e Ay R o
8 4 = A < A Xy
4

Prysm N N A% x x
Teku LA L s x % X

Disk read operations (op/s)

x <
™

";v PP
0 ot x5

; T
0 800000

i WS

;
1600000
Slot

T T T
2400000 3200000

FIGURE 14. Disk read operations by the clients while running in a “Fat”
node.

the synchronization tedious because of the state processing
duration. For timing reasons, we’ve extended the paper to
explore the performance of the synchronization process in the
Kiln!” testnet in the Appendix.

Taking into account that the Beacon State is append-
only, we expect that the required hardware resources are just
going to increase over time. As a result, CPU and memory
requirements will increase with bigger state transitions to
process. Even if the number of validators decreases, which
doesn’t seem feasible, at least in the short term, new updates
to the protocol will always require more validations or tasks.
Following this trend, after the merge, each consensus client
node needs to be paired up with an execution client to follow
up the head of the chain successfully. This ultimately means
that the available resources have to be duplicated to run both
parts of the system together.

Although there is a tendency to require faster and more
extensive resources, we are definitely seeing a massive
reduction when comparing it to the predecessor PoW
consensus version. It is not crazy to think about having a
Raspberry Pi set up to participate in the network. However,
having to purchase a faster SSD and probably extending to a
secondary Raspberry Pi to run the execution layer client (with
its dedicated faster SSD) makes it, from our point of view,
unattractive for most of the users. In this case, we suggest
opting for a still low-profiled and low-powered device such
as an Intel NUC or similar.

D. REGULAR PERFORMANCE
Having the possibility to fully sync the chain from scratch
and ensure that doing so is viable is a nice feature of the
community. However, as we have introduced previously,
current node deployments can benefit from syncing the chain
using chain checkpoints.

At any point, the resources taken from a client at a
regular workload (following the head of the chain) are
considerably smaller than those they need to sync up

17https:// github.com/eth-clients/merge-testnets/tree/main/kiln

44412

the chain. This subsection describes the resources that
each client needs to perform after the synchronization
phase.

To study a fairly more accurate representation of the actual
consumption of the set of clients, we have also measured the
resources each of them needs to participate in the network
while following the head of the chain. Further details on
the study dates and the setup configuration are defined in
Section III-D2.

3.5

— Grandine
— Ligthouse
3.0 — Lodestar
— Nimbus
i — Prysm
<
5 2.5 Teku
é 2.01
©
i}
o
“ 1.5
o
@
2
S04
wv
0.5 1

0.0 f T T
0 50 100 150 200

Syncing hours

FIGURE 15. Chain synchronization speed as the number of slots
downloaded and processed since the node on the Raspberry Pi 4 was run.

100
client
—— Lighthouse

o) 80 ——- Lodestar
[e, Nimbus
= --=- Prysm
o 1
i 60 Teku
©
AL
S 40
S
z
U 20+

202200 202400 202600

Epoch

201800 202000

FIGURE 16. CPU usage by clients following the head of the chain.

1) CPU UTILIZATION

Unlike the chain synchronization process, the regular oper-
ation of EL and CL clients doesn’t require much CPU.
Figure 16 shows CPU usage by each of the combined clients
as the percentage from the total available in the machine.
The first slots in the figure show that despite syncing
from a trusted node’s checkpoint, validating it and taking
it up with the head of the chain is way more demanding
than just following it up. The next epochs in the chart
show that both CL and EL need less than 40% of an
eight-core machine to handle the propagation of blocks,
attestations, and aggregations, as well as the validation of
the same ones and recomputing the state. Bast reduction in
contrast to its previous PoW consensus mechanics before the
merge.

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

There are a few more insights to take from the figure,
though. Despite the difference being not much across the
CL clients, some are more efficient than others. Nimbus,
Prysm, and Lodestar are the most efficient clients, taking
between 11% to 13% of the CPU to perform all the consensus
tasks. On the other hand, Teku and Lighthouse are the ones
requiring more CPU, with Lighthouse keeping an 18% of
average CPU usage and Teku being the most unstable client,
fluctuating its CPU usage between 15% and 23%, sometimes
reaching 30% of use.

We have to mention, though, that there were some
infrastructure problems with Teku, which crashed two times
during the experiment due to a lack of space for the
machine. These interruptions are clearly visible in the figure,
wherewith sudden drops in Teku’s CPU usage to a flat and
stable 3% to 7%, which we can attribute to Nethermind.
Spikes of 40% to 60% also follow these drops, which are
related to the client catching up on the blocked missed while
it was down.

2) MEMORY UTILIZATION

More different memory usage patterns were measured on
the machines during the study. In contrast to CPU usage,
memory usage increases once the client follows the chain’s
head. Figure 17 shows that the client difference is more
noticeable than the CPU one. Nimbus and Lighthouse are the
most optimized clients with averages of (remember this is the
aggregation of memory between Nethermind and the clients)
15GB and 18GB, respectively. Lodestar follows them quite
closely, with an average of 19GB. Leaving Prysm and Teku as
the highest memory-dependent clients with 20GB and 23GB
of memory usage, respectively.

100

£ g0

o

8 .

E 60 4 . B O S SO)

Ji' client

E- 401 —— Lighthouse

[} ——- lodestar

% 204 e Nimbus

= =-=- Prysm

Teku

201800 202000 202200 202400 202600

Epoch
FIGURE 17. Memory usage by clients following the head of the chain.

Please note here that Teku is the only client that requires
less memory to follow up the chain than to sync it up, and
that part of the distribution shows the flat memory usage of
Nethermind of 11GBs.

These more updated measurements show that Lighthouse
has fixed the memory leak and that even though the
CPU is heavily used to sync up the chain, a bigger
cache or more memory is used more by clients when
performing under a normal state of the chain while following
it.

VOLUME 12, 2024

3) DISK UTILIZATION

From the perspective of the interaction with the disk, there are
significant differences between clients. In contrast to the disk
usage displayed in Section IV-A, where clients could handle
the persisting of blocks and states to DB in a more customized
or optimized way, neither Figure 18 nor Figure 19 show clear
differences in the number of Bytes read or written into the
disk. Figure 18 shows a general 2MB per minute ratio of
readings from the disk with some sporadic spikes from 4MB
to 10 MB per minute. On the other hand, Figure 19 shows that
writings are below 1MBs per minute, with more often spikes
from 2MBs to 10MBs per minute. This clearly shows that
despite keeping more items and data in memory, the operation
of a client requires way more reads and validations than actual
writings to disk.

20 T
—_ i client
g]‘ —— Lighthouse
a2} i —-- Lodestar
g, 151 : - Nimbus
o i s
;é Teku
o 10
(=]
=
©
2 54
w ane:
5 u#.;m;w) ﬂﬂ"
0 T T T T T
201800 202000 202200 202400 202600
Epoch

FIGURE 18. Disk writes by clients following the head of the chain.

20
client
—— Lighthouse
——- Lodestar
151 -+ Nimbus
--=- Prysm
‘ Teku

(%]
L

Disk writing ratio (MB/m)
=
o

| AATARTREAM

201800 202000 202200 202400
Epoch

FIGURE 19. Disk reads by clients following the head of the chain.

4) NETWORK BANDWIDTH

Previously, We’ve seen that the resources aren’t anything
out of the normal computer standard, which means that the
combo of EL and CL clients could efficiently run on modern
pre-manufactured PCs or computers. However, can a regular
router handle all the communication involved?

The number of sent and received bytes over the network
while following up the chain is directly proportional to
the number of connections opened with other nodes in the
network. The more nodes you connect to, the more messages
or requests you receive and share. It doesn’t matter if they
are duplicated messages during the propagation of blocks or
attestations; nodes will see an increase in network usage.

44413

IEEE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

200
I client
g —— Llighthouse
=) ——- Llodestar
3 1501 =+ Nimbus
E --=- Prysm
8 Teku
. 1004
[
[
o
o
2 907 Jremses e mtunE R Rn I AR AT AR e
£ P AP IR NN AP
201800 202000 202200 202400 202600
Epoch

FIGURE 20. Concurrent node connections by the clients while following
the head of the chain.

10
client
s —— Lighthouse
o 81 --- Lodestar
e] -+ Nimbus
-_E, --=- Prysm
o 6 Teku
LY
= |
S 4 |
Q
p i
[[}
= 27 |
[k W__l
L
0 T T T T T
201800 202000 202200 202400 202600
Epoch

FIGURE 21. Network incoming bandwidth for the clients while following
the head of the chain.

Table 5 shows each client’s default target amount of
peers. The measurements show that most of them, including
Nimbus, Prysm, and Lodestar, have a similar target of around
50 peers, which generally keep steady except for Nimbus,
which sees a small drop of connected peers at the final epochs
of the study. On the other hand, Teku and Lighthouse fluctuate
more between 30 and 40 concurrent connections. Comparing
these values to the previous ones presented in Table 4, there
is a noticeable decrease in the number of peer connections.
The most representative case is that of Nimbus, which went
from 150 connections at the beginning of its journey to
50 nowadays. We interpret these adjustments as optimising
a ““too ambitious” prior target that doesn’t justify the extra
bandwidth cost.

TABLE 5. Target of peer connections for each client during its regular
operation.

Lighthouse Lodestar Nimbus Prysm Teku
30-40 50 50 50 30-40

To observe the impact of these concurrent connections
in the downlink, we can use Figure 21, which shows the
amount of received MBs per minute for each client combo.
Leaving the first synchronization from the checkpoint range,
the figure shows that most clients, Nimbus, Prysm, and
Lodestar, remain constant under one MB per minute. Clear
contradiction to clients with more unstable peers (in terms
of peer connections) like Teku and Lighthouse, which stay
above the 1 MB mark, touching the received 2MBs per

44414

minute. This may look like a contradiction since fewer
peers send more traffic. We attribute this phenomenon to the
fact that establishing a connection, which involves making
the handshake and sharing certificates to ensure encryption
between both partners, can be more demanding than just
sharing messages. In this case, Teku is the chattiest client.

Figure 22 shows the impact in the uplink by providing the
sent MBs per minute by the CL plus EL combo. The figure
shows how most clients share a similar pattern, with Prysm
being the chattiest client.

2.0
client
5 } .‘: —— Lighthouse
i [i —=—- Lodestar
;L—r): 151 :: 0 -+ Nimbus
[an] il ---- Prysm
= it f :. Teku
£ 10 i i i
& i i} it e N
B ' 1 e T i e
=
0.5 ‘;W}Q,M..‘:ﬁ i
0.0 T T T T T
201800 202000 202200 202400 202600
Epoch

FIGURE 22. Network incoming bandwidth for the clients while following
the head of the chain.

V. HARDWARE AND NETWORK OBSERVATIONS

The wide variety of data presented in the previous section IV
compile the raw resource utilization prints that different
clients infer in different machine configurations. These stud-
ies provide a wide knowledge of the minimum requirements
and the optimal hardware needed to participate in Ethereum’s
network. However, many other aspects can be directly linked
to a specific resource utilization pattern. As presented in
the following subsections of the paper, we analyse how
the Ethereum protocol, network instabilities, or the user’s
interaction impact the resource utilization of the different
clients.

A. CPU AT SLOT TIME UTILIZATION

We have previously introduced the overall resources needed
by each client while syncing and following the head of
the chain. However, we haven’t mentioned which processes
trigger such intense use of CPU during the performance
of a client. As mentioned, Ethereum’s PoS defines a new
chain organized in slots and epochs, where active validators
split their duties across the epoch. This means that in every
slot, a subset of active validators is in charge of receiving
and validating the proposed block, having to submit the
attestation votes then, and the aggregated attestations. Despite
the new PoS’ Gasper fork choice [53] defines the propagation
and arrival of these duties as asynchronous, the rewards
clearly incentive validators [44] to congest them in defined
periods (not mandatory, but ideal for maximizing the rewards
for each of them). A detailed description of the expected time
windows for each operation is described in Figure 23. In the
figure, we can appreciate how each duty is followed by a

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

4-second window to propagate each message over the
network.

6.4 mins

12 secs Epoch 1

{ Slot1][Slot 2 }[Slot 3]{ Slot 4 }

. Attestation’s
Propagation I Aggregation Propagation

8-12 secs

Block I Validator's
Generation Propagation Attestations

sec 0 0-4 secs sec 4 4-8 secs sec 0

12 secs

FIGURE 23. Description of the different validator task’s time windows
inside a single slot.

—— lighthouse - teku —— nimbus —— lodestar

— prysm

100

80

60

CPU(%)

40

20

0 12 24 36 48 60
Seconds since (25/04/2022-16:33:24)

FIGURE 24. CPU utilization at the slot range while following the head of
the chain.

Of course, as beacon nodes host the beacon validators,
the performance, validation, and broadcasting of these duties
impact the CPU workload of the nodes. Thus, we decided to
measure the CPU workload of each machine with a bigger
resolution, pairing it with their respective time inside the
slot. Figure 24 shows the CPU workload of each client over
five entire slots. Despite the workload of each client varies
from the rest, the figure clearly shows three main spikes
at around 4 seconds from each other. The pattern is very
clear when checking the CPU utilization by Prysm, Teku, and

Lighthouse, where we can appreciate that:
o The first spike corresponds to the arrival of the proposed

beacon block. After one of the client’s neighbours sends
the block, this one has to validate the block’s origin,
compute all the aggregated BLS signatures of each
attestation aggregation on it, and update the existing
beacon state with the new block. It is known that this
process is generally CPU-intense since BLS signature
aggregations require complex operations like elliptic
curve pairings.

o The second spike belongs to sending and receiving
the corresponding attestations. Attestations or votes are

VOLUME 12, 2024

small messages. However, there are many of them,
and the clients actively contribute to the validation and
broadcasting of the messages that they see. This explains
why, on some occasions, the second spike lasts longer
than the first one.

o The last spike is the least clear one. It belongs to
receiving and validating the aggregated attestations that
will be included in the following beacon blocks. Due to
their small size and the fewer number of messages that
are sent, the last spike is the smallest one.

We’ve seen that the CPU utilization can be easily mapped
to each of the operations that the beacon node has to do.
However, not all the nodes handle the workload in the same
way. Prysm, Lighthouse, and Teku’s behaviour has the most
visual explanations of the three spikes. Nimbus and Lodestar
show different profiles. They suffer smaller CPU profiles but
for longer periods. It is interesting to observe how Nimbus’s
spikes stay under 40% of CPU utilization, keeping it for less
than half a second compared with the three former clients.
This smaller but longer CPU utilization means that Nimbus
can handle the block arrival more efficiently, reducing the
risk of not being able to process a block “fast enough” if
not enough resources are available by the hosting machine.
Conversely, the Lodestar behaviour is the hardest to deduce
from the charts. Its CPU is used more over a more extensive
period, showing that it is either not that optimized to process a
new block arrival or struggles when having to share the block
with the rest of the network.

B. HARDWARE RESOURCES’ EVOLUTION OVER
HARDFORKS

Setting up a requirements list to participate as a full Ethereum
node is difficult. Previous sections IV-A IV-B IV-C already
introduced the increasing hardware resource utilization
tendency as the chain keeps evolving and more changes
keep happening with every hardfork. This isn’t something
wrong; the ecosystem heavily benefits from such changes.
However, this makes advising hardware that won’t be
obsolete in two years but without overestimating a bit more
challenging, as these changes generally imply requiring more
computational power, more extensive and faster disks, and
heavier bandwidth usage.

Tables 6 and 7 show the mean resource utilization of each
client on the different stages and hardforks of the chain.
Table 6 focuses on the clients’ resources while syncing the
chain from the Genesis block. We can appreciate two clear
patterns: i) the CPU profile and the network incoming and
out-coming bandwidth remain on the same ranges for the
different clients, and ii) the memory allocated by all the
clients increased between 130% and 198% except for Teku
that remained on the same ranges of 6.8GB to 6.9GB due to
the settings on the Java Virtual Machine (JVM).

This memory-increasing pattern has many possible causes.
On the one hand, the blocks and states of the beacon chain
get bigger and bigger as more validators are activated in the

44415

IEEE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

beacon chain. This requires allocating larger items in memory
than previous slots in the chain. On the other hand, with
the changes introduced at Altair’s hardfork, clients had to
make extra computations concerning the ““sync committees”’,
computations that directly benefited by keeping more chain
state information in memory.

TABLE 6. Mean resource utilization of the five main clients during their
synchronization in default machines divided by Hardfork (“H.Fork”). Note:
“P0” is the abbreviation for “Phase0” and “A” for “Altair”, “NetIin” and
“NetOut” are expressed in GB/s.

H.Fork CPU(%) Mem(GB) NetOut Netln

Lighthouse PO 45.77 4.571 0.127 0.060
A 47.42 6.031 0.127 0.050

Lodestar PO 28.83 1.878 0.088 0.004
A 28.78 3.724 0.088 0.004

Nimbus PO 45.33 1.289 0.083 0.105
A 41.44 1.676 0.082 0.028

Prysm PO 49.96 4.636 0.043 0.010
A 49.87 6.974 0.043 0.008

Teku PO 62.43 6.854 0.025 0.104
A 65.15 6.909 0.026 0.036

However, the most significant difference in resource
utilization comes with the change in the status of the beacon
node. Once the node is synced to the head of the chain, the
number of blocks and attestations the node has to process
is limited by the slots, as introduced in Section V-A. This
heavily reduces the CPU utilization. Table 7 shows the
mean resource utilization of the clients over five days while
following the head of the chain. In the figure, we can
appreciate how, in comparison to previous hard forks, the
resources taken by the clients to run after Capella are
considerably higher:

« the CPU utilization has reduced between 60% and 92%

of the syncing values (mean decrease of 73.94%).

o the memory usage has increased between 153% and
940% (mean increase of 426%).

o the incoming network bandwidth utilization has
increased between 479% and 1340% (mean increase of
824%).

o the outgoing network bandwidth utilization has
increased between 838% and 9975% (mean increase of
4320%).

TABLE 7. Mean resource utilization of the five main clients during their
regular operation in default machines, following the head of the chain.
Note: “Cap.” is the abbreviation for “Capella”, “NetIn”, and “NetOut” are
expressed in GB/s., and the extra overhead present in the means
generated from running Nethermind on each machine concurrently.

H.Fork CPU(%) Mem(GB) NetOut Netln

Lighthouse Cap. 15.00 16.784 0.608 0.419
Lodestar Cap. 11.54 17.493 0.532 0.399
Nimbus Cap. 10.10 15.754 0.566 0.436
Prysm Cap. 12.944 19.954 0.576 0.692
Teku Cap. 5.37 10.60 0.262 0.030

We must note that after “the merge”, the execution and
consensus clients needed to be paired individually. Thus, the
measurements in Table 7 aggregate both resource utilisation.
This explains the sudden increase in allocated Memory and

44416

network bandwidth, as the execution client has a much larger
chain state tracking the balance of all addresses and smart
contracts.

In summary, hardware resource utilization is somewhat
unpredictable in the long-term, as there are already new
technology advances like the Distributed Validator Technol-
ogy (DVT)!® to help increase the resilience of the network
or further protocol upgrades like ProtoDankSharding and
DankSharding'® that aim to help to scale the network.
However, we can expect that the incoming changes will
increase the hardware requirements, while still maintaining
it substantially lower when compared with the previous PoW
hardware evolution.

C. PERCEIVING NETWORK INSTABILITIES FROM THE
CHAIN SYNCHRONIZATION

Back to the first stages of this study, when we were putting to
test our methodology with the Medalla®° testnet (as described
in Section III-D3), we identified that syncing up the historical
records of the chains could give more information than one
would imagine.

4 600
j=
[
5
e}
£
400
< Lig
ks Tek
& 200 —— Nim
— Pry
— Lod
0

0 6 12 18 24 30 36
Syncing hours

FIGURE 25. Chain synchronization time by clients in the Medalla testnet.

At the moment of syncing the testnet, the slot synchroniza-
tion speed shown in Figure 25 didn’t show anything relevant
at first: a similar synchronization speed for most clients.
At the same time, Lighthouse and Prysm were the fastest
clients. However, taking a closer look at the beginning of the
syncing process, we could identify a small spike of synced
slots across all the clients. Zooming into the range of slots
70, 000 and 120, 000, Figure 26 showed that, in fact, the spike
was constant across all the clients and not a singularity on
only one of them.

Digging more into the anomaly, another metric suffered
a similar distinction pattern around the same range of slots.
Figure 27 shows the disk usage measured by each client.
The figure shows two clear spikes in two of the controlled
clients, Lighthouse and Teku, around the 2nd and 7th hour
of the synchronization process. In our attempt to correlate

1 8https://ethereum.org/en/ staking/dvt
19https://ethereum.org/en/roadmap/danksharding
20https:// github.com/goerli/medalla

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

150
125/
R T
©
9 100 /
[e]
=
E S R e
% —— Lig
T 50 Tek
é —— Nim
s25 — Pry
—— Lod
0
0 2 4 6 8 10 12

Syncing hours

FIGURE 26. Zoomed slot synchronization speed of consensus clients in
the Medalla testnet.

— Lig
30 Tek
. —— Nim
o
e — Pry
$20) — Lod
5
“
© 10|

0 6 12 18 24 30 36
Syncing hours

FIGURE 27. Disk usage of consensus clients during the Medalla testnet
synchronization.

both anomalies, Figure 28 represents the disk usage using
the synchronization slot as a reference in the X-axis. In the
figure, the pattern gets more clear for all the clients except
for Prysm, which barely notices any perturbance. There are
several points to remark here:

o The 70.000 to 120.000 slot period corresponds with a
non-finality period of the Medalla testnet which was
caused by erroneous rough time responses witnessed by
Prysm clients [54].

o Figure 28 shows that the disk usage reaction of Teku,
Lighthouse, and Nimbus is to spike the disk usage, while
Lodestar offers the exact opposite reaction, keeping the
disk usage flat.

Considering the relatively similar behaviour of Lighthouse
and Teku, where the sharp increase of disk usage ends with
a sharp drop, it is interesting to notice how Teku reduced the
time of higher disk usage, while Lighthouse keeps running
for several hours with additional data before dumping it. This
is due to the dual-database system that Lighthouse and some
other clients use: a hot database that stores unfinalized beacon
states, and a cold database that stores finalized beacon states.
As they sync through a large patch of non-finality, their hot
databases grow large until they reach finality and then migrate
this state into the cold database.

VOLUME 12, 2024

Disk usage (GB)

T
H
i
H
1
i
i
h
i
1
i
i
i
i
i
[
i
i
i
1
1
H
H
|
i
i
]
i
1
i
H

0 50 100 150 200 250 300 350 400

Synced slots (thousands)

FIGURE 28. Disk Usage of Ethereum clients while syncing the Medalla
testnet using the slots as X axis.

On the other hand, Nimbus’s rise in disk storage is not as
sharp as Teku and Lighthouse. However, its storage capacity
was not reduced afterwards (unlike Teku and Lighthouse).
Oddly, we can notice that Lodestar’s disk usage increases
more rapidly than any other client until the start of this
non-finality period when it stops growing. Prysm’s disk
usage continues its trend without any variations as if it was
not perturbed by the non-finality period. This is because
Prysm clients only save finalized states every 2048 slots.
This keeps disk utilization to a minimum. During non-finality,
they do not save unfinalized states to disk, which allows
them to prevent the database from unnecessarily growing.
However, doing this comes at a cost, as they now keep
everything in memory, if they need to retrieve a particular
(unfinalized) state and it’s been a while since finality, they
have to regenerate it. Doing this puts a non-trivial amount of
pressure on the CPU, making it harder to keep track of all the
different forks.

The steeper syncing curve around slot 100, 000 previously
seen could imply that during that time, there was little
information to process (lots of missed blocks due to a lack
of consensus). Therefore, clients can move faster in the
syncing process. However, this does not seem to fit with
the accelerating disk usage observed during the same period.
To look deeper into this question, we used Lighthouse logs
to analyze the number of times a block was queued and/or
processed for each slot during the non-finality period. The
results, depicted in Figure 29, show that during this period,
there were almost no blocks queued, which seems to be
consistent with the accelerated syncing speed. However,
we also noticed that at the beginning of the non-finality
period, at exactly slot 73, 248, 219, blocks were being queued
(note the logarithmic Y axis), followed by a sudden drop
of blocks to queue for more than 30, 000 slots. This clearly
shows a considerable perturbation in the network.

We assume that the accelerating disk usage is related to
an increase in the state stored in the client’s database, which
might be linked to the difficulty of pruning states during
a non-finality period. Thus, to corroborate our hypothesis,
we analyzed Lighthouse’s detailed logs and plotted the

44417

IEEE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

102,

101_

Queued blocks (que/proc)

10°
65 75 85 95 105 115 125

Synced slots (thousands)
FIGURE 29. Number of times a block is queued to be persisted while

syncing the Medalla chain on Lighthouse. Zoomed at the non-finality
period.

Freezer migration started {--

Database pruning complete {-«

Extra pruning information {-«--+

Starting DB pruning

Chain advanced

Fork choice success

Beacon block imported

Head beacon block

Lighthouse event MSGs

BlocksByRange Response
Storing full state

Startingfromgenesisstate65 75 85 95 105 1is

Synced slots (thousands)

FIGURE 30. Events timeline for Lighthouse while syncing the Medalla
testnet. Zoomed at the non-finality period.

frequency at which different events get executed. Figure 30
lists 11 different types of events. We can see that during the
non-finality period, four types of events rarely get executed:
Freezer migration started, Database pruning complete, Extra
pruning information, and Starting database pruning. This
demonstrates that the client could not prune the database
during this period, consistent with the rapid increase in disk
usage.

Although multiple things remain to be understood about
the behaviour of some clients during a non-finality period,
this paper demonstrates that it is possible to identify such
a network disturbance by simply looking at the resource
utilization of the clients.

D. BEACON API PERFORMANCE

Access to chain data or internal node information is crucial
for most users. Thus, we performed two sets of experiments
that benchmark the REST APIs of the different clients
following the methodology described in III-E2. The first
one consisted of 1.000 sequential queries performed with an
in-between delay of 10 seconds (to prevent the exhaustion of
the resources of the beacon node). Table 8 shows the success
ratio of each client supporting the archival mode, defining
the reliability of each client under the same workload. The
low success of Prysm catches our attention for having the

44418

lowest percentage of successfully replied queries, a 19%.
Digging into the possible root of the problem for such a low
success rate, we discover that Prysm synced until the last slot
we added to our query randomizer. However, by checking
the response times in Figure 31, the successful calls didn’t
perform that well compared with the rest of the clients.
Prysm is known for being the only client that offers endpoints
for both gRPCs and HTTP REST API calls. They strongly
believe that gRPCs are better and faster. Even though this
is a legitimate statement, at Prysm’s beacon node level, the
REST API calls are translated into gRPC on their arrival and
vice-versa when returning the response, making the process
slower than other clients. Given that the rest of the beacon
nodes communicate with their validator client through the
REST API, it leaves Prysm in a lower step towards client
interoperability. Checking the rest of the time responses,
we do remark that Teku managed to reply to all the queries in
under 10 seconds, with a median of 1.23 seconds.

TABLE 8. Percentage of responses the Beacon node could successfully
reply under different concurrent request workloads.

Concurrent Queries Prysm Lighthouse Teku Nimbus
1 19% 100% 92% 98%
10 0% 93% 99% 0%
20.0 4
17.5 A T
15.0 '
o
12.5 o}
Q
]
[¢]

~

n
|

o

5.0

2.5 A
o]

0.0 1

Response Times (seconds)
=
o
o
N

= |

T T T T
prysm lighthouse teku nimbus

FIGURE 31. Distribution of the Beacon node’s response time under a
single concurrent request workload. Note that 20 seconds was the
timeout of the request.

In the second experiment, we increased the number of
performed concurrent queries from one to ten, checking each
client’s limits. The second row of Table 8 shows that only
Teku and Lighthouse kept a similar reliability ratio at such
a level of demand, keeping a 90% of successful replies.
In comparison, Prysm and Nimbus stayed far behind with
a 0%. Regarding the response times of the ten concurrent
queries shown in Figure 32, most of the response times
distributions got higher and larger. Lighthose’s and Prysm’s
response times got more concentrated around the predefined
Timeout of 20 seconds. As expected, Lighthouse’s median
moved from around 3.1 seconds to 13 seconds, while Teku’s
median response time increased up to 4.2 seconds.

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

The clear difference between the client’s throughput and
response times is easily attributable to the different end-user
targets. While Prysm and Nimbus might be performance-
focused, Lighthouse and Teku have a larger business-
research-oriented focus, where Lighthouse offers a larger
set of API endpoints for data accessibility, and Teku was
built with the idea of healing many requests coming from
Infura®!.

20.0 4
17.5 1 °
— v o
B 15.0 4
c
<]
O
@ 1254
: —
£ 10.0 4
E
i
g 7.5 4
2 g C
& 5.0
2.5
0.0 4 -
prysm lighthouse teku nimbus

FIGURE 32. Distribution of the Beacon node’s response time under ten
concurrent requests workload. Note that 20 seconds was the timeout of
the request.

VI. DISCUSSION

In our journey through this exhaustive evaluation, we found
multiple strong points as well as room for improvement in
all Ethereum CL clients. Our objective with this study was
fourfold: 1) introduce the different implementations available
to participate in the network, with their respective strong and
weak points; ii) dissect the necessary hardware resources on
each of the stages of an Ethereum node (syncing vs following
the head) and provide an overview of how the network can
affect the available resources; and last but not least, iii)
introduce how the network and the ecosystem can directly
benefit from individual choices such as choosing client or
home-staking.

A. STRENGTHS AND WEAKNESSES OF THE CLIENTS

The evaluation presented above gives empirical data about
how the Ethereum CL clients perform under different
hardware configurations and network scenarios. However,
many other aspects also play an important role when choosing
the software that will be deployed on an operational platform,
such as documentation of the clients’ usage, functionalities
of the exposed API (important if the client will be used as
an entry point to Ethereum’s on-chain data). Although some
of these aspects might be subjective, we try to cover some
of those aspects together with the empirical data measured,
discussing the strengths and points for improvements of each
Ethereum CL client.

21 https://beaconcha.in/

VOLUME 12, 2024

1) PRYSM

Prysm has one of the best user experiences among its clients.
Itis easy to set up and deploy on its default configuration. The
Prysmatic Labs?? team has done a remarkable job simplifying
the deployment for non-technical users. However, on the
other hand, it has room for optimization in several aspects.
The documentation portal could be improved; finding
information on configuring certain parameters is not intuitive.
The API offered by the client could be highly improved. The
API is generally used as a communication point between the
validator and the beacon node using gRPCs. Despite gRPC
being a nice alternative to the standard HTTP endpoint APIs,
Prysm has to comply with the standard HTTP API that allows
interoperability with other validator clients. And because
they rely on gRPC by default, the performance of the HTTP
endpoints gets massively impacted as each HTTP request has
to be translated to gRPCs. The result of this performance
impact is a slower API that can’t support multiple requests
simultaneously. The synchronization of the client in an
archival mode (storing the beacon state checkpoints with a
very low frequency for faster access to them) is also slower
when compared with other clients.

2) LIGHTHOUSE

Lighthouse from Sigma Prime®? was the client with the most
complete API. It has all the CL Beacon node API standard
implemented, and they have extended the endpoints with
others that we found interesting from a research or data
analysis point of view. On the other side, the client on the
first measurements had a memory leak while syncing the
chain from Genesis, it also has the highest disk requirements
among all clients and seems to be among the most chatty
clients. As with Prysm, the number of disk IO management
should be reviewed, as other clients have shown that it can be
considerably reduced.

3) TEKU

Teku seems to be one of the most stable clients with very
complete documentation, in which it is really easy to find
any execution option and command line flag. It has a
very competent archival node mode, as Consensys>* uses it
to provide all the information through Infura®>. However,
generally, its synchronization is pretty slow, and when it
comes to the archival node (which definitely needs to
be synced from Genesis), it takes a lot more space than
comparing it with others. On the other side, its standard
client has the lowest storage needs, and the archival mode has
the fastest API response time of all clients. It is also really
important to note that setting up the JVM correctly to avoid
memory issues can be tricky at the beginning, so it might take
a few tries to properly set it up.

22 https://prysmaticlabs.com/
23https://sigmaprime.io/
24https://consensys.io/

25 https://www.infura.io/

44419

IEEE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

4) NIMBUS

Nimbus from Status®® is the client with the lowest CPU and
memory requirements across all platforms and the fastest
syncing open-source client. It is clearly the client better suited
to run on low-power devices, but it also performs well on
more powerful servers. On the other hand, its compilation
and deployment are not as user-friendly as other clients. Also,
the fact that the Beacon node and Validator node run on the
same executable could be viewed as a feature but also as a
disadvantage, as sometimes it is useful to stop the Validator
client while keeping the Beacon node alive.

5) LODESTAR

Lodestar from ChainSafe?’ is one of the latest CL clients
to join the race, and it is commendable to see that the
software supports most of the features that the other clients
offer. Also, it shows a fairly low resource consumption.
However, Lodestar is not always easy to compile and deploy
(except when using Docker), there were multiple outdated
instructions in the documentation. It is also the slowest client
to sync from Genesis, and it does not offer archival mode.

6) GRANDINE

Grandine was the fastest client to sync across all. It seems
to have a great parallelization strategy that outperforms other
clients while syncing from Genesis. However, it is not sure
how much this speed can impact the performance after
syncing. Despite there are still many features in beta, clearly,
the biggest drawback of this client is that it has not been open-
sourced yet.

B. HARDWARE RECOMENDATIONS

We have shown that the running combo CL plus EL clients
is way more memory-demanding under standard conditions,
which involves clients following up with the canonical head
of a finalizing chain. However, we do see that in the moments
of having to re-sync some part of the chain, either because
there was a chain re-organization when some blocks didn’t
get enough votes and had to be dropped, forcing to resync the
last finalized checkpoint or simply because the client went
down, the CPU spikes 3-4 times that usage.

Similar resource spikes are expected if the network is
experiencing difficulties in finalizing, where more uncertain
states and blocks must be kept in the disk and memory.
So having that extra hardware, CPU, memory, and faster
and bigger disks can make the difference between recovering
faster from this rare behaviour of the chain or being penalized
by it because the client struggles to recompute and sync up the
correct head of the chain because CPU, memory, or disk are
at their 100% capacity, but it is insufficient.

This shouldn’t be extrapolated to choose renting the
“fattest” or “‘biggest” possible machine to run a node,
as we support a middle ground where hardware should be

26 https://status.im/
27 https://chainsafe.io/

44420

slightly overestimated to satisfy those sudden need spikes.
However, we do believe that the current requirements and
performance of the clients exceed the hardware of domestic
low-performance hardware devices such as a Raspberry Pi.
Of course, some tweaks and upgrades can be done in the
hardware of Raspberry Pis, like extending the disk speeds
with external SSDs, buying more powerful modifications
or alternatives, upgrading it with extension packs, and so
on, but compatibility and the community easily troubleshoot
complications might leave this option to enthusiasts.

At the time of writing this paper, we found a sweet spot
for the hardware on machines with 8 CPU cores, preferably
32GB of memory, and a fast 2TB SSD disk. This is a
good result since many PCs can satisfy these requirements.
There are solid low-powered devices such as laptops, Inte-
NUCS, Mac Minis, and so on that could run an Ethereum
node without any problems and the need to build a custom
PC. On the other hand, there are custom solutions like
DappNode machines that can help and guide less experienced
or technical users to maintain their nodes, which summarizes
the configuration and maintenance of the node in a few clicks.

C. THE NETWORK CAN BENEFIT FROM YOUR CLIENT
CHOICES

We have already presented and discussed the different
requirements of the different available CL clients. However,
they all have shown to be reliable, and there isn’t much
difference between them that makes any of them a clearer or
better choice. We believe each of them has its target users, but
we have to encourage users to try them all out and choose the
one they feel more comfortable with. Client diversity is an
important aspect of the network’s resilience and ultimately
the chain. So exploring the least popular client choices can
not only help the community but also surprise us with a better
performance than the one we expected.

Following the same line of recommendations, we highly
encourage users to lose the fear of playing around with
spawning their own nodes and to stake from home. These
are very good practices that help the decentralization and
resilience of the entire network. Furthermore, there is a broad
literature, forums, communication channels, and a friendly
community willing to support setting up or troubleshooting
the spin-up of Ethereum nodes.

VII. CONCLUSION
In this paper, we have shown multiple aspects of all Ethereum
CL clients while tested under different conditions. We have
exposed their strengths and discussed some points for
improvement. After all these experiments, it seems clear
that the different CL client teams have focused on different
aspects, users, and use cases and excel in different points.
Perhaps the most important conclusion that should be
highlighted is that all Ethereum CL clients run well
on different hardware platforms and configurations. They
showcase Ethereum’s strong software diversity, which is hard
to find anywhere else in the blockchain ecosystem. Overall,

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

our evaluation demonstrates that the efforts of all CL client
implementation teams and researchers involved have pushed
the Ethereum ecosystem one step closer to a more sustainable
and scalable blockchain technology.

APPENDIX

BEACON CHAIN SYNCHRONIZATION ON A RASPBERRY
Pl 4

We have run all the different clients from scratch in Raspberry
Pis on the versions displayed in section III-D, testing if
running a production node in such a low-powered device
is possible. Anticipating the slowest performance of the
more limited resources of the Raspberry Pis, the syncing
measurement of the chain for the low-powered devices was
performed on the Kiln testnet?® on the same range of dates
(18th of March, 2022).

1) CPU UTILIZATION

Figure 34 shows the CPU utilization degree achieved by
the CL clients, which remains relatively similar to the one
measured on the default node with a slight overhead as
each core is “slower” than its default version. The figure
shows that Grandine increases CPU utilization from 80%
to a constant 90% CPU usage while syncing. Teku follows
the lead, increasing its CPU utilization up to the 80% as the
blocks keep getting bigger due to the aggregation of more
validators. At the same time, the rest of the clients also seem
to register an increase of the 10% of the usage.

500

+ Grandine
x Ligthouse
¥ Lodestar

v 400 4 Nimbus

ey 2

o

v

c

-2 300 ~

o

[

o

o

@ 200

=]

=

=

“

a 100 -

o

T f
Q 800000 1600000 2400000 3200000

Slot

FIGURE 33. Disk write operations by the clients while running in a “Fat”
node.

2) MEMORY UTILIZATION

A similar pattern was observed in terms of memory. Figure 35
shows the memory allocation patterns from the CL clients
in the Raspberry Pis. Teku keeps a steady performance
by assigning 6GB of memory to the JVM. Prysm keeps
allocating memory as Go does not free memory unless
the OS asks for it, reaching 5GB of memory in its latest
synchronization stages. Lodestar, Grandine, and Nimbus

28https:// github.com/eth-clients/merge-testnets/tree/main/kiln

VOLUME 12, 2024

100

Grandine
Ligthouse
Lodestar
Nimbus
Prysm
Teku

+
x
¥
A
<

o0
(=}
L

=]
(=]
L

CPU utilization (%)
F
(=]

~
o
L

T T T
800000 1200000 1600000

Slot

T
400000

FIGURE 34. CPU utilization while syncing the chain in a Raspberry Pi 4.

remain with the lower profile at a lower limit of 3GB, showing
that not much memory is needed to sync up the chain. Finally,
Lighthouse shows the same memory leak pattern but sooner
this time, as the machine’s total memory is reduced to 8GB.
We experienced three client crashes as more memory than
the available was asked. In this sense, each sudden drop in
Figure 35 belongs to each of the restarts of the client after
the crash. As Figure 36 shows, with the shorter access to
memory resources, the disk utilization remains steady from
the beginning of the synchronization process as opposed to
the previous hardware configurations. However, not all the
clients have the same disk usage. In the figure, we can see
that in synchrony with its memory leak, Lighthouse highly
relies on disk write operations in comparison to other clients,
multiplying by three times the usage of Teku, and by more
than eight times the rest.

8000

7000 -

A o> o4 X 4

Grandine

Ligthouse

Lodestar i
Nimbus :
Prysm :

Teku

6000 1

5000 -

4000 -

Memory utilization (MB)
) Lt
g 28
o o

1000 4

800000 1200000 1600000

Slot

400000

FIGURE 35. Memory utilization while syncing the chain in a
Raspberry Pi 4.

3) PERFORMANCE

In the opposite direction as the one measured with the ““fat
nodes”, Figure 15 shows decreasing the hardware resource
clearly impacts syncing the chain. Making it clear, once again,
that being slower while syncing the chain shouldn’t be a

44421

IE

EE Access

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

Disk writes (MB/s)

10

+ Grandine

x Ligthouse

v Lodestar
g A N_mbL.s

< Prysm

Teku
6 -
44
N %

400000

800000
Slot

1200000 1600000

FIGURE 36. Disk writing speeds while syncing the chain in a
Raspberry Pi 4.

determinant factor, as syncing via checkpoints significantly
reduces the overall duration of this process. In any case,
slower CPU cores, less memory, and slower reading and
writing speeds from and to SD cards have drawbacks and
impact performance.

AC

KNOWLEDGMENT

The authors would like to thank the client developer teams for
their support in troubleshooting different encountered issues
and their feedback on this work and also would like to thank
Paristosh from the Ethereum Foundation for his involvement
and support in the project and Izzy for his constructive
feedback on this study.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1-32, Apr. 2014.
E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu, “KEVM:
A complete formal semantics of the Ethereum virtual machine,” in Proc.
IEEE 31st Comput. Secur. Found. Symp. (CSF), Jul. 2018, pp. 204-217.
M. Wohrer and U. Zdun, “Smart contracts: Security patterns in the
Ethereum ecosystem and solidity,” in Proc. Int. Workshop Blockchain
Oriented Softw. Eng. (IWBOSE), Mar. 2018, pp. 2-8.

M. Cortes-Goicoechea and L. Bautista-Gomez, ‘“‘Discovering the
Ethereum?2 P2P network,” in Proc. 3rd Conf. Blockchain Res. Appl. Innov.
Netw. Services (BRAINS), Sep. 2021, pp. 1-2.

P. Henrique F. S. Oliveira, D. Miiller Rezende, H. S. Bernardino,
S. M. Villela, and A. B. Vieira, “Analysis of account behaviors in
Ethereum during an economic impact event,” 2022, arXiv:2206.11846.

S. Tikhomirov, “Ethereum: State of knowledge and research perspectives,”
in Proc. Int. Symp. Found. Pract. Secur. Cham, Switzerland: Springer,
2017, pp. 206-221.

S. Nakamoto, “Bitcoin,” in A Peer-to-Peer Electronic Cash System,
vol. 21260, 2009.

A. Hayes, “A cost of production model for Bitcoin,” Tech. Rep., 2015.

F. Saleh, “Blockchain without waste: Proof-of-stake,” Rev. Financial
Stud., vol. 34, no. 3, pp. 1156-1190, Feb. 2021.

V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining GHOST and casper,” 2020,
arXiv:2003.03052.

O. Moindrot and C. Bournhonesque, “Proof of stake made simple with
casper,” in Proc. ICME, 2017.

D. Park, Y. Zhang, and G. Rosu, “End-to-end formal verification of
Ethereum 2.0 deposit smart contract,” in Proc. Int. Conf. Comput. Aided

44422

[13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Verification, Los Angeles, CA, USA. Cham, Switzerland: Springers, 2020,
pp. 151-164.

D. Sel, K. Zhang, and H.-A. Jacobsen, “Towards solving the data
availability problem for sharded Ethereum,” in Proc. 2nd Workshop
Scalable Resilient Infrastructures Distrib. Ledgers, Dec. 2018, pp. 25-30.
M. Hall-Andersen, M. Simkin, and B. Wagner, “Foundations of data
availability sampling,” Cryptol. ePrint Arch., 2023.

V. Denisova, A. Mikhaylov, and E. Lopatin, “Blockchain infrastructure
and growth of global power consumption,” Int. J. Energy Econ. Policy,
vol. 9, no. 4, pp. 22-29, Jul. 2019.

A. O. Mahony and E. Popovici, “A systematic review of blockchain
hardware acceleration architectures,” in Proc. 30th Irish Signals Syst.
Conf. (ISSC), Jun. 2019, pp. 1-6.

J. Li, N. Li, J. Peng, H. Cui, and Z. Wu, “Energy consumption of
cryptocurrency mining: A study of electricity consumption in mining
cryptocurrencies,” Energy, vol. 168, pp. 160—-168, Feb. 2019.

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 3-16.

A. Pinar Ozisik, G. Bissias, and B. Levine, ‘“‘Estimation of miner hash rates
and consensus on blockchains (draft),” 2017, arXiv:1707.00082.

M. Bedford Taylor, “The evolution of Bitcoin hardware,” Computer,
vol. 50, no. 9, pp. 58-66, 2017.

L. Wang and Y. Liu, “Exploring miner evolution in Bitcoin network,” in
Proc. Int. Conf. Passive Act. Netw. Meas., New York, NY, USA. Cham,
Switzerland: Springer, 2015, pp. 290-302.

M. Sivanesan, A. Chattopadhyay, and R. Bajaj, “Accelerating hash
computations through efficient instruction-set customisation,” in Proc.
31st Int. Conf. VLSI Design 17th Int. Conf. Embedded Syst. (VLSID),
Jan. 2018, pp. 362-367.

Z. A. Al-Odat, M. Ali, A. Abbas, and S. U. Khan, “Secure hash algorithms
and the corresponding FPGA optimization techniques,” ACM Comput.
Surveys, vol. 53, no. 5, pp. 1-36, Sep. 2021.

N. Houy, “The Bitcoin mining game,” Ledger, vol. 1, pp.53-68,
Dec. 2014.

J. Anish Dev, “Bitcoin mining acceleration and performance quantifica-
tion,” in Proc. IEEE 27th Can. Conf. Electr. Comput. Eng. (CCECE),
May 2014, pp. 1-6.

J. Shen, A. L. Varbanescu, and H. Sips, “Look before you leap: Using the
right hardware resources to accelerate applications,” in Proc. IEEE IEEE
Int. Conf. High Perform. Comput. Commun. 6th Int. Symp. Cyberspace Saf.
Secur. 11th Int. Conf. Embedded Softw. Syst., Aug. 2014, pp. 383-391.

H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on Ethereum
systems security: Vulnerabilities, attacks, and defenses,” ACM Comput.
Surveys, vol. 53, no. 3, pp. 1-43, May 2021.

P. Silva, D. Vavricka, J. Barreto, and M. Matos, ““Impact of geo-distribution
and mining pools on blockchains: A study of Ethereum,” in Proc. 50th
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2020,
pp. 245-252.

M. Cortes-Goicoechea, T. Mohandas-Daryanani, J. L. Munoz-Tapia, and
L. Bautista-Gomez, “Unveiling Ethereum’s hidden centralization incen-
tives: Does connectivity impact performance?”” 2023, arXiv:2309.13329.
S. K. Kim, Z. Ma, S. Murali, J. Mason, A. Miller, and M. Bailey,
“Measuring Ethereum network peers,” in Proc. Internet Meas. Conf.,
Oct. 2018, pp. 91-104.

A. Reyna, C. Martin, J. Chen, E. Soler, and M. Diaz, “On blockchain
and its integration with IoT. Challenges and opportunities,” Future Gener.
Comput. Syst., vol. 88, pp. 173-190, Nov. 2018.

P. K. Sharma, N. Kumar, and J. H. Park, ““Blockchain technology toward
green IoT: Opportunities and challenges,” IEEE Netw., vol. 34, no. 4,
pp. 263-269, Jul. 2020.

1. Romashkova, M. Komarov, and A. Ometov, ‘“Demystifying blockchain
technology for resource-constrained IoT devices: Parameters, challenges
and future perspective,” IEEE Access, vol. 9, pp. 129264-129277, 2021.
Y. Gao, J. Shi, X. Wang, Q. Tan, C. Zhao, and Z. Yin, “Topology
measurement and analysis on Ethereum P2P network,” in Proc. IEEE
Symp. Comput. Commun. (ISCC), Jun. 2019, pp. 1-7.

B. Littlewood and L. Strigini, “Redundancy and diversity in security,” in
Proc. Eur. Symp. Res. Comput. Secur., Sophia Antipolis, France. Cham,
Switzerland: Springer, 2004, pp. 423-438.

VOLUME 12, 2024

M. Cortes-Goicoechea et al.: Can We Run Our Ethereum Nodes at Home?

IEEE Access

[36] A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox, and J. W. Davidson,
“Security through redundant data diversity,” in Proc. IEEE Int. Conf.
Dependable Syst. Netw. FTCS DCC (DSN), 2008, pp. 187-196.

[37] B. Littlewood, P. Popov, and L. Strigini, ‘“Modeling software design
diversity: A review,” ACM Comput. Surv., vol. 33, no. 2, pp. 177-208,
Jun. 2001.

[38] P. Traverse, “AIRBUS and ATR system architecture and specification,” in
Software Diversity in Computerized Control Systems. Cham, Switzerland:
Springer, 1988, pp. 95-104.

[39] M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese, ‘“Network
diversity: A security metric for evaluating the resilience of networks
against zero-day attacks,” IEEE Trans. Inf. Forensics Security, vol. 11,
no. 5, pp. 1071-1086, May 2016.

[40] D. Borbor, L. Wang, S. Jajodia, and A. Singhal, “Optimizing the network
diversity to improve the resilience of networks against unknown attacks,”
Comput. Commun., vol. 145, pp. 96-112, Sep. 2019.

[41] P. Reibel, H. Yousaf, and S. Meiklejohn, “Short paper: An exploration
of code diversity in the cryptocurrency landscape,” in Proc. Int. Conf.
Financial Cryptogr. Data Secur. Cham, Switzerland: Springer, 2019,
pp. 73-83.

[42] T. Inagaki, Y. Ueda, T. Nakaike, and M. Ohara, “Profile-based detection
of layered bottlenecks,” in Proc. ACM/SPEC Int. Conf. Perform. Eng.,
Apr. 2019, pp. 197-208.

[43] A.Noureddine, R. Rouvoy, and L. Seinturier, ‘““Monitoring energy hotspots
in software: Energy profiling of software code,” Automated Softw. Eng.,
vol. 22, no. 3, pp. 291-332, Sep. 2015.

[44] M. Cortes-Goicoechea, T. Mohandas-Daryanani, J. Luis Mufioz-Tapia, and
L. Bautista-Gomez, “Autopsy of Ethereum’s post-merge reward system,”
2023, arXiv:2303.09850.

[45] S.Rouhani and R. Deters, *‘Performance analysis of Ethereum transactions
in private blockchain,” in Proc. 8th IEEE Int. Conf. Softw. Eng. Service Sci.
(ICSESS), Nov. 2017, pp. 70-74.

[46] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras,
“GossipSub: Attack-resilient message propagation in the filecoin and
ETH2.0 networks,” 2020, arXiv:2007.02754.

[47] Node Exporter. [Online]. Available: https://github.com/prometheus/
node_exporter

[48] Prometheus. [Online]. Available: https://github.com/prometheus/prome
theus

[49] Ethereum Beacon Node Rest Api Standard. [Online]. Available:
https://ethereum.github.io/beacon-APIs/

[50] Ethereum Execution APl Standard.
https://github.com/ethereum/execution-apis

[511 API Benchmark Tool. [Online]. Available: https://github.com/cortze/api-
benchmark

[52] M. Cortes Goicoechea, T. Mohandas-Daryanani, J. L. Mufioz-Tapia, and
L. Bautista-Gomez. Miga Labs’ Ethereum Client’s Hardware Resource
Analysis. [Online]. Available: https://github.com/migalabs/eth-client-hw-
analysis

[53] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” 2017,
arXiv:1710.09437.

[54] Medalla Non-finality Period August 2020. [Online]. Available:
https://docs.google.com/document/d/1 1RmitNRuil0LcLCyoXY6B 1IN
CZZKq30gEU6BEg3EWfk

[Online]. Available:

MIKEL CORTES-GOICOECHEA received the
bachelor’s degree in industrial electronics and
the master’s degree in embedded systems from
the University of the Basque Country, Spain.
He is currently pursuing the Ph.D. degree with
Universidad Politécnica de Catalunya. He is also a
Research Engineer with the Barcelona Supercom-
puting Center and MigaLabs, Spain. His research
interests include p2p networks, p2p protocols, and
blockchain applications, such as Ethereum, IPFS,
and Filecoin. He was awarded with a Ph.D. Research Fellowship from
Protocol Labs, during which he could collaborate on various research
projects with entities, such as Protocol Labs, the Filecoin Foundation, the
Ethereum Foundation, the University of Cambridge, and the Codex Storage
Team at Status.

VOLUME 12, 2024

TARUN MOHANDAS-DARYANANI was born in
Canary Islands, Spain, in 1996. He received the
degree in computer science from the University
of La Laguna, Canary Islands, and the master’s
degree in information security technology from the
Open University of Catalonia. From 2018 to 2019,
he participated in a scholarship with Telefonica,
where he developed several tools to automate
the data transfer between APIs and maintained
some of the video platform infrastructure systems.
From 2019 to 2021, he was a Cybersecurity Consultant with Daimler
Group Services Madrid, where his main role was reviewing the software
development lifecycle of the internal applications. Since 2021, he has been a
Research Engineer with Migalabs, a small research group on the Ethereum
blockchain, where he has developed both code and infrastructure. Among
his main experiments and research, we can highlight some performance
analyses: the resource analysis on the Ethereum consensus clients and the
distributed validator performance analysis in collaboration with the Obol
Team. He is also the main maintainer of the GotEth tool, a lightweight beacon
chain data extractor that powers the Ethseer website.

JOSE LUIS MUNOZ-TAPIA reccived the
M.S. degree in telecommunications engineering,
in 1999, and the Ph.D. degree in security engineer-
ing, in 2003. He is currently a Researcher with the
Information Security Group, an Associate Profes-
sor with the Department of Network Engineering,
Universidad Politécnica de Catalunya (UPC), and
the Director of the Master Program in Blockchain
Technologies with the UPC School. His research

* interests include applied cryptography, network
security, game theory models applied to networks and simulators, and
distributed ledgers technologies.

LEONARDO BAUTISTA-GOMEZ received the
master’s degree from Pierre & Marie Curie
Paris 6 University and the Ph.D. degree from
Tokyo Institute of Technology. He is currently the
Founder and a Team Leader of Migalabs and he
is also a Senior Researcher with the Codex Team.
He has been collaborating with the EF for more
than five years and he has received five research
grants from the EF, plus several research grants
from Lido, Obol, and other institutions. He has
over a decade of research experience in supercomputers, deep learning, and
blockchain technology. He has published more than 50 scientific articles and
he has received multiple international academic awards, such as the IEEE
TCSC Award for Excellence in Scalable Computing and the ACM/IEEE
George Michael Memorial High Performance Computing Fellow.

44423

