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ABSTRACT Alzheimer’s disease (AD) is a neurodegenerative disease that affects the elderly and leads to
cognitive decline and memory loss. Treatments for stopping or slowing the progression of AD have not been
discovered yet; therefore, delaying the progression of AD is the only option, which makes early diagnosis of
AD crucial. Additionally, although Aβ plaques and tau proteins are considered the causes of early AD, few
studies have used this information to diagnose early AD. In this study, a middle-fusion multimodal model
is proposed for the diagnosis of early AD. The proposed multimodal model extracts features without loss
using a depthwise separable convolution block without an activation function. Subsequently, middle fusion is
applied usingmix skip connection and sharingweight convolution blocks, both designed to learn the complex
relationships betweenmodalities. In contrast to other studies, the proposed approach has threemain novelties.
1) A middle-fusion multimodal model is proposed for the early diagnosis of AD. 2) The proposed model
is evaluated using the entire ADNI series, including T1-weighted magnetic resonance imaging (T1w MRI)
and 18F-FluoroDeoxyGlucose positron emission tomography (FDG PET) from the ADNI1 dataset, as well
as Aβ PET and tau protein PET from ADNI2 and ADNI3 datasets. 3) A novel region-of-interest (ROI)
extraction method is proposed for the hippocampus, middle temporal, and inferior temporal regions, which
are known to be affected in the early stages of AD. In the experimental results, the proposed multimodal
model achieved a balanced accuracy of 1.00, for the task of Alzheimer’s disease vs cognitive normal (CN)
and 0.76 for the task of mild cognitive impairment vs cognitive normal.

INDEX TERMS Computer aided diagnosis, convolutional neural networks, deep learning, dementia, image
classification, magnetic resonance imaging, positron emission tomography.

I. INTRODUCTION
Alzheimer’s disease (AD) is a degenerative brain disease that
causes loss of nerve cells and tissue in the brain, leading
to cognitive impairment and memory loss, especially in
the elderly [1], [2]. By 2050, one in 85 people worldwide
will suffer from AD or other types of dementia [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Byung-Gyu Kim.

Although nursing and treatment costs are expected to increase
significantly as the number of patients increases, no other
treatment has been found to stop or treat disease progression
except for treatments that slow disease progression [4]. Since
AD is a degenerative brain disease, loss of nerve cells or
tissue occurs when the disease progresses. Therefore, the
diagnosis of mild cognitive impairment (MCI), which is
considered a precursor to AD, is an important part of early
AD diagnosis.
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Computer-aided diagnostics based on deep-learning
approaches have been widely studied in the medical
imaging field. Research on the early diagnosis of AD
has been conducted by many research groups focusing on
diagnostic performance improvement and self-supervised
learning methods [5], [9] using deep learning, machine
learning, and other algorithms. Most research has been
conducted using magnetic resonance imaging (MRI),
which provides structural information on brain tissue, and
18F-FluoroDeoxyGlucose positron emission tomography
(FDG-PET), which provides metabolic information on the
brain. Structural changes in the brain MRI indicate that
nervous tissue loss has already occurred; therefore, it is
too late for an early diagnosis of AD, and the metabolic
information on the brain does not provide information on the
cause of AD. Current research on the causes of Alzheimer’s
disease attempts to explain the causes of AD through amyloid
β plaques (Aβ plaques) and tau protein hypotheses. The
Aβ hypothesis states that the precipitation of Aβ peptides
causes AD, whereas the tau protein hypothesis states that
hyperphosphorylation of tau protein causes neurofibrillary
tangles which cause AD [10], [11]. An A/T/N biomarker
classification scheme was proposed for the clinical diagnosis
of AD based on the tau protein hypothesis [14], where
A refers to the Aβ biomarker; T is a tau protein biomarker;
and N indicates neurodegeneration or neuronal injury, with
the category of the biomarker classified as positive or
negative. Similar to the A/T/N biomarker classification
scheme for the clinical diagnosis of AD, developing a
multimodal deep learning model using MRI, Aβ PET and
Tau PET is essential.

In this study, multimodal models based on 3D subjects
and ROIs are proposed and applied to MRI and PET images
collected from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) [15]. In ADNI1, subjects who were scanned
using both MRI and FDG-PET were included, whereas
in ADNI2 and ADNI3, subjects scanned by MRI, Tau
PET, and Aβ PET were included. The performance of the
proposed model was validated through the following three
tasks: AD diagnosis task of Alzheimer’s disease (AD) vs.
cognitively normal (CN); early AD diagnosis task of mild
cognitive impairment (MCI) vs. CN; and AD predictive
diagnosis task of stable MCI (sMCI) vs. progressive MCI
(pMCI)). The proposed multimodal model extracts features
while preventing losses by applying a depthwise separable
convolution (DS-Conv) block [16] without an activation
function. Subsequently, each extracted modality preserves
features through a DS-Conv block, and middle fusion is
applied through a mix skip connection convolution (MSC-
Conv) block to learn the complex relationship between
modalities. Subsequently, a multimodal model is learned
during training to extract common features between the
modalities related to labels while sharing the weights through
a sharing weight convolution (SW-Conv) block. In addition,
a new region of interest (ROI) extraction method optimized
for the tau protein and Aβ plaque is proposed. Research

related to early AD biomarkers suggests that the middle
temporal and inferior temporal regions show changes in Aβ

plaque and tau protein [17] in the early stages of AD. The
hippocampus was selected as the ROI in another study [18].
Therefore, our new ROI extraction method focused on
the hippocampus, middle temporal, and inferior temporal
regions. The contributions of this study are as follows:

• A newmultimodal model is proposed for early diagnosis
of Alzheimer’s disease.

• Unlike most other studies, the proposed research uses
the entire ADNI dataset consisting of ADNI1, ADNI2,
and ADNI3. In particular, ADNI2 and ADNI3 cover
MRI, Tau PET, and Aβ PET.

• A new ROI extraction method is proposed for identify-
ing precipitating Aβ plaque and tau protein in the early
stages of AD.

The remainder of this paper is organized as follows.
Section II presents related work classified by model input
type. In Section III, the preprocessing method and the pro-
posed model are explained in detail. Section IV presents the
experimental setting and evaluation methods. In Section V,
the results of the proposed model are presented.

II. RELATED WORK
In this study, deep-learning research on the early diagnosis
of Alzheimer’s disease is classified into three categories: 3D
subject-based methods using the entire image of the subject,
ROI/Patch-based methods utilizing specific areas or patches
of the image, and 2D slice-based methods employing 2D
slices of the subject’s 3D image.

A. 3D SUBJECT-BASED METHODS
This classification involves the use of the entire 3D image
volume of the subject in early diagnostic models of AD.
However, these methods require substantial computational
resources. Zhang et al. [19] introduced self-attention into
residual connection blocks and proposed a 3D residual
self-attention deep learning network for MRI images. Visu-
alization of important areas in the classification results was
achieved using gradient-weighted class activation mapping
(GRAD-CAM) [20]. Yee et al. [21] presented a convolution
model with residual connections and performed classification
using a 1 × 1 convolution layer with global average pooling
and softmax. Punjabi et al. [22] used a simple 3D CNNmodel
to combineMRI and PET images. They extracted the features
of each modality using convolutional neural networks (CNN)
and performed late fusion through feature concatenation.
Zou et al. [23] applied Tau PET to the Inception-V3 3Dmodel
and conducted a CN vs. AD/MCI task. Spasov et al. [24]
proposed an early fusion method for combining multimodal
images and a late fusion method for combining clinical
information with image features.

B. ROI/PATCH-BASED METHODS
This category utilizes 3D patches and a region of interest
(ROI) for learning, instead of the entire image of the subject.
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FIGURE 1. Preprocessing flowchart for MRI and PET images. After applying different preprocessing steps to each modality,
the same cropping methods were applied to extract the ROI from the entire image of each subject.

Models using only specific areas, fall under the ROI-based
method, and those using entire patches constitute the patch-
based method. ROI/patch-based methods typically require
fewer computing resources than 3D subject-based methods,
as image size is smaller. Wen et al. [25] proposed both patch-
and ROI-based methods. The patch-based method divides
the entire image into non-overlapping patches and performs
classification through pretraining using an autoencoder and
fine-tuning. The ROI-based method extracts two patches,
each containing the left and right hippocampal ROI, thereby
learning them in a manner similar to the patch-based method.
Huang et al. [26] employed a VGG-like framework to learn
MRI and FDG-PET images, using regions containing the
hippocampus as the ROI. Zhang et al. [27] extracted ROIs
using score-CAM [28] and learned FDG-PET images using
a 3D subject-based method. The extracted ROIs undergo
separate network processing and their features are fused
through late fusion and average voting. Cui et al. [29] used
FSL [30] to extract the hippocampus ROIs, considering not
only the hippocampus area but also the degree of atrophy
through late fusion.

C. 2D SLICE-BASED METHODS
In slice-based methods, 2D slices of modalities are used
for training. Zhang et al. [31] proposed a 2D multimodal
model, combining features extracted through channel-wise
attention and convolution layers. Liang et al. [32] evaluated
the early and late fusion performance using AlexNet [33]
and ResNet [34], transitioning from 3D to a 2D approach
to improve the training speed. Qiu et al. [35] used VGG-11
[36] to extract MRI features and the multilayer perceptron
(MLP) for Mini-Mental Status Examination (MMSE) and
logical memory capabilities. These features were combined
using late fusion and majority voting. Valliani et al. [37]
employed a pretrained ResNet from ImageNet to augment
limited medical image data, to improve model performance.
Pan et al. [38] introduced a multiview separable pyramid

FIGURE 2. Display of ROI regions. Red stands for hippocampus; blue
stands for middle temporal; green stands for inferior temporal regions.

network (MiSePyNet) to train axial, sagittal, and coronal
images separately using a slice-wise CNN. A separable
convolution is used to train the spatial information using
fewer parameters.

III. METHOD
A. PREPROCESSING AND EXTRACTION METHOD OF ROIs
The distinct characteristics of MRI and PET images neces-
sitate separate preprocessing methods. The preprocessing
flowchart of the entire dataset is shown in Figure 1. In contrast
to other studies, we opted to automatically extract ROIs
using the segmentation label of Freesurfer [40], eliminating
the need for manual specification of the center point of the
ROI. Previous research by Frisoni et al. [18] highlighted
the association between MRI and tau protein, as well
as hippocampal atrophy, as markers of MCI. Similarly,
Insel et al. [17] investigated the brain regions affected
by amyloid β plaques and tau protein in early AD by
selecting ROIs in the inferior temporal, middle temporal, and
entorhinal regions. Based on these insights, we chose the
hippocampus, middle temporal, and inferior temporal ROIs
for training, as illustrated in Figure 2.

1) MRI IMAGES
The preprocessing for the MRI images was conducted as
follows. First, all T1w MRI scans were transformed into the
RAS coordinate system. FreeSurfer was used to apply motion
correction, bias field correction, and intensity normalization.

46280 VOLUME 12, 2024



S. K. Kim et al.: Multimodal 3D Deep Learning for Early Diagnosis of Alzheimer’s Disease

FIGURE 3. Multimodal architecture of the proposed model in three modalities. DS-conv, MSC-conv, and SW-conv blocks denote depthwise separable
convolution, mixed skip connection convolution, and sharing weight convolution blocks, respectively.

Subsequently, nonlinear registration was performed from the
T1w space to the MNI152 space using ANTs [41]. The
registered MRI images were skull-stripped using Freesurfer.
The entire image dataset in the 3D subject-based method
was cropped to remove the background, resulting in images
of consistent size. In the ROI-based method, two ROIs
were automatically extracted using segmentation labels from
Freesurfer. The hippocampal region ROI consisted of left and
right ROIs of size 50 × 50×50. The hippocampus, middle
temporal, and inferior temporal ROIs consisted of left and
right ROIs of size 80 × 96×80. The processing time is
30 minutes per subject. All images were then normalized
using min-max normalization.

2) PET IMAGES
The PET images were preprocessed as follows: The prepro-
cessed data were collected from ADNI, where preprocessing
included co-registration, averaging of six five-minute frames,
image and voxel standardization, and uniform resolution.
Each collected PET image of the subject was registered to the
subject’s T1w space via Freesurfer, and the PET images were
registered based on the transformation matrix that matched
the T1w MRI of each subject to the MNI 152 space. The
remaining preprocessing steps for PET images followed the
same as the MRI preprocessing procedure.

B. PROPOSED MODEL
The proposed model was inspired by MobileNet [16], [19],
[42]. We designed an end-to-end deep-learning multimodal

FIGURE 4. Multimodal with two modalities. Each modality has an
MSC-Conv block which is concatenated to the output of the
convolutional layers.

model for three binary classification tasks: AD vs CN, MCI
vs CN, and sMCI vs pMCI. The overall architecture of the
multimodal model using these three modalities is illustrated
in Figure 3, two modalities in Figure 4, and single modality
in Figure 5. Table 1 presents a detailed view of the model
architecture based on the training method.

1) DEPTHWISE SEPARABLE CONVOLUTION BLOCK
(DS-CONV BLOCK)
Convolutional neural networks, consisting of multiple con-
volutional layers, are among the most effective methods
for feature extraction. Traditional CNN models typically
include convolutional layers, normalization, and activation
functions, such as rectified linear units (ReLUs) [43] or
leaky ReLUs [44]. However, these activation functions
may cause a loss of features during the feature extraction
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FIGURE 5. The proposed unimodal model architecture.

TABLE 1. Detailed architecture of 3D subject-based and ROI-based
methods. Channels can differ in the case of the multimodal model with
three modalities regarding the number of modalities to concatenate.

TABLE 2. Experimental results for the multimodal model with or without
activation function in DS-Conv blocks using the MRI and FDG-PET images
of ADNI1 dataset.

process. To address this, we designed a block for extracting
the preserved features using four DS-Conv blocks without
activation functions.

The DS-Conv block comprises two convolutional layers
with kernel sizes of 3×3×3 and 1×1×1. After the four DS-
Conv blocks, a max pooling layer with a stride of two was
applied to reduce the resolution of the features. This step was
applied consistently in both the unimodal and multimodal
models. The experimental results comparing the presence and
absence of an activation function are presented in Table 2.

2) MULTIMODAL MODEL
Most multimodal models of early AD diagnosis have tradi-
tionally employed independent feature extraction networks
for eachmodality and later used a late fusion approach involv-
ing concatenation before passing through fully connected
(FC) layers. However, late fusion has limitations in learning
complex relationships between modalities because features
are concatenated before reaching the FC layers. To address
this, we adopted a middle-fusion approach to facilitate the
learning of more intricate relationships between modalities.

Middle fusion was implemented using the mix skip
connection convolution (MSC-Conv) block after features
were extracted by the DS-Conv block. The MSC-Conv
block includes a depthwise separable convolution, instance
normalization [45], and a leaky ReLU, applied to each
modality. After the features of one modality are extracted,
the features of the other modality are concatenated using skip
connections, similar to those in U-Net [46]. Subsequently, the
features of each modality, obtained through the MSC-Conv
block, are passed through the sharing weight convolution
(SW-Conv) block to extract common features related to the
labels by sharing the weights of the convolution layers. The
SW-Conv block comprises two depthwise separable convolu-
tional layers: batch normalization [47] and leaky ReLU.

The features extracted using the SW-Conv block are then
fed into an FC layer in eachmodality and concatenated before
passing through the last two FC layers for diagnosis. Each
FC layer includes batch normalization and leaky ReLU. The
architecture of the multimodal model with two modalities
is shown in Figure 3. The 3D subject-based multimodal
model employs four MSC-Conv and SW-Conv blocks. All
convolutional and FC layers, except for the last FC layer, are
initialized using Xavier Normalization [48].

3) ROI-BASED MODEL
To improve model performance and reduce the large com-
putational costs associated with 3D subject-based methods,
we designed an ROI-based model. The hippocampus ROI (H
ROI) had dimensions of 50× 50×50, and the combined ROI
of the hippocampus, middle temporal, and inferior temporal
regions (HT ROI) had dimensions of 80×96×80. These ROI
sizes are smaller than the entire image size of 160×192×160.
In the ROI-based model, the number of MSC-Conv and

SW-Conv blocks was reduced from four to three, to prevent
excessive compression and feature extraction from small ROI
images and ensure optimal performance without information
loss. By leveraging smaller ROIs, the ROI-basedmodel offers
computational advantages while maintaining a high level of
accuracy in the early diagnosis of AD.

IV. EXPERIMENT
A. DATASET
Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal
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TABLE 3. Demographics of ADNI1, ADNI2&3 Dataset.

Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). All ADNI studies are conducted according
to the Good Clinical Practice guidelines, the Declaration
of Helsinki, and U.S. 21 CFR Part 50 (Protection of
Human Subjects), and Part 56 (Institutional Review Boards).
Written informed consent was obtained from all participants
before protocol-specific procedures were performed. The
ADNI protocol was approved by the Institutional Review
Boards of all of the participating institutions. Unlike most
previous studies, we validated the proposed model using
the entire ADNI series (ADNI1, ADNI2, and ADNI3). For
the ADNI1 dataset, data from subjects who underwent both
MRI and FDG-PET were collected. For training, only MRI
and FDG-PET scans of subjects obtained within 60 days of
training were used. Similarly, for the ADNI2 and ADNI3
datasets, images from subjects with MRI, Aβ PET, and
Tau PET scans were considered. Subjects with scans taken
within 60 days between modalities were included in the
training, following the same criteria as in ADNI1. Moreover,
only baseline scans were utilized for both training and
testing purposes, while scans from subsequent visits were
disregarded. This approach was adopted because identifying
Alzheimer’s disease at its initial stages is critical for effective
intervention and care, highlighting the importance of baseline
diagnosis for early detection.

Wen [25] pointed out data leakage issues in the process
of splitting training and test datasets in many early diagnosis
deep learning research studies on AD. Fung et al. [39]
demonstrated a decrease in performance due to data leak-
age resulting from inappropriate data splitting methods.
To avoid such issues and ensure more accurate model
performance validation, we split our dataset using a
stratified five-fold cross-validation based on the subject’s
diagnosis.

Additionally, we only included subjects with reliable
diagnosis based on the following restrictions:

• CN (cognitively normal): Diagnosed as CN at baseline
and remaining stable during the follow-up.

• sMCI (stable mild cognitive impairment): Diagnosed as
MCI at baseline, with diagnosis not converting to CN or
AD within 36 months.

• pMCI (progressive mild cognitive impairment): Diag-
nosed as MCI at baseline, and converting to AD within
36 months.

• MCI (mild cognitive impairment): Diagnosed as MCI
at baseline, with diagnosis not reverting to CN within
36 months. MCI comprises sMCI and pMCI.

• AD (Alzheimer’s Disease): Diagnosed as AD at base-
line, the baseline diagnosis remains stable during the
follow-up.

The ADNI1 dataset consists of 101 CN, 129 sMCI,
79 pMCI, and 84 AD subjects. The ADNI2 and ADNI3
datasets include 258 CN, 159 MCI, and 55 AD subjects.
MCI subjects were not further divided into sMCI and pMCI
groups because of the limited number of pMCI subjects in the
ADNI2 and ADNI3 datasets. Clinical information, including
clinical dementia rating (CDR) andMini-Mental State Exam-
ination (MMSE), as well as the overall demographics of the
collected dataset, are presented in Table 3.

B. EXPERIMENTAL SETTING
To ensure a more accurate evaluation of the proposed model,
we conducted a stratified five-fold cross-validation split by
subjects. The hyperparameters used to train the model are as
follows:

• Themodel was trained for 500 epochs and early stopping
was applied to prevent overfitting and reduce learning
time.

• The Adam optimization algorithm was used for train-
ing [49], with an initial learning rate of 0.0003.
The learning rate was designed to decrease for each
batch step through the cosine annealing learning rate
scheduler [50].

• No data augmentation techniques were employed during
training.

• To prevent overfitting in the FC layer, a dropout rate of
0.5 was applied.

• All convolutional and FC layers were initialized using
Xavier normalization.

• In the ROI-based model, each subject had two ROIs
(left and right), resulting in one prediction per subject
obtained through soft voting.

The AD vs CN, sMCI vs pMCI, and MCI vs CN
experiments, were conducted on the ADNI1 dataset. Because
of the small number of pMCI samples in the ADNI2 and
ADNI3 datasets, the AD vs CN and MCI vs CN experiments
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FIGURE 6. Learning curves for AD vs. CN task on ADNI1 dataset. The training process appears to be stable even on limited data.

were conducted separately on the ADNI2 and ADNI3
datasets.

All experiments were performed on a single NVIDIA
A100 40GB. Each epoch took approximately 18 seconds to
complete. Training 500 epochs for five folds took a total of
13 hours. Learning curves for AD vs. CN task on ADNI1
dataset are shown in Figure 6, indicating that no overfitting
occurred during training.

C. EVALUATION METRICS
Three binary classification tasks were performed: AD
diagnosis (AD vs CN), AD predictive diagnosis (sMCI vs
pMCI), and early AD diagnosis (MCI vs CN). The results
of the proposed model for all tasks were evaluated using
the following metrics: accuracy (Acc), balanced accuracy
(Bacc), sensitivity (Sen), specificity (Spe), and F1-Score
(F1). These metrics are commonly used to evaluate the model
performance of binary classification tasks and are calculated
as follows:

Acc =
TP+ TN

TP+ TN + FP+ FN

Sen =
TP

TP+ FN

Spe =
TN

TN + FP

Bacc =
SEN + SPE

2

F1 =
TP

TP+
1
2 (FP+ FN )

where TP, TN, FP, and FN, as depicted in Figure 7, refer to
true positive, true negative, false positive, and false negative,
respectively.

V. RESULTS
A. RESULTS OF ADNI1 DATASET
The ADNI1 dataset was used to verify the performance of the
proposed model. Three classification tasks were conducted
to assess overall model performance: AD vs CN, sMCI vs
pMCI, and MCI vs CN.

To evaluate the effects of the activation functions on
DS-Conv Blocks, we experimented with the presence and
absence of LeakyReLU. The results showed a performance
improvement of 5% on BACC for the AD vs CN task, 10% on
BACC for the sMCI vs pMCI task, and 1% on BACC for the

FIGURE 7. Definition of True Positive (TP), True Negative (TN), False
Positive (FP), False Negative (FN).

MCI vs CN task in the absence of LeakyReLU for DS-Conv
blocks. The experimental results for the presence or absence
of an activation function in the DS-Conv blocks are listed in
Table 2.

Next, the proposed model was evaluated using both the
ROI and the entire image of each subject. In the AD vs
CN task, the 3D subject-based model showed a similar
performance to that of HT ROI, achieving a BACC of
0.95. In the sMCI vs pMCI task, the 3D subject-based
model outperformed the ROI-based model, with a BACC
of 0.87. Although the ROI-based model achieved a BACC
of 0.81, indicating a lower performance than that of the
entire image, the ROI-based model had a relatively smaller
drop in performance with lower computational cost. This
performance drop in the ROI-based model could be attributed
to the ROI extraction method being based on tau proteins and
amyloid beta plaques rather than using metabolic information
from FDG-PET.

The results using the hippocampus, middle temporal, and
inferior temporal ROIs (HT ROI) and the entire image (All)
as input are presented in Table 5. The overall experimental
results of the hippocampus ROI are shown in Table 8.

B. COMPARISON OF RESULTS WITH OTHER RESEARCH
The experimental results obtained using the ADNI1 dataset
were compared with those of other studies to evaluate model
performance, as shown in Table 4. Instead of using the
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TABLE 4. Comparison with other research. All, H, and HT refer to the 3D subject-based method, RoI-based method (hippocampus region ROI), and
RoI-based method (hippocampus, middle temporal, inferior temporal ROI regions), respectively.

TABLE 5. ADNI1 results for the tasks of AD vs CN, MCI vs CN, and sMCI vs
pMCI. HT denotes the enclosing region of hippocampus, middle temporal,
and inferior temporal ROIs. All refers to the 3D subject-based method
using the entire image of each subject. All the metrics are expressed as
average(±) standard deviation. The overall experimental results are
shown in Table 8.

ADNI3 dataset, which has been used in a limited number
of research studies, we focused on comparisons with other
studies that used the ADNI1 dataset, evaluating their models
under similar conditions.

Many studies have highlighted the importance of avoiding
data leakage during the process of splitting a dataset as
this is crucial for accurate model performance evaluation.
Therefore, the proposed model was compared with research
that splits the dataset by subject to ensure a fair evaluation.
Additionally, many studies report sensitivity and specificity
but do not include the balanced accuracy (BACC) metric.
To provide a comprehensive comparison, we calculated the
BACC values according to the formula in the ‘‘Evaluation
Metrics’’ section.

In the AD vs CN task, the proposed model achieved a
BACC of 0.95, which is lower than the highest performance
reported in other studies. However, in the sMCI vs pMCI
task, the proposed model outperformed the other models
with a BACC of 0.87. Furthermore, in the MCI vs CN task,
the proposed model exhibited the best performance with a
BACC of 0.77. These results indicate that the proposedmodel

performs better in early AD diagnosis tasks despite having
a smaller number of training subjects compared to other
studies.

The superiority of the proposed model in the sMCI vs
pMCI and MCI vs CN tasks highlights its effectiveness in
early AD diagnosis, even with a limited number of training
subjects compared to other studies.

C. RESULTS OF ADNI2 AND ADNI3 DATASETS
In the ADNI2 and ADNI3 datasets, experiments were
conducted by adding a small number of ADNI2 subjects
to the collected ADNI3 dataset to maximize the use of
Tau PET and PET data for training purposes. However, the
sMCI vs pMCI task could not be performed because of
the small number of pMCI subjects. The results are shown
in Table 6.

In the AD vs CN task, the proposed model exhibited the
highest performance, with a BACC of 1.00 with all of HT
ROI of MRI, Tau PET, and Aβ PET utilized. Similarly, in the
MCI vs CN task, the highest performance of 0.76 for BACC
was achieved when the HT ROI of MRI, Tau PET, and Aβ

PET were all utilized. These results indicate that utilizing the
HT ROI, which represents early changes in regions with tau
protein and Aβ plaques, led to a performance improvement
compared to using all images, despite the low computational
cost.

In the MCI vs CN task, no significant performance
improvement was observed under any of the experimental
conditions. This can be attributed to two reasons. First, the
MCI diagnosis is less stable on the ADNI1 dataset because
of the short history of MCI subjects. Some subjects often
transition back to CN during follow-up visits, resulting in
an unstable MCI diagnosis. Second, there was no significant
difference between the Tau PET and Aβ PET images of
sMCI and CN; however, sMCI accounted for the majority of
MCI subjects (143 out of 159), with few pMCI subjects (16).
Tau PET and Aβ PET images of pMCI subjects differed
from those of CN and sMCI subjects, making it difficult to
accurately distinguish them.
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TABLE 6. ADNI2 and ADNI3 results for the tasks of AD vs CN and MCI vs CN. HT denotes the enclosing region of hippocampus, middle Temporal, and
inferior temporal ROIs. All refers to subject-based methods which use the entire image for each subject. All the metrics are expressed as average(±)
standard deviation. The overall experimental results are shown in Table 9.

TABLE 7. Comparison with early, late, and middle fusion models on hippocampus, middle temporal, and inferior temporal regions.
Hippocampal-temporal region of MRI, Aβ PET, and Tau PET of ADNI2 and ADNI3 datasets were used.

TABLE 8. ADNI1 results on the tasks of AD vs CN, MCI vs CN, and sMCI vs pMCI. HT denotes the enclosing region of hippocampus, middle temporal, and
inferior temporal regions. All refers to subject-based methods using the entire image for each subject. All the metrics are expressed as average(±)
standard deviation.

D. THE EFFECT OF MODALITIES SETTINGS AND ROIs
We conducted experiments to evaluate the effect of all
possible modality settings and Regions of Interest (ROIs),

as shown in Table 8 and Table 9. Experimental results on
the ADNI1 datasets demonstrate that combining FDG-PET
with the hippocampal (HT) region yielded the highest
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TABLE 9. ADNI2 and ADNI3 results on the tasks of AD vs CN and MCI vs CN. HT denotes the enclosing region of hippocampus, middle temporal, and
inferior temporal regions. All refers to subject-based methods using the entire image for each subject. All the metrics are expressed as average(±)
standard deviation.

performances in AD vs. CN and MCI vs. CN tasks, while
utilizing all modalities with the whole scans achieved better
results in sMCI vs. pMCI task. Similarly, the results on the
ADNI2 & ADNI3 datasets show that using all modalities and
the HT region consistently improved AD vs. CN and MCI
vs. CN tasks. Overall, in most cases, employing multiple
modalities alongside focusing on the HT region improves
diagnostic accuracy.

E. FUSION STRATEGIES
Experiments were conducted to verify the performance of
the proposed model in comparison with the early and late
fusion methods. The comparison results for the early, middle,
and late fusion models are presented in Table 7. In the early
fusion model, MRI, Tau PET, and Amyloid PET images were
concatenated during the data input stage and then fed into
the unimodal model. The late fusion model concatenated the
three modalities at the FC layer after passing through three
different backbones. The experimental results demonstrated
that the middle fusion model proposed in this study showed
the best performance, outperforming both early and late
fusion methods.

VI. DISCUSSION
In this study, a multimodal model was proposed for early
Alzheimer’s disease diagnosis using MRI, FDG-PET, Tau
PET, and PET data. The model utilized DS-Conv blocks
to extract the preserved features by removing activation
functions and MSC-Conv blocks with skip connections to
learn the complex relationships between modalities. The
SW-Conv block was employed to share weights and extract
common features related to labels between modalities,
thereby enabling efficient feature fusion. Additionally, novel
ROI extraction methods were proposed to reduce the
computational costs while maintaining or improving model
performance. The ROI extraction method focused on the
hippocampus, middle temporal, and inferior temporal regions
known for early changes in Aβ plaques and tau protein in the
brain during the early stages of AD.

The proposed model evaluated on the ADNI1 dataset
outperformed other research models in the sMCI vs pMCI
and MCI vs CN tasks, despite having a smaller number of
subjects compared to other studies. We further experimented
with the AD vs CN and MCI vs CN tasks using Tau PET and
Aβ PET, which provide information on the tau protein and
Aβ plaques. In the ADNI2 and ADNI3 datasets, the proposed
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model demonstrated good performance in the AD vs CN task,
particularly when utilizing HT ROI of MRI, Tau PET, and
Aβ PET. This indicates the significance of focusing on early
change regions related to the tau protein and Aβ plaques for
early AD diagnosis.

However, there are two main drawbacks in this research,
particularly in experiments conducted on ADNI2 and ADNI3
datasets. Although the proposed method achieved perfect
AD vs CN classification, this was limited by the small
number of AD subjects in the test set (11 subjects for each
fold). Consequently, further experiments on datasets with
more AD subjects are necessary to validate its performance.
Furthermore, the proposed model did not demonstrate a
significant performance improvement in the MCI vs CN task,
potentially due to the unstable MCI diagnosis resulting from
short histories and the small proportion of pMCI subjects.
To address this limitation, additional research involving
a larger number of pMCI patients and improved models
capable of discerning the differences between sMCI and CN
subjects is required.

VII. CONCLUSION
In conclusion, the proposed multimodal model demonstrated
promising results for early AD diagnosis, especially in
distinguishing sMCI from pMCI and MCI from CN subjects.
Despite some limitations, such as the availability of PET
images and data labeling costs, we believe that future
research focusing on generating PET images or employing
robust self-supervised and few-shot learning methods for
medical images can help overcome these challenges and
further enhance the performance of early AD diagnostic
models. Overall, this study contributes to the field of
early AD diagnosis by introducing a multimodal approach
and exploring the significance of ROI-based methods in
improving model efficiency and performance. This opens
avenues for further research and potential applications in the
early detection and understanding of Alzheimer’s disease.
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The overall experimental results of ADNI1 dataset are shown
in Table 8.

APPENDIX B
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The overall experimental results of ADNI2 and ADNI3
datasets are shown in Table 9.
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