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ABSTRACT Background subtraction is a crucial stage in many visual surveillance systems. The prime
objective of any such system is to detect local changes, and the system could be utilized to face many real-
life challenges. Most of the existing methods have addressed the problems of moderate and fast-moving
object detection. However, very few literature have addressed the issues of slow moving object detection
and these methods need further improvement to enhance the efficacy of detection. Hence, within this
article, our significant endeavor involved identifying moving objects in challenging videos through an
encoder-decoder architectural design, incorporating an enhanced VGG-19model alongside a feature pooling
framework. The proposed algorithm has various folds of novelties: a pre-trained VGG-19 architecture is
modified and is used as an encoder with a transfer learning mechanism. The proposed model learns the
weights of the improved VGG-19 model by a transfer-learning mechanism which enhances the model’s
efficacy. The proposed encoder is designed using a smaller number of layers to extract crucial fine and
coarse scale features necessary for detecting the moving objects. The feature pooling framework (FPF)
employed is a hybridization of a max-pooling layer, a convolutional layer, and multiple convolutional
layers with distinct sampling rates to retain the multi-scale and multi-dimensional features at different
scales. The decoder network consists of stacked convolution layers projecting from feature to image space
effectively. The developed technique’s efficacy is demonstrated against thirty-six state-of-the-art (SOTA)
methods. The outcomes acquired by the developed technique are corroborated using subjective as well
as objective analysis, which shows superior performance against other SOTA techniques. Additionally,
the proposed model demonstrates enhanced accuracy when applied to unseen configurations. Further, the
proposed technique (MOD-CVS) attained adequate efficiency for slow, moderate, and fast-moving objects
simultaneously.

INDEX TERMS Deep neural network, background subtraction, transfer learning, encoder-decoder
architecture, feature pooling framework.
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I. INTRODUCTION
Visual surveillance is an essential technique for safety
purposes and has two key steps: foreground separation
followed by tracking. However, for an effective surveillance
system local change detection is the primary assignment.
For the last several decades, local change detection from
challenging video scenes has been an arduous task and
one of the diligent research areas in a visual surveillance
system. Foreground segmentation from the image frames
has numerous applications: activity recognition [1], traffic
supervision [2], industrial monitoring [3], underwater surveil-
lance [4] etc. The moving object detection process can retain
the moving objects from the background in a sequence
of complex video scenes. Therefore, the aforementioned
procedure can be considered a binary classification task
in which the pixels corresponding to the background are
eliminated, while the pixels resembling moving objects are
retained. Foreground separation from the complex video
scene is challenging due to the dynamic background, camera
jitter, missing information, slowly moving objects, etc.
Background subtraction (BGS) approach [5] is the prominent
way to partition the foreground from the background. The
moving objects of the image frame are separated from the
background in this approach. In the last few decades, several
researchers developed various techniques across the globe for
BGS. However, these existing techniques are well performed
for specific challenges only. Also, the effectiveness of these
BGS techniques is based on manual parameter tuning and
handcrafted features. This gives rise to concerns regarding
the development of more efficient and resilient techniques
for detectingmoving objects. Deep learning frameworks have
been instrumental in advancing computer vision applications
over the years. Also, for moving object detection deep neural
networks are extensively used today, as they can retain
low, mid, and high levels feature [6], [7], [8]. Further, the
efficiency of the deep neural networks can be enhanced by
utilizing a transfer learning strategy.

Several drawbacks have been identified in the deep
neural network architecture for local change detection.
The incorporation of deep learning frameworks in visual
surveillance intensifies the complexity of the system. It has
been observed that as the depth of the layers increases, the
complexity of the model also escalates. Furthermore, it has
been noted that training the deep neural network necessitates
a larger number of sample frames. Additionally, it is rare to
come across an end-to-end model for local change detection
in existing techniques.

Therefore, a remarkable deep learning architecture in the
form of an encoder-decoder model that effectively addresses
multiple challenges encountered in complex as well as
slow-moving video scenes is developed. An improved version
of pre-trained VGG-19 deep learning framework as the
encoder is adopted in the proposed methodology. The initial
two blocks’ weights were set as pre-trained weights, while
the weights of the third block were trained specifically
on challenging datasets, enhancing the model’s resilience.

With a transfer learning strategy, the proposed VGG-19
deep neural network preserves the appropriate features for
moving object detection. Subsequently, the feature maps
obtained from the encoder are fed into the feature-extracting
framework, where features are pooled across different scales
along the depth dimension. This is accomplished through the
utilization of a max-pooling layer, a convolution layer, and
multiple convolutional layers with distinct sampling rates.
The decoder network in the proposed scheme effectively
projects the feature label to the pixel label.

Therefore, the MOD-CVS contributes in five main ways:

1) A first and unique attempt for detecting local changes
in challenging video datasets comprising of moderate,
fast, and slowly-moving objects is made in this work
using a feature pooling framework with the improved
version of VGG-19 encoder-decoder type architecture.

2) The proposed algorithm provides better accuracy
in four datasets with diverse challenges including
slowly-moving objects, moderately and fast-moving
objects, Indoor and outdoor image sequences, dynamic
backgrounds, camera jitter, night video, low frame rate,
thermal, etc.

3) The proposed model utilized fewer samples to train
and attained better accuracy without extracting the
temporal information from the challenging video
scenes against current SOTA approaches.

4) Incorporating a transfer learning mechanism in the
suggested schememakes themodel to learn the weights
efficiently and enhances the efficiency.

5) A selected number of blocks in the proposed VGG-19
architecture is used to make the model less complex
compared to the existing deep neural networks.

The efficiency of the developed model is substantiated by its
validation on benchmark data sets, specifically designed for
slowly-moving object detection [9], [10], fast and moderate
moving object detection like CD-Net 2014 dataset [11],
wallflower dataset [12], and Star dataset [13]. To confirm
our findings, the outcomes of the developed technique are
compared to thirty-six SOTA techniques. To verify the
efficacy of the developed technique, we conducted both
visual and quantitative analyses, confirming its effectiveness.

The structure of the remaining sections in the article is
as outlined below. Section II discusses the literature’s pre-
sentations concerning local change detection. The proposed
model in depth with a graphical illustration is discussed in
Section III. Section IV describes the empirical outcomes
analysis and ablation study. Section V provides the article’s
conclusions along with a glimpse into future work.

II. STATE-OF-THE-ART-TECHNIQUES
One of the most widely investigated topics in the field of
computer vision involves the detection of local changes utiliz-
ing the background subtraction technique. Many researchers
have worked for decades to build robust background sub-
traction algorithms that can detect objects in motion for
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complex scenes including objects moving at a relatively
low speed where the object motion is confined to a smaller
region, objects moving at a relatively high speed where
the subsequent frames have higher variation, variations in
illumination, camera jitter, shadow, image captured at night
time, low-frame rate, low contrast, low resolution, non-static
background, etc. Taking into account the latest literature, the
SOTA techniques are divided into two parts as follows:

A. SOTA TECHNIQUES FOR SLOW MOVING
OBJECT DETECTION
Slowly moving object detection deals with the process of
identifying and tracking objects that are moving at a relatively
low speed, where the subsequent frames have lesser variation.
In most cases, the spatial motion of the object is confined
to a small area. While there are various techniques and
approaches to object detection, detecting slowly moving
objects can present specific challenges due to their reduced
motion and potentially smaller visual cues. The most com-
monly used techniques for slowly moving object detection
are frame differencing (FD) [14], optical flow (OF) [15],
background subtraction (BGS) [16], Feature-based methods
(FB) [17], [18], machine learning-based approaches (ML)
[19]. The choice of method is decided based on the specific
application, the characteristics of the slowly-moving objects,
and the available computational resources. Combination or
adaptation of multiple techniques may also be required
to achieve accurate extraction of slowly-moving objects
followed by tracking in various scenarios [20]. The BGS is an
effective technique for detecting fast and moderately moving
objects in a scene. It provides accurate segmentation of the
foreground in real-time with low computational cost when
the object moves slowly in a relatively static background.
However, this method is sensitive to lighting changes, limited
to static background, finds it difficult to handle occlusion,
and requires background modeling if the background is not
available. Again, it fails to extract the slow-moving object
due to limited spatial change of pixels in object area [21],
[22], [23]. Moving object detection using OF method use
the motion vectors of pixels to determine the direction and
magnitude of movement. It is very accurate at identifying
and following fast-moving objects. As such, this method is
highly adaptable to variations in texture, lighting, and other
factors, making it ideal for tracking objects in real-time in
video surveillance applications. Nevertheless, it is not able
to effectively handle occlusion and is sensitive to image
noise. It does not provide depth information about the object
being tracked. It may not work well for objects that are not
moving or moving slowly as it relies on the movement of
objects [15], [24], [25]. FD is a commonmethod for detecting
moving objects in a video sequence. It is a fast method that
can operate in real time, making it suitable for surveillance
systems. It provides a cost-effective solution and can even
detect objects that are partially occluded, by comparing
changes between frames. However, it is sensitive to noise and

small changes, such as camera shake or changes in lighting,
which produce false positives and affect the accuracy of
the result. It only detects moving objects that differ from
the background, making it unsuitable for detecting objects
having a similar color or texture as that of background [26],
[27]. The FB methods can handle challenging scenarios
where the appearance of the object varies due to different
lighting or complex backgrounds. These methods can reduce
the computational burden and process video in real time
by extracting specific image features. On the contrary, the
performance of these methods degrades significantly, if the
features are not robustly detected or the features are affected
by noise or occlusion. They also often require fine-tuning or
retraining when dealing with new object classes or motion
characteristics. These methods primarily pay attention to
low-level image features like edges, corners, or texture
patterns, without explicitly incorporating high-level semantic
information. As a result, they may not be able to differentiate
between objects with similar low-level features, leading to
errors in object detection or tracking [28], [29], [30].

B. SOTA TECHNIQUES FOR MODERATELY AND FAST
MOVING OBJECT DETECTION
Moderately and fast moving object detection deals with the
process of identifying and tracking objects that are moving
at a relatively high speed where the subsequent frames have
higher variation.

Some of the SOTA ML and Deep-learning-based
approaches have been discussed formoderate and fast-moving
object detection in the literature. The object detection
algorithm known as Single Shot Multi-Box Detector (SSD),
introduced by Liu et al. [31] demonstrates efficient object
detection in images by achieving a favorable balance between
accuracy and speed. SSD applies non-maximum suppression
(NMS) to filter out redundant bounding box prediction
and produce the final set of object detection. The prime
advantages of SSD are its simplicity, speed, and ability
to detect objects at multi-scales. However, SSD sacrifices
some accuracy for faster inference speed. It utilizes a
predetermined set of anchor boxes to detect objects at various
scales. Choosing the right scales and aspect ratios for these
anchor boxes can be challenging. Objects that significantly
deviate from these predefined anchor boxes may not be
accurately detected. It can not also handle highly occluded
objects. The faster R-CNN framework for object detection
introduced by Ren et al. [32] become a popular and influential
method in computer vision. This technique efficiently and
accurately localizes objects with high precision using a
region proposal network (RPN) to generate candidate object
proposals. It allows the entire object detection system
for end-to-end training towards optimizing the overall
performance. However, it is more complex compared to
previous object detection methods. It involves multiple
components, including a region proposal network, a shared
convolutional backbone, and an object-specific classifier.
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This complexity can make it more challenging to understand
and implement. Lin et al. [33] introduced a novel loss
function called Focal Loss, specifically designed for dense
object detection tasks like object detection and instance
segmentation. The Focal Loss addresses the issue of class
imbalance and the overwhelming number of easy negative
examples that can hinder the training of object detectors.
Focal Loss introduces an additional hyper-parameter, called
the focusing parameter, which controls the rate at which
the loss is down-weighted for easy negatives. Choosing
an appropriate value for this parameter requires careful
tuning, and an improper setting can affect the performance
of the model. Zhou et al. [34] propose a novel method
for object detection called ‘‘Objects as Points’’, which
aims at achieving efficient real-time object detection. This
method demonstrates impressive real-time performance,
enabling fast object detection in videos and live-streaming
applications. While the method achieves high accuracy in
detecting objects, the localization accuracy may not be
as precise as some other object detection methods that
rely on bounding boxes. This limitation might affect tasks
that require precise localization, such as object tracking
or fine-grained object recognition. Hei Law and Jia Deng.
present a novel object detection framework called CornerNet,
which detects objects by treating them as paired key points.
CornerNet represents objects as key points and models
the object’s spatial information, which helps in precise
localization and reduces false positives. This approach
treats objects as key points. Hence, it may struggle with
objects that have complex or highly variable poses. Since
the model primarily focuses on detecting corners, it may
not be as effective in cases where key points are not
prominent or informative [35]. Zhu et al. [36] proposed
Generative Adversarial Networks (GANs) which is a popular
class of deep learning models used in generative modeling
tasks, such as image synthesis and data generation. Images,
audio, and text can all be produced by GANs in a realistic
manner while still closely resembling the training set. This
makes them valuable in various applications, including art
generation, data augmentation, and synthetic data creation
for training other models. These networks are prone to a
phenomenon known as mode collapse, wherein the generator
generates a restricted range of samples, thereby not capturing
the full distribution of data. This results in generated
samples that lack diversity and fail to cover all the modes
present in the training data. MotionRec [37] is composed
of a temporal depth reductionist (TDR) block, a motion
saliency estimation (MoSENet) network, and regression and
classification blocks. This represents the initial endeavor to
concurrently localize and classify dynamic entities within
a video referred to as MOR (Moving object recognition)
using a unified deep learning framework in a single stage
CDNet-2014 dataset. Unified frameworks may sometimes be
computationally expensive. In AE-NE [38] is entirely unsu-
pervised. It operates with a fixed set of hyperparameters, and

the architecture of the autoencoder is dynamically determined
based on image size and background complexity, devoid of
manual supervision. The autoencoder is additionally trained
to anticipate background noise, enabling the calculation of
a pixel-dependent threshold for foreground segmentation in
each frame. This model is ill-suited for processing night
videos, as indicated by the low score it achieved in this
category on the CDNet-2014 dataset. The model is not
recommended for scenarios where the video is anticipated
to depict substantial stationary objects over an extended
duration. TSS [39] has made significant contributions to
computer vision and video analysis. This method can learn
hierarchical features from data, enabling them to discern
patterns and variations in motion more effectively than
traditional methods. It may be highly specialized and may
not generalize well across different domains or environmental
conditions. Fine-tuning or retraining might be necessary for
optimal performance in diverse settings. A real time multiple
object tracking [40] method is based on a modified version
of deep simple online and real time tracking (Deep SORT)
algorithm. Deep learning methods can handle a large number
of objects and complex scenes simultaneously, making
them suitable for tracking multiple objects in crowded
environments. Training deep learning models for multiple
object tracking requires large annotated datasets, which can
be time-consuming and expensive to create, particularly
for diverse scenarios. Jiawei et al. [41] proposed a 3D
video object detection framework emphasizing enduring
temporal visual correlation, termed BA-Det. BA-Det operates
as a two-stage object detector, proficient in concurrently
acquiring knowledge in object detection and temporal feature
correspondence through the introduced feature metric object
bundle adjustment (OBA) loss. The method exclusively
concentrates on objects, such as cars, trucks, and trailers.
The effectiveness of flexible objects like pedestrians has not
been explored. Further, the related works on background
subtraction techniques using explainable deep learning
frameworks, outlined in a Table 1 while emphasizing the
principal contributions, advantages and disadvantages.

It is found that all the above SOTA methods discussed
in the literature related to slow moving object detection
are capable of identifying the objects when the variation
among the consecutive frames is much less. However, the
SOTA schemes addressed for moderately and fast-moving
object detection detect the object when there is a higher
variation among the successive frames. Hence, from the
above discussion, it may be concluded that a single method
can not detect all types of moving objects at various
speeds. This motivated us to develop a moving object
detection framework using a VGG-19 architecture with
structural modification-induced FPF to detect moving objects
at slow, moderate, and fast speeds. In the proposed design
the improved VGG-19 architecture can retain details at
various levels. The proposed VGG-19 architecture-induced
FPF module capable of preserving the details of objects at
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TABLE 1. Summary of the existing background subtraction techniques using explainable deep learning frameworks.

FIGURE 1. Representation of the developed BGS model in the block diagram.

several scales and different speeds. The designed decoder
architecture can effectively project features to image space.
Section III of the paper focuses on the proposedmethodology.

III. THE PROPOSED ALGORITHM
This article presents a unique and durable deep-learning
model for foreground segmentation from a complex video
scene for various challenging scenarios. Here, we have
developed a deep learning model in which a modified VGG-
19 network is used as an encoder integrated with a feature
pooling framework (FPF) to effectively detect objects at
diverse sizes from the video scenes. The FPF block can
retain the sparse and dense features from image frames
that are suitable for local change detection. The decoder
network learns a mapping from the feature label into a
pixel label effectively. Fig.1 represents the developed network
with the dimensions of each layer of the feature map in
detail.

A. ENCODER NETWORK
The design in this work has improved the pretained VGG-19
network and adhered as an encoder network. A typical VGG-
19 network is used for several image-processing applications.
Nonetheless, the said framework has yet to be explored for
foreground segmentation. Here, we have used the abilities
of the VGG-19 network for foreground separation. The
original VGG-19 network [46] has five blocks, each with
stacked convolutional layers, and the activation function is the

rectified linear unit (ReLU). Convolutional layers can retain
the input image’s spatial information and the ReLU function
in the proposed model activates the required neurons that
boost the efficiency of the architecture.

The proposed model capitulated with an altered form of
deep VGG-19 network, which comprises the starting three
blocks. Where the weights of the first two blocks are the
same as the weights of the original VGG-19 architecture [46],
and the weights of the third block are accomplished by
using the transfer-learning (T-L) strategy for the challenging
dataset. T-L, as a mechanism, assimilates information from
the input to the output domain. In the developed technique,
applying the T-L strategy investigates novel tasks built upon
the foundation of tasks previously learned by the original
deep VGG-19 network. Also, the T-L strategy enhances the
model’s speed and robustness, particularly when training on a
limited number of samples. To optimize the utilization of high
spatial resolution and frequency details, the fourth and fifth
blocks of the original VGG-19 network have been omitted in
the MOD-CVS. A detailed description of the altered VGG-
19 deep learning model with dimensions of each layer of the
feature map is presented in Fig. 2. The high spatial frequency
features are retained at the first block of the encoder by
using 3 × 3 convolution layers with 64 and 128 filters.
It is found that the 3 × 3 kernel allows for the learning of
hierarchical features. Also, the 3 × 3 convolutional layers
with increased filter numbers (64 and 128) allow the network
to capture intricate and diverse low-level features. This can
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FIGURE 2. Detailed description of the altered VGG-19 deep learning model in the block diagram.

FIGURE 3. Proposed feature pooling framework.

enhance the model’s ability to discriminate between classes
and improve its overall efficacy in tasks such as segmentation,
object detection, or recognition. These fine-scale features are
transferred for the decoder network via skip connections and
global average pooling (GAP), which enhances the feature
presentation.

B. FEATURE POOLING FRAMEWORK
To effectively preserve objects of different scales from
challenging video scenes, this work presents a feature pooling
framework (FPF) between the encoder and decoder networks
which is shown in Fig. 3. Also, the dimensions of each layer
of the feature map of the FPFmodule are shown in Fig. 3. The
max-pooling layer is hybridized in the FPF module with 64,
1 × 1 filter size convolutional (conv.) layer, 64, 3 × 3 filter
size conv. layer, and atrous conv. layers with different dilation
rates of 4, 8, and 16, respectively. The suggested approach
uses atrous conv. layers with a 64, 3 × 3 filter size. Atrous
conv. layers are valuable in certain contexts for enlarging the
receptive field without increasing the number of parameters
or computational cost. They are crucial in complex scenarios
to capture broader context information without significantly

inflating the model’s complexity. The max-polling layer can
retain the maximum information η1 for taking window size
2× 2 from the encoder output η. The conv. layer and different
atrous conv. layers of the FPF block, which are effectively
represented as η2, η3, η4, and η5, can anticipate sparse and
dense feature space from the high-dimensional feature space
η. Then, η1, η2, η3, η4, and η5 features are concatenated along
the channels and processed through contrast normalization
(CN) followed by a spatial dropout layer with a rate of
0.25 to produce the FPF block output of 320 feature maps.
Observations indicate that the proposed model demonstrates
improved performance with the utilization of the CN layer
instead of the batch normalization layer. Also, the choice
of the dropout rate (0.25 in this case) is often based
on experimentation and hyperparameter tuning. A rate of
0.25 implies that 25% of the features will be randomly
dropped out during training, which is chosen to strike a
balance between preventing over-fitting and allowing the
network to learn from a variety of features. Additionally,
the inclusion of a spatial dropout layer effectively preserves
spatial information while simultaneously reducing redundant
information.
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FIGURE 4. Foreground segmentation for various sequences: (a) original frame (b) ground-truth image, outcomes attained
by background subtraction technique based on (c) Badri et al. [47], (d) Zhu et al. [48], (e) Sahoo et al. [20],
(f) Sahoo et al. [49] and (g) MOD-CVS.

C. DECODER NETWORK
Spatial information of the complex video scene is essential for
effective moving object detection. Therefore, the developed
decoder network comprises a stack of conv. layers in the
proposed model that preserve spatial information efficiently.
The initial conv. layer consists of 64 filters with a 3 ×

3 size, projecting the 240 feature maps obtained from the
FPF block into 64 feature maps. These features are succeeded
by the CN layer and the ReLU function is fused with the
fine-scale features retained at the end of the first block

of the encoder, followed by the GAP layer. The feature
fusion is achieved using the coefficients obtained through
the application of the GAP layer on the features that are
extracted at the end of encoder BLOCK - 1 using 3 ×

3 convolution layers with 128 filters perform element-wise
multiplication (X) with the feature maps of the initial conv.
layer of the decoder network. Subsequently, the resulting
features are added (+) to the outputs of the initial conv. layer
of the decoder network. Using the GAP layer in the decoder
framework enhances the performance of the proposed model.
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FIGURE 5. Foreground segmentation for various sequences: (a) original frame (b) ground-truth image, outcomes attained
by background subtraction technique based on (c) Badri et al. [47], (d) Zhu et al. [48], (e) Sahoo et al. [20],
(f) Sahoo et al. [49] and (g) MOD-CVS.

Afterward, the fused features are Up-sampled and passed
through the second conv. layer consisting of 64 filters with
a 3 × 3 size followed by the CN layer and ReLU function to
generate the 64 feature maps. Again these feature maps are
fused with the fine-scale features extracted at the beginning
of the first block of the encoder, followed by the GAP layer.
The feature fusion is achieved using the coefficients obtained
through the application of the GAP layer on the features
that are extracted at the beginning of encoder BLOCK - 1
using 3 × 3 convolution layers with 64 filters perform

element-wise multiplication (X) with the feature maps of the
second conv. layer of the decoder network. Subsequently,
the resulting features are added (+) to the outputs of
the second conv. layer of the decoder network. The fused
features are Up-sampled and projected into 128 feature maps
by utilizing a third conv. layer consisting of 128 filters
with a 3 × 3 size. It is observed that these features
provide a better presentation of the object and background
pixels and boost the performance of the developed model.
Eventually, a final conv. layer contains 1 filter with a
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FIGURE 6. Foreground segmentation for various sequences: (a) original frame (b) ground-truth image, outcomes attained by BGS technique
dependent on (c) BSUV-Net _SemanticBGS [50], (d) BSUV-Net 2.0 [51], (e) Cascaded CNN [52], (f) DeepBS [53], (g) Fast BSUV-Net 2.0 [51],
(h) WisenetMD [54], and (i) MOD-CVS.

1 × 1 size preceding a sigmoid activation function that
accurately projects the feature space into image space.
A threshold value of 0.9 provides the mask effectively for the
corresponding RGB input image. It is found that the threshold
value of 0.9 provides better accuracy for challenging video
scenes.

IV. ANALYSIS OF SIMULATION BASED
EXPERIMENTAL RESULTS
The developed model is running on a Windows 10 operating
system with 8GB RAM with Python programming. The
proposed work is trained and tested over the NVIDIA Tesla
T4 GPU given by the Google Co-laboratory pro version. The
proposed work is implemented by utilizing the TensorFlow
backend with the Keras library. The significance of the
presented model is tested on the challenging data sets [9],
[10], [11], [12], [13]. The efficiency of our developed
algorithm is corroborated by resembling its results with
the outcomes acquired by thirty-six SOTA techniques using
subjective and objective analysis.

A. PARAMETER SETTINGS AND TRAINING DETAILS
A NVIDIA Tesla T4 GPU system with a batch size of 2 is
used to train the model from beginning to end. The developed
model’s reduced batch size can have a special regularisation
effect and help the model converge more quickly. There are
P pixels in each frame and N = 25 frames are used to train
this model. Furthermore, we train the model using the binary
cross entropy loss (BCEL) function. This compares each
pixel’s actual and predicted class labels.

To train the proposed approach, we used the RMSProp
optimizer with ρ = 0.9 and ϵ = 1e − 08. Comparatively
speaking to other traditional optimizers, this offers a faster
convergence rate. The learning rate is initially set to 0.0001.
The learning rate is subsequently scaled down by 10 if,
after 5 consecutive epochs, the validation loss does not
reduce. To train the model, we preserved a maximum of
100 epochs.However, if the validation loss did not decrease
for ten consecutive epochs, an early stopping strategy was
used. Sequential feeding of the training frames to the model
could lead to biased learning weights. Because successive
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FIGURE 7. Foreground segmentation for various sequences:(a) original frame
(b) ground-truth image, (c) outcomes attained by MOD-CVS for wallflower dataset.

frames have a strong correlation with one another, this
issue occurs. As a result, we randomly select the training
frames to train the model initially. These frames are split
into 20% for validation and 80% for training. To solve the
issue of imbalanced data classification during model training,
we provide the foreground class with more weights and the
background class with fewer weights.

B. SUBJECTIVE ANALYSIS
For slow moving objects the visual demonstration of
the detected results achieved by the existing techniques
and our developed algorithm is presented in Fig. 4.
Fig. 4 (a) and (b) depict the original frames and associated
ground-truth images, respectively. The results obtained by
the Badri et al. [47] technique are presented in Fig. 4 (c)
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FIGURE 8. Foreground segmentation for various sequences: (a) original frame
(b) ground-truth image, (c) outcomes attained by MOD-CVS for Star dataset.

where the said technique detected background pixels as
foreground pixels for various slow moving image sequences.
Fig. 4 (d) represents the detected outcomes obtained by
the Zhu et al. [48] scheme where the missed alarm rate is
high. Fig. 4 (e) and Fig. 4 (f) denote the outcomes achieved
by the Sahoo et al. [20], and Sahoo et al. [49] techniques
respectively, where a high false negative rate is observed. The
outcomes attained by the developed model are illustrated in
Fig. 4 (g) where the background and foreground pixels are
classified accurately. Fig. 5 (a) and Fig. 5 (b) indicate the
input images and the associated ground-truth frames. From
Fig. 5 (g), it is evident that the developed technique accurately
captured the moving object shape, demonstrating lower false
negative and false positive rates against the Badri et al. [47],
Zhu et al. [48], Sahoo et al. [20], and Sahoo et al. [49] existing
techniques presented in 5 (c), (d), (e), and (f) respectively.
The change detection output is visually analyzed using

seven sequences chosen from the CD-Net 2014 dataset.
The challenging effects on video scenes include low

contrast, non-static background, low frame rate, noise,
shadow, poor resolution, low signal-to-noise ratio, lack of
object shape and textural details in the images, etc. The
developed technique’s performance is visually compared
with that of six established deep learning methods, includ-
ing BSUV-Net _SemanticBGS [50], BSUV-Net 2.0 [51],
Cascaded CNN [52], DeepBS [53], Fast BSUV-Net 2.0
[51], WisenetMD [54]. Fig. 6 (a) and (b) represent input
images and their associated ground-truth frames respectively.
The object detection outcomes achieved by BSUV-Net_
SemanticBGS as demonstrated in Fig. 6 (c), where it can
be seen that the background is identified as the foreground.
Fig. 6 (d) represents BSUV-Net 2.0 [51] technique outcomes
where numerous false alarms are present in the target scene.
The segmented outcome of the Cascaded CNN [52] method
is showcased in Fig. 6 (e), where the said technique is unable
to detect a few information of the object in motion. Fig. 6 (f)
shows outcomes of the DeepBS [53] method where numerous
edge pixels are absent due to imbalanced pixel values across
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FIGURE 9. Foreground segmentation for various sequences: (a) original frame
(b) ground-truth image, (c) outcomes attained by MOD-CVS for DUTS [55], STERE [56],
NJU2K [57], and NLPR [58] datasets.

various video frames, this leads to a significant number
of missed alarms in the detected outcomes. The outcomes
of the Fast BSUV-Net 2.0 [51] technique are represented
in Fig. 6 (g), where the mentioned technique incorrectly
categorized certain pixels of an object as background.
Fig. 6 (h) represents the WisenetMD [54] algorithm’s results,
where this method encounters difficulty in discerning subtle
variations in grey values, resulting in the generation of ghost.
In contrast, the MOD-CVS showcased in Fig. 6 (i), gives
better performance against the existing SOTA techniques
as well as precisely classifying background and foreground
accurately. In complex video scenes, the developed technique
can successfully determine the shapes of moving objects. The
MOD-CVS is further tested in wallflower datasets as shown
in Fig. 7. Original frame and associated ground truth images
are represented in Fig. 7 (a) and (b). Fig. 7 (c) illustrate the
result attained by the developed technique. From Fig. 7 (c),
it is found that the developed technique attained better results

for wallflower dataset. Again, the MOD-CVS is validated
on Star dataset. The input frame and their corresponding
ground-truth image are presented in Fig. 8 (a) and (b).
Fig. 8 (c) illustrates the proposed method’s results where it
is noted that the MOD-CVS has the capability to accurately
classifying the foreground as well as background pixels with
lesser noise.

C. OBJECTIVE ANALYSIS
To assess the efficacy of the developed technique, we have
made a quantitative distinction between the developed tech-
nique and the prevailing SOTA techniques for slow moving
objects including average F-measure (AF) and average miss
classification error (AMCE) are outlined in Table 2, and
Table 3. From these Tables, It is found that the developed
algorithm attained a greater value of AF with a reduced
value of AMCE against the Badri et al. [47], Zhu et al.
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TABLE 2. Comparison of average F measure in percentage of proposed
scheme with different SOTA techniques.

TABLE 3. Comparison of average miss classification error (AMCE) in
percentage of proposed scheme with different SOTA techniques.

[48], Sahoo et al. [20], and Sahoo et al. [49] contemporary
methods.

To further justify the efficiency of this proposed algorithm,
the developed model is tested on the CD-Net 2014
dataset with various challenging sequences, including aver-
ages for Precision (AP), Recall (AR), F-measure (AF),
and Percentage of Wrong Classification (APWC). The
objective is to simultaneously reduce the percentage of
wrong classifications (PWC) and increase F-measure, Pre-
cision, Recall [59]. We compared the result obtained
by CD-Net 2014 datasets against eighteen existing BGS
SOTA methods, including eight deep learning techniques:
DeepBS [53], WisenetMD [54], Fast BSUV-Net 2.0 [51],
SemanticBGS [60], BSUV-Net [50], BSUV-Net + Seman-
ticBGS [50], IUTIS-5 [61], and BMN-BSN [62]. Table 4
shows that the proposed model achieves superior values for
AP, AR, and AF while exhibiting a lower APWC compared
to all SOTA deep learning techniques. Also, the MOD-CVS
compared with ten non-deep learning existing techniques:
SWCD [63], CVABS [64], PAWCS [65], WiSARDrp [66],
Multimode Background [67], BMOG [68], WeSAMBE [69],
RT-SBS-v1 [70], M4CD Version 2.0 [71], and CL-VID [72].
In Table 4, it is evident that the developed technique shows
higher values for AP, AR, and AF, while also presenting
a lower APWC compared to SOTA techniques that are not
based on deep learning.

Further, to check the efficiency of the MOD-CVS, the
experiment has been done on Star datasets, which consists
of image sequences of challenging video scenes: noise in
the video scene, non-static background, changes in lighting

TABLE 4. Quantitative comparison of MOD-CVS on CD-Net 2014 dataset
with different deep learning and non-deep learning based methods.

TABLE 5. Average similarity measure for Star dataset (In this table AP, BT,
CA, CU, ES, FO, LO, and ST indicates the Airport, Bootstrap, Campus,
Curtain, Escalator, Fountain, Lobby, and Station respectively).

conditions, and shadow. we have compared with five SOTA
techniques: GMM [73], DPGMM [74], Feature bags [75],
Video plane [13], and Self-organizing [76]. We employed
the average similarity measure [76] to assess the effective-
ness of the developed technique. The average similarity
measure attained by the proposed approach compared to
different SOTA methods is shown in Table 5. The results
in Table 5 indicate that the MOD-CVS exhibits higher
accuracy in the average similarity measure on the Star
datasets in comparison to other current SOTA techniques
considered.

Eventually, to evaluate the efficacy of the developedmodel,
a well-known Wallflower dataset is used for testing that
contains indoor and outdoor video scenes captured by a CCD
camera on a non-static background, illumination variations,
and video noise. The effectiveness of the developed technique
is validated through a comparative analysis with nine
established SOTA techniques: Fuzzy Mode [77], ViBe [78],
BRPCA [79], GMM [73], Codebook [80], DeepBS [53],
Triplet CNN [81], MsEDNet [82], and STAM [83]. The
evaluation metric employed for this database is AF. Analysis
of Table 6 reveals that the proposed algorithm achieves the
highest AF values compared to all the considered SOTA
techniques.

D. UNSEEN VIDEO SETUP
In an unseen video arrangement, the training, as well as
the testing set, contains different videos. The proposed
framework is trained with the Claire, Mother daughter,
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TABLE 6. Average F measure for wallflower dataset (In this table BT, LS,
CM, MO, WT, and TD denotes the Bootstrap, Light switch, Camouflage,
Moved object, Waving tree, and Time of day).

TABLE 7. Average F-measure of the MOD-CVS in unseen video setup on
slow moving object, wallflower, Star dataset.

TABLE 8. Average F-measure comparison of the MOD-CVS in unseen
setup on CDNet-2014 dataset with different techniques.

TABLE 9. Ablation study of MOD-CVS on slowly-moving data sets without
and with global average pooling in terms of average F measure
comparison.

and Grandma image sequences, and for testing Akiyo,
Teleprompter, and Speech image frames are used. Similarly,
the model is trained using the Salesman, Teleprompter, and
Speech image sequences, and for testing Miss and Suzie
image frames are used. From Table 7, it is observed that the
designed model attained a better average F-measure value
for the unseen setup. Similarly, we have investigated the
efficacy of theMOD-CVS in unseen setup for thewallflower,
and Star databases. Table 7 indicate that the developed
model exhibited better AF values for the wallflower and
Star databases in an unseen configuration. Additionally, the

TABLE 10. Ablation study of the MOD-CVS on slowly-moving data sets
without and with feature pooling framework in terms of average F
measure comparison.

TABLE 11. Run-time of different schemes on CD-Net 2014 dataset.

TABLE 12. Assessment of the MOD-CVS’s average F-measure via an
ablation study, utilizing a k-fold cross-validation training approach on the
change CDNet-2014 dataset.

TABLE 13. Comparison of average F-measure of MOD-CVS with different
swin transformer based method (- indicates non-availability of the result).

effectiveness of the developed algorithm is assessed in unseen
setups for the CD-Net 2014 dataset. As shown in Table 8,
the proposed model demonstrated satisfactory accuracy
compared to established BGS techniques. In this table, Bl,
Pe, Sw, Bo, Pa, Tp, Ts, Bs, Co, and T1 depicts the blizzard
(from BadWeather), pedestrian (from Baseline), sidewalk
(from Camera Jitter), boats (from Dynamic Background),
parking (from Intermittent Object Motion), turnpike05fps
(from Low Framerate), tramstation (from Night Videos),
busstation (from Shadow), corridor (from Thermal), and
turbulence1(from Turbulence), respectively.

E. ABLATION STUDY
To analyse the importance of each element in the developed
BGS deep-learning based framework, an ablation study is
performed. Table 9 demonstrates the efficacy the developed
algorithm with and without the GAP layer. It is found
that, the inclusion of the GAP layer in the proposed model
consistently yields a higher AF value when compared to the
version without the GAP layer across all challenging videos.
Likewise, an ablation study of the proposed architecture is
conducted, exploring its performance both without and with
the integration of a feature pooling framework (FPF). From
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TABLE 14. Comparison of average F-measure of auto encoder based method with MOD-CVS method on CDNet-2014dataset.

Table 10, it is observed that the proposed algorithm with the
FPF module is capable of attaining higher accuracy as com-
pared to without the FPF module. The FPF module between
the encoder and decoder effectively learns a mapping from
high-dimensional feature to a multi-dimensional feature.

Additionally, the ablation study culminated in a run-time
comparison of the proposed approach compared to various
SOTA techniques using the CDNet-2014 dataset. Table 11
reveals that the processing time of the developed architecture
is 21 frames per second, underscoring the comparatively
lower computational complexity of theMOD-CVS compared
to many existing SOTA methods.

The proposedmethod is tested for effectiveness with k-fold
cross-validation. The results of theMOD-CVS’s performance
with k-fold cross-validation (k = 5 and k = 10) are outlined
in Table 12. In this study, when k equals 5, we partitioned
the entire set of 159,278 frames from CDNet-2014 dataset
into 5 folds. Initially, we utilised the first fold for testing and
the remaining folds for training during the training of the
proposed model. Subsequently, the second fold served as the
testing set, with the remaining folds employed for training,
and this process continued iteratively. Similarly, k = 10 was
used to train the suggested model, and 159,278 frames on
CDNet-2014 are divided into 10 folds. Subsequently, testing
is carried out with one fold while training is conducted
with the remaining folds in a sequential manner. According
to the data in Table 12, the suggested approach utilizing
a k-fold cross-validation with values of k equal to 5 and
10 demonstrates outcomes with an average F-Measure
of 0.8105 and 0.8157 for k = 5 and 10, respectively.
However, the developedMOD-CVS technique without cross-
fold validation training mechanism attains a higher value of
average F-Measure equals to 0.8269.

Further, the efficacy of the proposed MOD-CVS model
is verified in Table 13which illustrates a comparison of the
average F-Measure between the proposed MOD-CVS and
various Swin Transformer-based methods. It is found that the
proposed MOD-CVS method got comparatively higher value
than the existing methods. Furthermore, the consistency can
be demonstrated for NJU2K [57], STERE [56], NLPR [58],
and DUTS [55] datasets. Fig. 9 (a) and (b) depict the input
frame and its corresponding ground-truth image, respectively.
In Fig. 9 (c), the outcomes of the proposed method
are portrayed, emphasizing the MOD-CVS’s proficiency
in precisely categorizing both foreground and background
pixels.

In Table 14 evaluation of the average F-Measure between
the autoencoder-based AE-NE [38] approach and the pro-
posedMOD-CVSmethod onCDNet-2014 dataset is verified.

It is clearly demonstrated that the MOD-CVS exhibits
a higher F-measure value in comparison to alternative
methods.

V. CONCLUSION
This research work tackles the task of detecting mov-
ing objects in challenging video scenes by employing a
deep-learning architecture with an encoder-decoder design.
The proposedmodel detects moving objects in complex video
scenes including objects moving at different speeds, low
contrast, non-static background, low frame rate, noise, image
capture at night time, shadow, poor resolution, low signal-
to-noise ratio, lack of object shape and textural details in
the images, low contrast, etc. To extract diverse features
accurately at multiple levels, we have used an improved
version of pre-trained VGG-19 deep learning network as
an encoder. Also, the transfer learning mechanism in the
encoder network enhances the efficacy of the MOD-CVS
model. Further, various layers in the proposed VGG-19
deep neural network are capable of preserving the low, mid,
and high-level features that are essential for local change
detection. The feature pooling framework (FPF) between the
encoder and decoder networks efficiently preserves objects of
various scales from challenging video frames. In the proposed
algorithm, the FPF model effectively learns a mapping
from higher-dimensional feature space to a multi-scale as
well as multi-dimensional feature space that can classify
the foreground and background pixels with simple decision
boundaries. The decoder network in the MOD-CVS model
contains a stack of convolutional layers that effectively
project feature space to image space. The effectiveness of
the MOD-CVS algorithm is corroborated using subjective
and objective analysis against thirty-six SOTA techniques.
It is observed that the MOD-CVS model retains the shape
of the moving object accurately with a reduced amount of
pores and holes as compared to the SOTA techniques. Also,
the MOD-CVS provides adequate accuracy for unseen video
setups. However, the performance of the MOD-CVS work
is reduced when the moving object size is small. Also, the
proposed work provides frontier outcomes when there is a
higher variation in the scene. In the future, we aim to improve
the accuracy of the MOD-CVS by investigating a robust
hybridized deep neural architecture.
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