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ABSTRACT The modern era power system is constantly undergoing constructive changes and
implementations both in source and load side. Certainly, the distributed generators, unconventional/nonlinear
loads, charging stations etc are mostly integrated through power electronics interfaces. As a result, frequent
power quality disturbances appear in the system that is to be mitigated at the earliest. Since detection is
the prerequisite for mitigation, therefore the article presents a novel intelligent power quality detection
scheme to detect and classify the PQ Events. At first, the energy feature of the 5 band limited modes are
calculated from variational mode decomposed voltage signals. Then the mode energy features are utilized
to train a novel Hybrid Arithmetic Whale Optimized light gradient boosting machine classifier. A total
of 15 different PQ events have been investigated and exceptional classification results have obtained with
optimum computational complexity, both under noiseless and noisy conditions. Moreover, the accuracy of
the proposed PQ classification schemes found to be towering against other related pre-published works.
Finally, the ability of the proposed detection scheme is validated in real time though OPAL-RT 4510 and
grid simulator hardware in loop setup.

INDEX TERMS Power quality, variational mode decomposition, whale optimization, arithmetic
optimization, light gradient boosting machine.

I. INTRODUCTION
The idiom Power Quality simply means the power signal
should preserve its sinusoidal characteristics at rated ampli-
tude and frequency [1] and any deviation from these will
be treated as Power Quality Disturbance (PQD). The ever-
growing energy demand and awareness of green energy have
shifted the focus towards distributed generation (DG). These
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approving it for publication was Arturo Conde .

DGs are basically renewable energy source (RES) oriented
generation systems. But the power electronics interfacing and
the intermittent nature of the RES such as solar, wind have
certainly increased the rate of recurrence of PQDs to a higher
extend [2]. Along with that, the usability of power electronics
in several network equipment’s at the grid side as well as
in different devices at the industries and end user increased
drastically [3]. As a result, numerous types of PQDs are
frequently occurring in the power networks such as sag, swell,
interruption, flicker, notches transients etc and even a mix of
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few of these. Since, the primary goal of the electricity market
participants such as producer, trader and distributer are to
deliver power of highest quality. Therefore, it is necessary
to continuously monitor the power system and identify the
PQDs to take necessary measures at the earliest.

The field of PQD identification have started from the
thresholding-based techniques and eventually grown up to
intelligent detection techniques (IDTs) [4]. Basically, these
IDTs involve two fundamental steps, data processing and
development of machine learning (ML) model. In the data
processing phase, the hidden features of the power signal
are retrieved through some signal processing tool then
fed to the second phase to build the ML model. Several
signal processing techniques have proposed in literature to
address the voltage and current signals having their own
uniqueness and limitations [5]. Since PQ signals possess
lot of irregularity in terms of amplitude and frequency and
often noise contaminated, it is necessary to implement such
a signal processor that can act on non-stationary, non-linear
and noise prone signals. In this context, mode decomposition
techniques like, empirical made decomposition (EMD) [6],
ensemble EMD (EEMD) [7], down-sampling EMD (DEMD)
[8] are much more useful. But these methods are suffering
two major drawbacks such as mode mixing and end effect
when the signal nature is very complex. To eradicate the effect
of these two limitations Variational mode decomposition
(VMD)was introduced [9] which also facilitate low computa-
tional complexity while ensuring non-ambiguous outcome of
decomposition. In addition to that, VMD has already proven
its effectiveness in several PQ studies [10], [11], [12], [13],
hence elected as the signal processing tool in this study.

Now, to perform the second step of IDT, it is required
to select a ML classifier (MLC) that can well identify the
PQ disturbances with utmost accuracy. There are a number
of studies reported in literature for detecting PQD through
MLCs such as artificial neural network (ANN), decision
tree (DT), support vector machine (SVM), extreme learning
machine (ELM), kth-Nearest neighbour (KNN) and several
variants of these [4], [5]. However, these standalone MLCs
are generally search through a number of possible hypotheses
to find out the best approximation to the targets. Therefore,
they suffer from three major problems those are statistical,
computational and representational problems. Since, PQD
identification is such a sensitive matter that may lead to
catastrophic cascading effect and eventually might end up
scenarios like blackout, it should be sincerely addressed
with optimum possibility of detection failure. In this regard
ensemble MLCs can bring more generalization with uplifted
predictability as it combines the prediction of a number
of learners [14]. Boosting and bagging are two popular
ensemble learning methods. Bagging specifically minimize
the variance in the dataset by bootstrapping. A number of
bagging techniques have already used for PQD assessment
random forest [15], subspace KNN [16] voting-staking
based classifier [17] etc. But the key advantage of boosting
algorithms over bagging is their ability to produce models

with higher accuracy [18]. Moreover, boosting is designed
to iteratively improve model performance by focusing on
samples that were previously misclassified. This allows
boosting to correct errors introduced by previous weak
models and ultimately lead to a more accurate final model.
A number of boosting methods are found in literature
for PQD determination such as adaboost [19], gradient
boost [20], XGBoost [21], but it is still in its initial stage
of implementation. Another advantage of boosting is its
ability to handle imbalanced datasets better than bagging. But
the limitation boosting-techniques possess are comparatively
slower training process, sensitivity to outliers and difficult to
implement in large sized dataset due to sequential building
of model. To retain the benefits of boosting and eliminate
its drawbacks Light Gradient BoostingMachine (LGBM) has
introduced [22], [23]. LGBM is memory efficient, facilitates
parallel training, provides speed & accuracy and capable of
acting on large dataset. Hence, in this work LGBM is chosen
as the MLC. However, LGBM has a number of parameters
that can be tuned to enhance its classification ability.
Therefore, the study has proposed a novel optimization
algorithm hybridizing whale optimization [24] and arithmetic
optimization [25] to tune the parameters of LGBM.

Taking into account the unmatched advantages of VMD
and LGBM, this paper proposes an intelligent PQD detection
scheme having utmost accuracy and minimal computational
burden. The contributions of the manuscript are highlighted
as follows,

✓ Fourteen different Types of Power Quality Disturbance
signal assessment is performed in MATLAB Simulink
environment. The energy of all the Band Limited
Modes (BLMs) obtained from VMD are considered
as features for LGBM classifier and thus completely
irradicate the worry of selectingmost informative BLM
as well as identifying different statistical features.

✓ Maidan application of proposed Hybrid Arithmetic
Whale Optimization Algorithm (AWOA) to optimize
the hyper parameters of LGBM so as to bolster its
prediction efficiency.

✓ The proposed VMD & Hybrid Optimized Light GBM
(HOLGBM) based Power Quality Detection Model
is validated with different noise contaminated signal
to test its effectiveness in real grid conditions and
also analysis of comparison is made with related pre-
published articles.

✓ Real-Time Validation of the HOLGBM PQD detection
scheme with OPAL-RT 4510 and grid simulator
hardware in loop (HIL) setup is carried out to obtain
the detection time which itself a novel attempt in power
quality monitoring study.

Further, the paper organization is as follows. The current
section covers brief introduction of the research work.
Section-II describes the Theoretical aspects of the study.
The Section-III is all about the PQ disturbances is to be
detected with their mathematical modelling. In section-IV the
step wise mythology is discussed along with the proposed
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detection scheme. The section-V covers the analysis and
discussion part of the obtained result. The research work is
concluded in the last section.

II. POWER QUALITY EVENTS
In this study a total of 15 different types of PQ events
including a healthy signal are taken in to account for
analysis. There are 8 single, 4 double and 2 triple PQ
disturbances as presented in Table-1. The single events are
healthy sinusoidal signal, sag, swell, interruption, flicker,
harmonics, notches, oscillatory and impulse transient. The
double PQ signals includes independent association of
harmonics and oscillatory transient signals along with sag
and swell signals receptivity. Further, the triple PQ signals
includes the association of both harmonics and oscillatory
transient signals independently with sag and swell signals
receptivity. The study assumes the reference voltage to be
1p.u. and frequency to be 50 Hz. Therefore, it is required to
convert the disturbance signals to per unit before proceeding
for any analysis. All the signals are sampled at 10kHz.
An integer PQ Index (PQI) of the signals are also mentioned
along with their names, which will be useful during real
time detection study. Since the work makes use of variational
mode decomposition of the signals, Table-1 displays the
mathematical modelling alongwithVMDof all the respective
signals. It can be seen that each signal is decomposed to
5 different modes and each mode is placed on the z-axis and
the respective mode number is also mentioned.

III. LIGHT GRADIENT BOOSTING MACHINE
Gradient Boosting Machine is an ensemble iterative machine
learning algorithm that makes the prediction by aggregating
the prediction of a group of weak learners. These learners,
often called estimators are generally decision trees. The
prime concept of the algorithm is the sequential building of
learners, where the current learner is attempting to reduce the
error of the previous one. The objective is to optimizing the
loss function using gradient descent. GBM can act as both
regressor and classifier with different kind of loss function.
Generally, the mean square error for regression and log-
likelihood for classification in adapted as loss function. Since
the concept of the manuscript is demanding classification
task, hence here the focus is only limited to classification
problem. GBM tries to optimize the loss function L(tk , p) by
finding a prediction value ′p′ such that the loss function will
be minimum. It can be denoted as,

fL = argmin︸ ︷︷ ︸
p

∑O

k=1
L (tk , p) (1)

The loss function for classification can de defines as,

L (tk , p) = −

[∑O

k=1
tk log (p) + (1 − p)log(1 − p)

]
(2)

where, tk is the Target value kth observation of the Training
Dataset, k= 1, 2, 3 . . . .O

Next the pseudo residual is evaluated, and the 1st tree is
built while taking the residues as the targets. Then the output
from the 1st tree is calculated, based on which the next trees
are constructed sequentially.

Despite the performance excellence, the efficacy of GBM
is affected under big data and high dimensionality of feature
set [26]. It is because, the various data points should be
scanned to determine an estimate of all feasible tree splits
which is time intensive in nature. Therefore, GBM is not
scalable for large feature set. To deal with this particular
issue Light GBM is introduced. The term ‘‘light’’ signifies
the reduction of data and feature dimensionality. First of
all, LGBM excludes a considerable part of data with small
gradient and keep remaining to evaluate information gain.
This is called Gradient based One Sided Sampling (GOSS).
Secondly, it only keeps the mutually exclusive features and
discard others in a way that is not going to affect the overall
accuracy of the predictor. This is called Exclusive Feature
Bundle (EFB). These two implementations speed up the
training process up to 20 times.

IV. METHODOLOGY
The prime goal of the study is the intelligent identification of
PQDs with minimum time and maximum accuracy. In order
to achieve this, a three-stage process is followed in this
work as shown in Fig.1. These stages are discussed in the
succeeding subsections.

A. DATA COLLECTION
Since the work is focusing on data driven solution, a proper
data collection process is essential at first. It involves three
steps as follows,

1) DATA ACQUISITION
In this stage the voltage signal is sensed from the grid
continuously with a sampling frequency of 10 kHz (200
samples/cycle). Since the voltage signals have a periodic
characterizes, a 5-cycle snapshot is kept on taking from the
continues live data and stacked to data buffer for further
data processing. The buffer is having an overlap of 4 cycles,
which means every new set of data is collected after a shift of
200 samples from the previous set. It can be clearly seen in
the Stage-1 of Fig.1.

2) DATA PROCESSING
The 5-cycle data is further fed to a signal processing stage,
to bring edge to the detection process. The signal processing
tool (SPT) split the base signal to number of sub signals
thereby exposing the disturbance event to be prominent
enough. Here the SPT is chosen as VMD due to its advantage
of reducing end effect and mode mixing. Most of the studies
in this regard trying to select a the most informative sub
signal called BLM for feature extraction. But selecting the
proper BLM can be another overhead to be solved [27], [28].
Hence in this proposed work the feature extraction is done in
a completely different way as discussed in next subsection.
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TABLE 1. PQDs with mathematical modelling and variational mode decomposition.
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TABLE 1. (Continued.) PQDs with mathematical modelling and variational mode decomposition.
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TABLE 1. (Continued.) PQDs with mathematical modelling and variational mode decomposition.

3) DATA PREPARATION
The data preparation stage facilitates the extraction of inher-
ent features. These features will be going to act as predictor
variables for the machine learning classifier. But it is highly
important to make sure the machine learning model should be
ready before passing new feature data for prediction. In order
to achieve this, a sum total of 30000 synthetic signal data
(rows) each of 5 cycles at a sampling frequency of 10khz i.e.,
1000 datapoints (columns) are stored to the database initially
(30000∗1000 data table dimension). That means 2000 signals
from each class considering both noise free and noisy signals
are stored in the disturbance database initially. Then the pre
stored disturbance data will go through the data processing
stage to obtain the BLMs. Next the energy magnitude of
all 5 BLMs are considered as features for the MLC. Further
the collected feature set is divided in to two parts as Training
Data and Testing Data, where 70% is dedicated to training
and rest 30% is dedicated to testing.

B. OPTIMIZATION
LGBM is consisting of decision trees, where each tree
takes in different subset of features to provide best split.
Undoubtedly LGBM has some inherent advantages like
parallel learning, speeded up training, least memory uti-
lization and compatibility to handle both small & large
dataset [22]. But its performance can be further improvised by
optimizing its hyper parameters. There are a number of hyper
parameters of LGBM, but the major parameters are being
optimized to reach best possible accuracy. Those parameters
are estimator count (EC), learning rate (LR), bagging fraction
(BAGF), maximum tree depth (MTD), number of leaves (NL)
and lambda (L). The NL param is crucial to control the
complexity of the model and LR help in weight management
in boosting step. The TD and L parameters are optimized to
avoid overfitting.

The objective is to identify the optimum set of hyper-
parameters HPopt= {EC∗,LR∗,BAGF∗,MTD∗,NL∗,L∗

}

such that the cost function is minimized. For that it is required
to define the necessary prerequisites.
First, the dataset with ‘n’ feature-target set is defined as,

DS = [(F1,T1) ; (F2,T2) ; − − −; (Fn,Tn)] (3)

where Fi= {eIMF1i , eIMF2i , eIMF3i , eIMF4i , eIMF5i } is the energy
feature vector of all 5 IMFs and Ti is the Target PQD class
Index ∈ (0, 8).
Here the energy feature of an IMF can be calculated by,

eIMF =

∑d

m=1
(sm)2 (4)

where sm is the mth sample of the IMF having length d .
Second, the population (POP) with p candidates is defined

as,

POP = [HP1;HP2; − − −;HPp] (5)

where HPi= {EC i,LRi,BAGF i,MTDi,NL i,L i} is a set of
hyper parameters bearing values in their respective lower and
upper range as shown in Table-2.
Third, the cost function of the optimization problem is as

follows,

HPopt = argminHP∈POP

〈∑n

i=1
ϕ

(
Ťi,Ti

)〉
(6)

where Ťi = LGBM (HPi,Fj) is the predicted PQD class index
and ϕ denotes the loss function considered as the objective of
the optimization problem.

Fourth is the proposed optimization itself, that combines
two different meta-heuristic algorithms. These are Arithmetic
Optimization Algorithm (AOA) and Whale Optimization
Algorithm (WOA). AOA is a non-gradient based algorithm.
It has four main steps: initialization, arithmetic operation,
update, and termination. In each iteration, AOA randomly
selects two agents and performs one of the four arithmetic
operations on them to generate a new agent. Then, the new
agent is compared with the worst agent in the population and
replaces it if it is better. In contrast, WOA is gradient based.
It has three main steps: initialization, encircling prey, and
bubble-net attacking.

In each iteration, WOA updates the position of each
agent according to a mathematical model that simulates the
movement of whales towards the best agent (the prey).

The study proposes a Hybrid Optimization approach
where AOA will perform exploration task due to its highly
scattering dynamic movement through multiplication and
division operation. On the other hand, WOA will involve
in exploitation due to its shrinking encircling mechanism to
escape from local optima.

The proposed hybrid arithmetic whale optimization
algorithm (AWOA) is as follows,

47160 VOLUME 12, 2024



S. Mishra et al.: Real Time Intelligent Detection of PQ Disturbances

Initialize, POP,UB,LB,ITRmax,MOAmax,MOAmin, b, µ= 0.5, α = 5, ε = 0.000001
Evaluation of fitness of the candidates Identify the best Search AgentHPbest
for1 CITR = 1 : ITRmax

for2 each HP as k in POP
Evaluate,MOA (CITR) =MOAmax+CITR ∗ MOAmax−MOAmin

ITRmax
Take, r1 = rand(0, 1)
If1 r1 > MOA (CITR)

Take, r2 = rand(0, 1)
for3 each variable j in HP

pk,j=


HP jbest ÷ (MOP + ε) ×

[(
UBj−LBj

)
×µ +LBj

]
,r2< 0.5

HP jbest × (MOP) ×
[(
UBj−LBj

)
×µ +LBj

]
, otherwise

where MOP = 1 −

(
CITR
ITRmax

)1/α
endfor3

else1
Take, r3 = rand(0, 1)
for3 each variable j in HP

If2 r3< 0.5
Take, rj1 = rand (0, 1) ,rj2 = rand(0, 1)
Evaluate, Aj = 2.a.rj1 − a and C j = 2.rj2
where a linearly decreased from 1 to 0
Evaluate,M j=

∣∣C j∗HPbest−p
∣∣

pk,j = p− Aj ∗M j
else2

Take,r4 = rand(−1,1)
Evaluate,M j=

∣∣∣HP jbest−p∣∣∣
pk,j=HP

j
best +M j ∗ ebr4 ∗ cos (2πr4)

endif2
endfor3

endif1
endfor2

Check if any candidate exceeds the search space, then bound it
Revaluate of fitness of the candidates
Update HPbest if better solution found

endfor1

TABLE 2. PQDs with mathematical modelling and variational mode
decomposition.

C. CLASSIFICATION
In stage-3, initially the training procedure is carried out
with the optimized hyper parameters of LGBM obtained in
stage-2. Here the required training data (feature-target data
matrix) is retrieved from stage-1. The training process is
performed with a 10-fold cross validation and as a result, the

proposed HOLGBM based Power Quality Detection Model
(PQDM) is obtained. The very first time the trained model
will undergo testing process where the 30% feature data
reserved for testing is getting utilized to test its detection
accuracy. Then after the proposed PQDM can be utilized
for real time detection of power quality events. The real
time detection part is marked as GREEN arrow in work
flow diagram Fig.1. The steps for real time detection are as
follows,

✓ The live voltage signal is being constantly sensed and
buffered in a batch of 1000 data samples at a sampling
frequency of 10khz.

✓ Subsequent VMD implementation is made on the
collected data samples to obtain 5 BLIMFs.

✓ The Energy of all BLIMFs are computed to form the
feature vector of 1 × 5.
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FIGURE 1. Work flow diagram of the proposed HOLGBM.
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FIGURE 2. Chosen Power Quality Indices (PQIs) and their corresponding wave shapes of all PQ events.

✓ The feature vectors are sequentially presented to the
proposed VMD and HOLGBM based PQDM for event
classification.

✓ If disturbance is detected the necessary action is to be
taken by the protection system else the loop keeps on
continuing.

V. RESULT ANALYSIS & PERFORMANCE EVALUATION
To assess the efficacy of the proposed approach, 14 variations
of PQ disturbance signals along with a healthy signal is
examined. To create a comprehensive evaluation, 4 different
variant datasets are generated namely DS1, DS2, DS3 and
DS4 where DS1&2 for single PQ events (PQI0 to PQI8) and
DS3&4 for all PQ events (PQI0 to PQI14). DS1 and DS3 is
having 500 synthetic samples for each disturbance category
with dimension 4500 × 5 and 7500 × 5 respectively. While
DS2 and DS4 contain 3 subsets of samples possessing signal-
to-noise ratios (SNRs) of 20dB, 30dB and 40dB respectively
with each dB level having 500 feature sets. That means
DS2 and DS4 having dimension 13500 × 5 and 22500 × 5
respectivly. A glimpse of all events will every noise level
can be seen in Fig.2. It is to be noted that, PQI denotes the
respective Power Quality Index as per Table-1. These samples
were randomly generated and shuffled. For performance
evaluation out of the whole data 70% allocated for training
purposes and the remainder for testing with class wise
random selection. The modelling stage is executed using
MATLAB 18a on a desktop computer equipped with an Intel
2.30 GHz i5-8300 CPU and 8GB RAM.

A. NOISE-FREE PERFORMANCE
Here the DS1 and DS3 datasets are taken into account with
350 samples from each class is dedicated to training and
150 is for testing. Since the performance of a classifier
can be well defined through a confusion matrix, therefore

the training and testing confusion matrices of the proposed
classifier is presented in Fig.3(a) to (d). It is seen that all
events are completely detected from the training set with
100% accuracy for both datasets. On the other hand, from
the testing set one each from swell, flicker and harmonics
are misclassified as interruption, harmonics and flicker
respectively in DS1. That means 1347 PQDs truly detected
out of 1350 testing event with an accuracy of 99.77%. Similar
outcomes can be observed with DS3 test-sets with minimal
misclassification and accuracy of 99.56%. It is seen that; few
misclassifications are observed between sag + harmonics &
sag + harmonics + oscillatory transients as well as swell
+ harmonics & swell + harmonics + oscillatory transients
successively.

B. NOISE-IN PERFORMANCE
Since the power lines in real world often experience
electromagnetic interference with communication lines, the
measured parameters like voltage or current are usually
contaminated with noise. That means it is really necessary to
demonstration the performance of the detection scheme under
noisy circumstances. In this regard, the DS2 and DS4 datasets
are utilized to verify the same where the random sampling of
all the three SNR levels are carried out to simulate a varying
noise condition then divided in to training and testing in
70:30 ratio. It seems that, accuracy of 98.29% and 96.44%
are observed with training and testing for DS2 with only one
type of PQ disturbances. The respective confusion matrices
are shown in Fig.4(a)&(b). While dealing with complex PQ
disturbance dataset, similarities can be observed between
many events. Certainly, the training confusion matrix shown
in Fig.4(c) is showing accuracy of 98.44%whereas the testing
confusion matrix Fig.4(d) is displaying accuracy of 96.77%.
This indicates, the performance of the proposed VMD and
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FIGURE 3. Confusion matrix of noise free dataset DS1 and DS3.
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FIGURE 4. Confusion matrix of noise contained dataset DS2 and DS4.
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FIGURE 5. Individual accuracy bar diagram of all disturbance events
with 3 SNR levels.

HOLGBM classifier is neither compromised while detecting
complex PQ disturbances nor in case of noise.

Further, the individual accuracy of each PQD class with
3 different noise levels are presented in the bar chart as
shown in Fig.4. It is to be noted that this accuracy is
calculated on overall data of individual class and not on
separately for training and testing data. It is observed that,
the maximum accuracy is found to be of impulse transient
(PQI8) under 40dB noise whereas minimum accuracy is of
94.26% is found for interruption event (PQI0) at 20dB noise
level.

C. REAL TIME VALIDATION
The study carried out a real-time Hardware in Loop
simulation to address two crucial aspects. The first one is the
performance of the proposed PQDM trained with synthetic+

noise contained dataset, against unseen disturbance retrieved
from a system that replicating the behaviour of actual
grid. The second one is the determination of an average
detection time of the classifier. To achieve the same the
proposed PQDM is validated through OPAL RT simulator
by intentionally creating few of the disturbances in Grid
Simulator (GS). Here GS will resemble as a practical
grid system, therefore is utilized to apprehend few of the
disturbances such as sag, swell and interruption. Moreover,
the GS is internally consisting of a front-end converter (FEC)
and a load side converter (LSC), where the PWM signal of
the LSC is modified to generate the specific disturbances.
This PWM is generated at a switching frequency of 5kHz
in the host computer and fed to the GS through digital out
(D-OUT) of OP5410 by running the real time simulation.
Then the measurement points of GS are connected to OP8662
VI sensor and the measurements are fed back to OP4510
through its analog in (A-IN). Finally, the outputs are being
displayed by connecting the analog out (A-OUT) of OP4510

to YOKOGAWA Multi Signal Oscilloscope (MSO). The
overall validation setup and its flow can be seen in Fig.6.

The MSO is set to display two signals, where the first one
is real time PQD signal from GS. The other one is the PQD
index which presents the current state of the real time PQD
signal detected by the proposed HOLGBM PQ Detection
Model. The list of Indices for the PQDs are already given
in Table-1. It can be observed from Fig.7 that, a sequence of
intentional disturbances are generated from GS for a duration
of 15 AC cycles (50Hz) to validate the detection capability of
the proposed classifier. In the bottom half figure the index
‘‘2’’ is indicating to PQ label ‘‘PQI2’’ which designates the
system is in ‘‘Healthy’’ state. But after the occurrence of
SAG event the indicator drops from 2 to 1 indicating to PQ
label ‘‘PQI1’’ which designates the system is under ‘‘SAG’’
state. Next the system again gets back to ‘‘Healthy’’ state and
indicator changed from 1 to 2 and further steps to 3 indicating
to PQ label ‘‘PQI3’’ which designates the system is under
‘‘SWELL’’ state and so on. It is to be noted that the live
voltage signal is initially converted to per unit then only
further processing is carried out, since the classifier is trained
with the per unit signals.

Further the detection time of the proposed classifier is
calculated from the real time results. In Fig.8 a sag event
is zoomed at 10ms/div to indicate the detection time. It can
be clearly seen that the PQ Index changed from 2(healthy)
to 1(sag) after certain amount of time delay. This delay is
actually the detection time which has two parts as follows,

DetectionTime (DT )

= AcquisionDelay (AD) + ProcessDelay(PD) (7)

The acquisition delay is because of the way the real time data
is collected in the buffer before processing. Since the data
collection is made for 5 cycle-window with a 1 cycle gap
as shown in data acquisition part of Fig.1, the acquisition
delay is fix to 20ms or 200 samples. Further, to calculate
the process delay, the PQD Signal and Index samples are
saved to the host PC for more than 3000 cycles. From this
data, 100 number of PQD observations are taken where the
sample difference between the instance of occurrence to the
instant of detection are evaluated. It has been observed that
the sample difference varies from 341 to 373 as show in
Fig.9. That means the process delay varies in between 141 to
173 samples. Therefore, the detection time is evaluated by
taking the average of 100 observation which comes to be
358.8 samples (≈35.88ms). Moreover, a confusion matrix
is given in Fig.10 of these 100 observations to validate the
detection accuracy of the proposed classifier with real time
data. It has been observed that, the classifier successfully
detected all events without any misclassification i.e., the
detection accuracy is found to be 100%.

D. COMPARATIVE STUDY
In this subsection, first the training-testing time and the
respective accuracy of the proposed method is compared
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FIGURE 6. Real time setup to validate the proposed PQ detection scheme.

FIGURE 7. Real time voltage and PQD index from MSO.
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FIGURE 8. Zoomed plot of a sag event for estimating the detection time.

FIGURE 9. Differential sample count between disturbance occurrence
and detection instant of 100 real time observations.

TABLE 3. Comparison of GBM and LGBM with proposed HOLGBM along
with VMD.

with plain vanilla Gradient Boosting Machine (GBM) and
LGBM. It is to be noted that the dataset taken here is the
mix all datasets with dimensions 30000 × 5. Here once again

FIGURE 10. Confusion matrix of 100 real time observations.

random sampling in 70:30 ratio is maintained for training and
testing respectively. The observation shown in Table-3 revels
a significant improvement in training time in the proposed
method whereas the testing times are nearly equal to each
other. Moreover, the detection accuracy is hitting 97.21%
which is also found to be superior among the three.

Further, the proposed PQD detection method is being
compared with the similar pre-published methods to study
its effectiveness in terms of detection time and accuracy. The
outcomes are presented in Table-4 along with the number of
test events and sampling frequency. Since, a limited number
of research works have been published especially for PQ
detection with ensemble tree classifiers, the comparative
study is further extended to tally different ensemble tree
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TABLE 4. Performance comparison with similar priorly published studies.

TABLE 5. Comparison of conceptualization with similar priorly published Studies.

techniques (bagging & boosting) for PQ detection in Table-5.
A total of 5 conceptual factors namely, feature selection,
dataset type, proposed optimizer, real time validation and
detection time are considered. It is found that, most of
the studies neither gone for feature selection [15], [19],
[38], [39], [40] nor gone for a computation of detection
time. As feature selection is a crucial step for classifier
performance, it is needed to be taken care of. Unlike other
classifiers LGBM [41], [42], [43] automatically take care
of feature selection applying its internal GOSS and EFB
mechanism, therefore used as base classifier of the proposed
study.

Similarly, detection time is also a much crucial per-
formance parameter especially when real-time monitoring
is performed and thus calculated in the proposed work.
In addition to that, [7] (Memetic Fire Fly Algorithm-
MFFA), [41] (Improved Gray Wolf Optimization-IGWO)
studies undergone the optimization of classifier parameters
but suggested classifier is not validated in real time.
Similarly, [39] has tested its PQ detection technique with data
extracted from PQSCADA system but no in real-time mode.
References [19] and [42] have done real-time simulation

through Real Time Digital simulator (RTDS) & OPAL-RT
setups respectively whereas [15] proposed Digital Signal
Processing (DSP) board-based monitoring system. On the
other hand, the proposed study has gone through all the
aforementioned conceptual parameters and therefore can be
well generalized for real grid applications. Hence, from the
overall study and experimentation, it is evident that, the
proposed VMD based HOLGBM classifier can well perform
the classification task even with practical scenario data.

VI. CONCLUSION
The research work is focusing upon fast and accurate power
quality disturbance identification combining the likes of
VMD and LGBM. Since most informative signal recognition
is a major concern in signal separation techniques like
VMD, in this approach all five BLMs are considered to
overcome this challenge. Moreover, feature selection is one
more key concern in MLC based technique like LGBM, the
process is completely simplified by taking the energies of all
five BLMs as features. Following the aforesaid information,
a feature dataset of 15 PQDs are prepared with dimension
of 30000 × 5 combining both ideal and noisy signals where
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each PQD has 2000 data instances. The dataset is further
used to train and test the LGBM where the training time
and detection accuracy are found to be 63.6 msec and 95.1%
respectively. To improve the performance of the concerned
classifier the hyper parameters of LGBM are optimized
through a proposed Hybrid Arithmetic Whale Optimization
Algorithm. The imposed modification significantly reduced
the training time to almost one third i.e. 20.9msec along with
elevated the over accuracy to 97.21% with ideal accuracy
of 99.56%. Furthermore, the proposed technique is also
validated in real time through OPAL-RT and Grid Simulator
Hardware in Loop (HIL) setup and three PQ events such
as sag, swell and interruption are investigated. A total
of 100 real-time signals generated in grid simulator are
successfully detected by the proposed VMD & HOLGBM
based PQDM with an average detection time of 35.88msec.
This setup ensured the integrity and reliability of our
experimentation and analysis.
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