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ABSTRACT In recent years, the demand for delivery services has increased by applying robot technology
in various fields such as food services, logistics, hospitals, and hotel business. However, it is still challenging
to perform autonomous delivery in multi-floor buildings. Particularly for wheeled robots, the use of
elevators is essential for indoor last-mile delivery service in buildings. To tackle the problem, We have
developed an indoor deliverymobile robot and present its architecture designed for multi-floor environments.
The architecture consists of five modules: map management for utilizing an integrated navigation map,
localization, path planning, perception, and task planning. The integrated navigation map is generated by
combiningmulti-floor point cloudmaps and topological maps based on node graphs for effective localization
and path planning. Additionally, the proposed 3D route planning allows inter-floor movement. A feasible
path for boarding the elevator can be generated through the perception module, and delivery services to
multiple destinations can be repeatedly performed through task planning. Our architecture’s effectiveness is
demonstrated through a month-long field test in an ordinary building during regular business hours. This
study’s contributions include a novel architecture for autonomous delivery without human intervention,
an integrated map for efficient indoor navigation, and the proven robustness of the system in real-world
scenarios.

INDEX TERMS Delivery service, mobile robot, multi-floor, route planning, elevator boarding, docking.

I. INTRODUCTION
In recent years, industrial demand for contactless services
and automated systems has increased significantly due to
the COVID-19 pandemic [1]. Concurrently, research is
being conducted to apply and expand robot technology in
various fields, such as food services, logistics, and hotel
business, to replace a decreasing labor population and
increase work efficiency [2], [3], [4], [5], [6]. In particular,
mobile robots are considered an effective solution in the
last mile delivery service field [7], [8], with companies like
Amazon, Starship, and FedEx actively involved in research
and development [9], [10]. The robots researched in this way
perform tasks by moving indoor and outdoor environments
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for delivery services [11], [12]. Mobile robots significantly
enhance efficiency in last-mile delivery by automating
the delivery process, thus reducing the time required to
transport packages to their final destination. Additionally,
they offer substantial cost savings by minimizing the need for
human labor, leading to a reduction in operational expenses
associated with deliveries.

Such that we specifically focus on the indoor multi-
floor environment. There are several considerations when
providing delivery services using mobile robots in an
indoor environment. First, indoor environments are often
GPS-denied, meaning there are restrictions on receiving
position information directly [13]. To address this challenge,
localization systems that fuse data from sensors such as
cameras, inertial measurement units (IMUs), and light
detection and ranging (LiDAR) sensors are widely used.
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Examples include visual inertial odometry and LiDAR
inertial odometry [14], [15]. Moreover, indoor spaces are
typically narrower than outdoor spaces, and there are various
obstacles, including people, which can make it difficult for
robots to navigate. Therefore, obstacle avoidance methods
are needed in narrow spaces. Efficient route planning is also
essential to maximize the efficiency of last-mile services.
In particular, indoor environments are often multi-floor, so it
is necessary to develop algorithms that can find efficient
routes even when the starting point and destination are on
different floors [16]. Because of this, localization should be
performed on separate floors. It is important to note that,
unlike quadrupedal robots, wheel-based mobile robots ought
to use elevators. Therefore, the robots should be able to call,
board, and exit elevators automatically. In addition, since it
is possible to board an elevator together with people, the
robots must be able to board and exit the elevator safely [17].
From a mobile robot perspective, the challenging technical
difficulties of last-mile delivery service can be summarized as
follows: the need to board and exit the elevator autonomously,
the requirement to continue autonomous navigation in a
different environment after changing floors using the elevator,
and the complexity of the parcel delivery process which
involves multiple tasks that a single robot must be capable
of performing.

In this study, as shown in Fig. 1, we have developed
an indoor delivery mobile robot and present its architecture
designed for multi-floor environments to meet these require-
ments. The proposed architecture consists of five modules:
map management, localization, path planning, perception,
and task planning. We perform drivable area extraction and
elevator detection in the perception module and use the task
planning module to enable the mobile robot to board and
exit the elevator autonomously. In addition, the concept of
an integrated navigation map is proposed so that autonomous
driving can be maintained even after the floor is changed,
thereby stabilizing the robot’s position and path-following
state. Furthermore, through task planning, we efficiently
transition between the necessary tasks for parcel delivery,
such as driving, elevator boarding, delivery, and docking.

The integration of these modules allows mobile robots to
perform last-mile delivery services in indoor environments.
The main contributions of this research are as follows:
• We propose an architecture for autonomous delivery
from parcel receipt to delivery without human interven-
tion. All processes are performed within an ordinary
building not specifically designed for robot operation.

• We present an integrated navigation map for robot
localization and efficient 3D route planning in indoor
multi-floor environments, which includes node graph
information containing the meaning of the drivable area.

• We demonstrated the robustness of the proposed archi-
tecture through a month-long field test conducted during
business hours when people are moving around.

The rest of this paper is organized as follows. Section II
introduces previous related works. Section III provides an

FIGURE 1. The appearance of the mobile robot used in this study.

overview of the proposed system. Section IV explains inte-
grated navigation map generation, path planning, perception,
and task planning. Section V presents the experimental
results. Finally, in Section VI, we conclude this research.

II. RELATED WORKS
Mapping of indoor environments for delivery service robots
is important for localization. Therefore, many studies have
been conducted on how to construct a multi-floor map. One
of the widely used methods is to use a barometer, which
can calculate the altitude value using air pressure [18], [19].
This method generates a multi-floor map by stacking 2D
maps vertically using the height values obtained at the time
each floor’s 2D map was created. However, generating a
multi-floor map by aligning and stacking 3D maps can yield
a map with much more geometrical information.

Various methods for localization in indoor environments
have been researched. One approach involves using land-
marks such as StarGazers attached to the ceiling of the
building [20]. This method is effective when the robot
only operates within a limited area. Since delivery robots
may have destinations throughout a building, attaching
landmarks to every floor’s ceiling is inefficient. Using
particle filters to estimate a robot’s position has also
been studied [21], [22]. However, increasing the number
of particles to improve accuracy always tends to higher
computational costs. Research has also been conducted on
using WiFi signals for localization [23], [24]. However, WiFi
signals are susceptible to interference and signal strength
variability. To address this, methods using sensor fusion, such
as cameras, LiDAR, andWiFi footprints, for localization have
been conducted [25], [26].

Research on path planning for delivery service robots
in buildings has been conducted from various perspectives.
Mantha et al. [27] proposed a method for optimally visiting
multiple delivery destinations from the perspective of the
traveling salesman problem. Kim and Jung [16] proposed
a method to optimize the delivery time using a genetic
algorithm. Palacín et al. [28] proposed a method for
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FIGURE 2. Overview of the developed system architecture.

generating paths by using a predefined navigation tree in a
2D map, estimating the length of the path using Dijkstra’s
algorithm. However, these methods addressed route planning
problems on a single floor and the paths on other floors are
calculated separately.

Various methods for inter-floor movement have also been
researched. Approaches where robots recognize people in
elevators, follow them on board, and use barometers to
detect floor changes to reach the desired floor have been
studied [22], [29]. Research has also been conducted on
recognizing buttons and numbers through vision [17], [30].
However, these methods rely on the precondition that the
robot’s view is not obstructed by passengers.

Existing studies have focused on single tasks such as
generating multi-floor maps, path planning, or elevator
boarding. However, for indoor delivery service, these tasks
need to be connected so that a robot can perform them all,
enabling effective last-mile delivery services.

III. SYSTEM OVERVIEW
Fig. 2 illustrates the overview of our developed system
architecture. The system is divided into five parts including
map management, localization, path planning, perception,
and task planning.

The map management module initially creates point cloud
maps for each floor of the building, then aligns the maps of
different floors based on shared areas. After creating the map
of each floor, nodes that can act as anchors are designated
and added to the single-floor map. These nodes are used
as references for the drivable region on that floor. They are
composed of points corresponding to the end of the corridor,
intersections where multiple directions are possible, points

on elevators, and delivery destinations. The nodes also have
attributes according to their roles. For example, intersection
nodes include additional data like the number of branches.
The map that includes these nodes is defined as an integrated
navigation map.

The localization is performed by fusing the LiDAR
odometry method and registration. The registration between
current LiDAR data and the point cloud map is conducted
simultaneously with the estimation of LiDAR odometry in
parallel. the LiDAR odometry is utilized as the predictive
transformation for the next step of the registration.

For path planning, the robot needs to move through
multiple floors. Therefore, if the destination is on a different
floor than the current floor, a 3D route is generated by
connecting the elevator nodes on the current and destination
floor.When the integrated navigation map of the current floor
is loaded, the nodes are interpolated to connect them to a
graph. This graph is then utilized as the route.

To detect elevators for inter-floormovement, both a camera
and LiDAR sensor are used. First, we calibrate the camera
and LiDAR sensor, then use the YOLACT [31] method to
pixel-wise segment the elevator in the camera image. After
that, we cluster the point cloud corresponding to the pixels
segmented as the elevator and use the center point as the
elevator position. When boarding the elevator, not only the
position of the elevator is used, but also a drivable region
extracted from the LiDAR data is utilized to decide whether
to board the elevator or not. The drivable region obtained in
this process is also applied to local path planning for effective
obstacle avoidance.

Task planning is performed by dividing the entire delivery
service into several tasks and distinguishing the robot’s
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FIGURE 3. Pipeline of multi-floor map generation. A multi-floor map is
generated by matching and aligning the same areas among each floor’s
3D point cloud maps and then stacking them up.

behavior. Each task consists of a driving task thatmoves along
the route, an elevator boarding/exiting task, a delivery task
that is performed upon reaching the delivery destination, and
a docking task for receiving parcels or returning to the station
after delivery.

An Ouster OS1 128 channel 3D LiDAR sensor, two
A2 RPLiDAR sensors, four Seconix SF3325-100 (RCCB)
GMSL cameras, andMicroStrain 3DM-GX5-25 IMU sensors
were used with an Intel NUC (Intel i7 processor, 64GBRAM)
and an Nvidia Jetson Xavier AGX as the computing devices.
All systems were implemented in C++ and Python. Also,
it was executed using the Robot Operating System (ROS) [32]
in Ubuntu 18.04 Linux.

IV. METHODOLOGY
A. INTEGRATED NAVIGATION MAP GENERATION
1) MULTI-FLOOR MAP ALIGNMENT
As shown in Fig. 3, the multi-floor map is generated in two
stages: generating single-floor maps and then generating the
multi-floor map through stacking these maps. The single-
floor high-definition map is generated using the lightweight
and ground-optimized LOAM (LeGO-LOAM) [33] method
from the LiDAR Odometry And Mapping (LOAM) [34]
series, which is commonly used in mobile robotics for map
generation.

To stack the single-floor maps, a registration method based
on the Normal Distribution Transform (NDT) is utilized [35],
[36]. There are overlapping areas between the k-th floor
and the (k-1)-th or (k+1)-th floor, and in these overlapping
areas, the point cloud maps of the two floors have the same
points. These include areas such as stairs between floors
and areas that penetrate the building vertically. The key
to the stacking method is to determine the rotation matrix
Rk and the translation vector tk using registration in these
areas to stack the map of the k-th floor Mk on top of the
accumulated map U1:k−1. Here, U1:k−1 is a multi-floor map
accumulated from the 1st floor up to the (k-1)-th floor.
The point clouds corresponding to the same area in both
Mk and U1:k−1 are extracted from each map. These are
denoted as PMk = {pMk ,1, pMk ,2, · · · , pMk ,n} and PU1:k−1 =

{pU1:k−1,1, pU1:k−1,2, · · · , pU1:k−1,n}, respectively. Then, the
transformation of Mk to U1:k−1 can be redefined as the
transformation between PMk and PU1:k−1 . The transformation
error dk can be defined as follows:

dk =
∑
∀j

((RkpMk ,j + tk )− pU1:k−1,j). (1)

FIGURE 4. Conceptual illustration of the base and interpolated nodes and
graph, which are elements of a topological map.

To minimize dk , registration is iteratively performed until
dk < δ (where δ is a threshold) to find Rk and tk . In our
work, the threshold of registration convergence score for
transformation is chosen to be 0.2. Afterwards, the tnew
is defined by adding the inter-floor gap zbias to tk . Mk
transformed by Rk and tnew into M′k is then merged with
U1:k−1 to generate U1:k which includes up to the k-th floor.
More detailed procedures can be found in our previous
work [37], [38].

2) TOPOLOGICAL MAP GENERATION
We propose a topological graph map of the k-th floor
Gk for the multi-floor route planning. While building Mk ,
we register the base nodesNB

k = {n
B
k,1, n

B
k,2, · · · , n

B
k,n}which

can serve as references for graph generation. NB
k consists of

four types:

• End-point corresponding to the end of the corridor
• Intersection where multiple branches are possible
• Point on an elevator
• Delivery destination

After building a NB
k , we interpolate N

B
k to generate NI

k =

{nIk,1, n
I
k,2, · · · , n

I
k,n} for generating a dense points trajectory.

Thus, the graph map for each floor Gk , is defined as
{NB

k ,N
I
k} ⊂ Gk and the cumulative graph map up to the k-

th floor is defined as G1:k as depicted in Fig. 4. Base nodes
are registered on the point cloud map, and when the point
cloud map of the corresponding floor is loaded, the nodes
are interpolated to generate a graph. The graph maps are
used for route planning, and routes across different floors are
connected through elevator nodes.

We use OpenStreetMap [39] (OSM) and the Java Open-
StreetMap Editor for convenient management of base nodes.
Selecting base nodes and managing them through OSM
offers several advantages. It facilitates the management
and registration of delivery destinations when performing
delivery service. Also, it is easy to edit the route that the robot
will take. In addition, it is easy to add attributes to the nodes
described later.

These nodes are only generated in areas where the robot
can move. Therefore, when utilizing the graph connected
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FIGURE 5. The structure of localization.

by these nodes for route planning, it naturally prevents the
generation of routes in areas where the robot cannot drive.

Nodes have attributes that include the floor on which
they were generated. However, some nodes have additional
attributes depending on their role. Intersection nodes have
information about the number of branches, and elevator
nodes have an attribute identifying them as elevator nodes.
Ordinary nodes have two direction attributes for the graph to
be connected on both sides, whereas end-point nodes have
only one direction attribute.

We define the map that combines the merged point
cloud map and the topological graph map as an integrated
navigation map.

3) LOCALIZATION
The robot’s position is determined by scan-matching-based
localization within the mapMk of each floor. However, there
may be cases where this method fails. Therefore, LiDAR
odometry has been combined to improve the robustness of
localization.

Let xMt = [xt , yt , θt ] denote the state of the robot, with xt
and yt representing the robot’s position and θt is its heading
in the 3D point-cloud map at time t .M is defined as the map
coordinates. We also define the voxelized LiDAR points at
time t as zBt . B is defined as the robot body coordinates.

The robot’s position xMt can be estimated by minimizing
the distance between zMt , which is converted from the body
coordinate zBt using the transformation matrix Tt , and the
current floor’s point cloud map Mk . This can be seen as a
registration problem. The reason for using only the current
floor map Mk instead of the merged map U1:k is to prevent
registration with similar environments on other floors. For
point-cloud registration, we employ the generalized iterative
closest point (GICP) method [40]. This approach represents
the surface from which a point is derived as a Gaussian
distribution: zMt ∼ N (ẑi,C

z
i ),Mk ∼ N (m̂i,Cm

i ). Then, the
transformation error di can be defined as follow:

di = m̂i − Tt ẑi. (2)

The distribution of di can be described as

di ∼ N (m̂i − Tt ẑi, Cm
i − TTt C

z
i Tt )

= N (0, Cm
i − TTt C

z
i Tt ). (3)

The GICP finds the transformation Tt that maximizes the
log likelihood of (3) as follows:

Tt = argmax
Tt

(log(p(di)))

= argmin
Tt

(
∑
i

dTi (C
m
i − TTt C

z
i Tt )

−1di). (4)

For real-time operation, the FAST-GICP (voxelised
GICP) method, one of the variants of the GICP method,
is adopted [41].
As the map becomes larger, the registration algorithm

becomes more computationally complex, as the number of
points to be compared increases. This can lead to occasional
incorrect registration. In addition, failure can also occur
when the robot’s movement becomes sudden. Therefore,
we implement a sliding window to reduce the range of the
target point cloud. Also, we calculate the LiDAR odometry
based on the NDT method, which is robust to changes in
scan data within a short interval to handle the robot’s dynamic
movement.

The sliding window involves utilizing only the points
within a radius r from the robot’s current position xMt
in the point cloud map Mk . Then, points that are too
far from the robot do not need to be compared, and the
calculation complexity is also decreased, which can reduce
the probability of alignment failure.

The registration involves iteratively finding Tt from the
robot’s starting point, so the robot’s position in the previous
step is estimated as Tt−1. We calculate LiDAR odometry
for a short time 1t and use a predictive transformation
Tt+1t instead of Tt−1 for the next step of registration.
This approach has the effect of preventing the next step
of registration from diverging and re-calculating the robot’s
position when (2) does not converge and has a large error. The
robust localization algorithm is illustrated in Fig. 5.

B. PATH PLANNING
1) 3D ROUTE PLANNING
This study introduces a 3D route planning algorithm that
leverages elevator nodes for expandable traversal through
multi-floor environments. The proposed method integrates a
depth-first search (DFS) algorithm for efficient navigation
through the interconnected floors of a building.

The proposed algorithm addresses the challenges of
multi-floor navigation by integrating elevator nodes, enabling
vertical traversal. The elevator nodes are strategically
integrated into the constructed nodes Nk , ensuring that
spatial information for each floor is interconnected through
elevators. The use of elevators optimizes the overall route
planning process by reducing the complexity associated with
repetitive floor-by-floor planning. The path Pglobal∗a→b from
floor a to floor b is defined as follows:

Pglobal∗a→b = argmin
∀i,j∈G1;k

(fa,i + fb,j + gelevator ) (5)
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where fk,i is the cumulative distance function on floor k , and
gelevator is the function for floor transition enabling vertical
node expansion in the pathfinding process.

The function gelevator for expanding elevator nodes can
be refined to reflect the specific characteristics of vertical
movement. Let Velevator denote the set of elevator nodes.
The function gelevator incorporates the cost associated with
moving between elevator nodes on different floors by
introducing a weighting factor welevator .

gelevator (ni, nj) = welevator · cost(ni, nj) (6)

where ni and nj represent nodes connected by an elevator,
and cost(ni, nj) denotes the cost associated with transitioning
between these elevator nodes.

The DFS algorithm is employed in our approach to
efficiently explore and navigate the interconnected graph
nodes. DFS facilitates a systematic traversal of the graph
structure, exploring as far as possible along each branch
before backtracking. This characteristic of DFS contributes
to the effectiveness of the proposed 3D route planning
method by ensuring that the algorithm systematically and
thoroughly explores available paths. The DFS algorithm is
implicitly integrated into the entire route planning process,
contributing to the systematic exploration of the intercon-
nected multi-floor graphs in (5).

To explicitly introduce the DFS algorithm into the path
planning equation, we can represent the recursive nature of
DFS. Let Nvisited denote the set of visited nodes during the
DFS traversal. The recursive DFS equation can be expressed
as follows:

DFS(ni) = ni ∪

 ⋃
nj∈neighbors(ni)\Nvisited

DFS(nj)

 . (7)

This equation defines the DFS traversal starting from
node ni, exploring its neighbors recursively while avoiding
previously visited nodes. The set union operation (∪) ensures
the accumulation of visited nodes.

The overall cost function fk,i for a given floor k in the
path planning equation can be decomposed into individual
components, such as distance traveled within the floor (f Nkk,i ),
elevator node expansion cost (gelevator ), and any other relevant
factors:

fk,i = f Nkk,i + gelevator . (8)

This decomposition provides transparency into the con-
tributing factors influencing the cost function.

2) LOCAL PLANNING
For autonomous navigation in indoor environments, the
ability to avoid obstacles that may exist in its path is essential.
Therefore, real-time local path planning is utilized to enable
obstacle avoidance. Our research team previously proposed
a system capable of operating in complex environments
with various obstacles [3], but we discovered limitations
in indoor environments, especially when riding an elevator.

Algorithm 1 Online TEB Local Planner
1: procedure tebalgorithm(traj, pc, pg,O, robot_model) ▷

Invoked each interval
2: Initialize or update trajectory
3: for Iteration 1 to Iteb do
4: Adjust length n of the trajectory
5: Update obstacles constraints from set O
6: traj∗← CallOptimizer(traj) ▷ solve

Nonlinear least-square function
7: if length_of _traj∗ > threshold then
8: Replanning
9: Check feasibility
10: return First (sub-) optimal control inputs (v,w)

FIGURE 6. Semantic segmentation result for elevator and robot detection.
(a) segmentation results of the elevator and robot when the robot is far
from the elevator. (b) results of the robot segmenting itself from the
image reflected on the door when the robot is close to the elevator.

In the previous research, a local planner based on motion
primitives was used, but in situations like elevators or narrow
areas, there were cases where all primitives were infeasible
for travel, making it impossible to choose samples for
avoidance maneuvers. To overcome these limitations, a time
elastic band (TEB) based local path planning algorithm was
utilized [42]. This algorithm enabled the generation of local
paths considering speed, angular velocity, and obstacles.
Additionally, although the robot was a differential drive type
and thus had no kinematic constraints, we implemented path
generation considering kinodynamics applicable to car-like
models for use in tight spaces like elevators. Kinodynamic
motion planning generates a path when various dynamic
obstacles are included in the input, however, when multiple
dynamic obstacles are considered, the path sometimes
becomes longer than necessary. To solve this problem,
as described in Algorithm 1, we modified the algorithm to
perform re-planning in such situations, allowing the robot to
generate easily navigable paths again.

C. PERCEPTION
1) ELEVATOR DETECTION
The relative position of the elevator is determined through
camera-LiDAR sensor fusion. For accurate elevator door
recognition, the YOLACT image semantic segmentation
algorithm is used, known for its fast real-time recognition
speed.
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FIGURE 7. Challenging scenario inside the elevator. Inside an elevator
made of mirrors and scattered point cloud data.

The elevator door in the building where the research
was conducted was made of highly reflective metal. When
the robot approached the elevator door, the camera image
recognized reflections of the surroundings instead of the
elevator door. Therefore, the robot was trained to detect
the reflected robot itself to use the pixels corresponding to
the robot to determine the goal point. As shown in Fig. 6, not
only the elevator doors but also the robot itself is detected.
However, if the robot encounters a mirror while navigating,
it can mistake the mirror for an elevator door because it can
see itself. Therefore, it only determines to be an elevator only
when the robot recognizes itself near the elevator node on the
global map.

We use a semantic segmentation algorithm instead of
an object detection algorithm such as YOLO [43] which
produces bounding box results. Because the elevator does
not always appear as a rectangle in images depending on
the viewing angle, and the robot also has an irregular shape.
Whenmatching the LiDARpoint cloud to the image detection
result, if the bounding box is used for matching, point clouds
corresponding to the wall pixels are also extracted. This
leads to the center of the point cloud cluster being calculated
further from the expected point. To prevent this, the semantic
segmentation algorithm is used that can extract pixels in the
shape of the detected object.

xcam = tan
(

θ

2

)
2u− w
w

zcam (9)

ycam = tan
(α

2

) 2v− h
h

zcam. (10)

The pixels corresponding to the elevator are matched with
the LiDAR point clouds through equations (9) and (10).
Afterward, they are used to set a 3D region of interest
(ROI) for extracting only the points corresponding to
the elevator, following a coordinate transformation using
the camera-LiDAR transformation matrix. In this context,
xcam, ycam, zcam represent the position in the camera coor-
dinate system, while θ, α represent the camera’s horizontal
and vertical field of view, respectively. u, v denote the pixel’s
position on the camera’s image plane, and w, h are the width
and height of the camera’s image, respectively.

The center point of the LiDAR points corresponding to
the elevator is set as the elevator position Pelevlidar . Similarly,
the center point of the LiDAR points corresponding to the
robot reflected on the elevator door is also set as the position

FIGURE 8. Drivable region on obstacle map. The orange area indicates an
expanded obstacle area with a radius ϵ. The area around the robot,
excluding the expanded obstacle area and its behind, is designated as the
drivable region (marked in green).

of the reflected robot Preflected_robotlidar . When the robot boards
the elevator, the closest point to Pelevlidar or P

reflected_robot
lidar in the

drivable region is set as the goal point.

2) DRIVABLE REGION EXTRACTION
As shown in Fig. 7, when the interior of the elevator ismade of
highly reflectivematerial, the data from the 3DLiDAR sensor
becomes scattered, causing localization inaccuracies when
employing scan-matching within the elevator. Additionally,
the appearance of LiDAR points beyond mirrors complicates
the generation of an obstacle map for extracting drivable
regions. Moreover, since people can ride in the elevator
together, using artificial markers inside the elevator for
localization is also challenging, as the markers can be
obscured by people. Therefore, in this study, we use a method
that employs a 2D laser scanner sensor, which has a lower
scattering effect compared to 3D LiDAR, mounted on the
lower part of the robot to detect drivable regions.

An occupancy grid map of size 5m by 5m centered around
the robot is designated as the region of interest. The size of
one cell in the grid map is set to 0.05m2. Detected points
from the 2D laser scanner sensor are considered obstacles and
registered in cells to generate an obstacle map. The registered
cells are expanded using the following equation to calculate
the cost of cells within a predefined range ϵ around them:

M cost
x,y =

n∑
k=1

{
w ∗

√
(ϵ − |x−xk |)2 + (ϵ − |y− yk |)2

}
.

(11)

where n is the number of obstacle cells in the obstacle map,
xk and yk are the coordinates of the obstacle cell, x and y
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FIGURE 9. Pipeline of elevator boarding and exiting task.

denote the coordinates of all cells within the ϵ range, and w is
a constant coefficient. The expanded obstacle area depicted
in Fig. 8 is the range of ϵ and the total sum of the expanded
obstacle areas for all k points becomes the cost mapM cost

x,y as
expressed in (11).

The drivable region Mdrv
x,y is defined as the set of points on

the line connecting the robot’s center point to the obstacle
map boundary points up to the point where it meets the
expanded obstacle area. The drivable region is used to set
the goal point in the elevator boarding task and the local path
planning.

D. TASK PLANNING
In this study, the process of last-mile delivery service is
divided into four task states. Each task consists of the
following:
• Driving task: Moving with the parcel.
• Elevator boarding & exiting task: For inter-floor move-
ment.

• Delivery task: Delivering the parcel to the recipient at
the destination.

• Docking task: Returning to the docking station to wait
or reload parcels after completing the delivery.

The robot provides delivery service by repeatedly performing
these tasks. The following describes each task in detail.

1) DRIVING TASK
The driving task is the most basic state, performing the task
of driving along a given path while conducting map-based
localization. The driving task is the default state, except when
performing the elevator boarding task, the delivery task at
the destination, and the docking task at the docking station,
as described below.

2) ELEVATOR BOARDING AND EXITING TASK
The driving task applies a localization algorithm using the
integrated navigation map. However, as mentioned in the
perception section, the elevator boarding task is performed
independently based on the drivable region due to the
inaccuracy of localization inside the elevator. Therefore, after
getting off the elevator, the process of reloading the integrated
navigation map and initializing localization on the map is
performed.

TABLE 1. Docking process states.

FIGURE 10. Outside marker and inside marker attached to the rooftop
docking station.

In this study, the elevator task is performed using Internet
of Things (IoT) communication based on a Request/Response
mechanism utilizing the elevator API. Therefore, the robot
can call the elevator without directly pressing the elevator
buttons and the destination floor button can be pressed
automatically. Fig. 9 depicts the pipeline for the elevator
task. When the mobile robot receives a parcel at the docking
station, the floor number it needs to visit is determined based
on the recipient’s address (room number within the building).
When inter-floor movement is required, the robot first
navigates toward the elevator node based on the global map
and then switches the task to the elevator boarding/exiting
task. A request to call the elevator is sent, and once the
elevator arrives, boarding is carried out after checking the
drivable region. It is important to judge whether the robot
has successfully entered the elevator during the boarding
process. If the maximum distance rmax from the robot’s
center to the boundary of the drivable region is less than the
user-defined threshold γ , it is determined that the robot is
aboard the elevator and the door is closed. After boarding, the
robot exits when the floor information provided by the API
matches the destination floor. Upon reaching the destination
floor, the robot pose is initialized in front of the elevator to
enable navigation based on the integrated navigation map for
resuming delivery service.

3) DELIVERY TASK
The delivery task is performed by communicating with the
control center via TCP/IP when departing from the docking
station and upon arrival at the destination. This task consists
of the following behavior: sorting the destination, sending a
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FIGURE 11. Calculate relative distance and angle from Apriltag marker for
docking.

text message to the recipient, waiting, delivering the parcel
to the recipient or passing the destination if the recipient is
absent, and returning to the docking station after delivery
completion.

When departing from the docking station, the robot
receives destination information from the control center.
Since the robot starts from the rooftop, it initially sorts
the destination information from the higher to the lower
floors. The remaining behaviors are performed sequentially
in conjunction with the control center upon arrival at each
delivery destination.

When the robot arrives at the delivery destination, a text
message is sent to the parcel recipient from the control center,
and the robot switches to a standby state. If the recipient
checks the message and confirms that they will receive the
parcel, the control center sends a command to the robot to
open the parcel box door. If the recipient does not respond
within a certain time, the recipient is considered absent and
the robot moves on to the next destination. After all deliveries
are complete, the robot switches to return mode and moves to
the docking station on the rooftop.

4) DOCKING TASK
For parcel delivery, a hub is needed where the robot can
receive parcels. Such a hub is set up on the rooftop of a
building and used as the robot’s docking station. Fig. 10
shows the appearance of the docking station. There is a gate
on the roof of the station, so when the drone drops parcels
through it, a manipulator inside the station picks them up and
puts them into the mobile robot. The mobile robot performs
docking at this station according to the states as shown in
Table. 1.

Since there is no ceiling to block the sunlight on the
rooftop, the luminance changes over time. However, the
manipulator inside the station needs to pick parcels based on
vision, requiring minimal changes in luminance. Therefore,

Algorithm 2 Docking Process

Input: Outside marker pose from front camera pfo, inside
marker pose from front camera pfi , the time when the
outside marker was detected using the rear camera tro ,
the time when the inside marker was detected using the
rear camera tri , threshold approach distance to outside
marker α, threshold approach distance to inside marker
β, leaving time threshold γ

Output: Goal pose of robot pg
1: procedure docking(pi, po)
2: Detect outside marker from a long distance
3: if pfo < α then
4: Change the state to 1
5: Approach the station entrance
6: if pfi < β then
7: Change the state to 3
8: else
9: Change the state to 2
10: Approach the docking point
11: if Time when the state is 3 > 3 sec then
12: Change the state to 4
13: Detect inside marker using the rear camera
14: Open the cover for parcel loading
15: if tri > γ then
16: if Parcel loading is done then
17: Change the state to 6
18: else
19: Change the state to 5
20: if State number is 6 and tro > γ then
21: Change the state to 7

Each state has a goal pose pg appropriate for the situation.

blackout curtains are installed in the station, and as a result,
when the robot arrives on the rooftop, the inside of the
station is dark and the docking point can not be clearly seen.
Therefore, there is a need to guide the robot to a position
where it can see inside the station. For this purpose, two
artificial markers in the form of Apriltag [44] are used for
docking.

As shown in Fig. 11, the robot approaches the station’s
entrance using a large marker attached to the outside. Then,
the robot drives slowly to accurately locate the docking point
while looking at the inside marker. Initially, the robot adjusts
its angle αf using the pose between the robot and the outside
marker to face the entrance of the docking station. Once it
reaches the threshold distance, the robot detects the inside
marker and then moves to the docking position, adjusting its
angle αs accordingly. When the inside marker is detected by
the front camera and the inside marker pose from the front
camera is calculated, while the robot continues to approach
the entrance of the station and the outside marker becomes
invisible in the field of view of the front camera, the distance
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TABLE 2. The results of a month-long field test in terms of localization’s mean error, number of elevator boarding, sequence of delivery floors, number of
parcels delivered, daily delivery distance, and docking outcomes.

from the inside marker is then determined as the threshold
distance value.

As described in Algorithm 2, we define a process whereby
the robot changes its docking state using the relative pose of
the marker and the robot assigns a corresponding goal pose
pg for each state, allowing the robot to stop at the docking
point, receive the parcel, and then continue with the delivery.

V. EXPERIMENTS
In this study, to validate the proposed system architecture,
a parcel delivery service demonstration experiment was con-
ducted at the Electronics and Telecommunications Research
Institute (ETRI) in South Korea. For about a month, a parcel
delivery service was provided to people in a building of the
research institute. The service was conducted for two hours
in the afternoon when most people were present at work.
Considering the battery consumption of the robot, the tests
were divided into one-hour segments and always started from
the 8th floor where the docking station was located.When the
drone delivered parcels to the station, the manipulator loaded
them into the mobile robot. The sequence of the delivery floor
was arranged in descending order according to the recipient’s
address. After the delivery, the robot returned to the station on
the 8th floor. While performing the parcel delivery service,
the performance of localization was also measured, and the
number of elevator boarding, the number of parcels delivered,
and the daily delivery distance were recorded.

As shown in Table. 2, during the entire period, the mean
error of localization was below 0.4 m and the average was
0.1513 m. The robot boarded the elevator a total of 80 times,
delivered 55 parcels, and traveled a total of 5568.2 m during
the test period. Moreover, all docking tasks were successful
during the delivery service. The provision of the parcel
delivery service enabled the validation of all components
of the proposed system architecture. Localization within the
building, route planning in a multi-floor environment using
a node-graph-based topological map, elevator detection and
drivable region extraction for elevator boarding and local
path planning, as well as last-mile delivery and docking
through task planning were all performed without human
intervention. Experimental verification of each element is
discussed in detail below.

The generation of the integrated navigation map was
verified in two buildings, and the results are shown in Fig. 12.
As shown in Fig. 12(a), multi-floor maps were generated
using the proposedmap alignmentmethod from a single-floor
point cloud map. Building A had a total of three floors
and building B had a total of eight floors. As can be seen
in the top view images, the common areas of each floor
were overlapped and aligned at the same location. Similarly,
as depicted in Fig. 12(b), the topological map was also
successfully generated on all floors, where robots could
navigate. The nodes were represented by red dots, and it was
observable that these nodes corresponded to their respective
floors on the point cloud map.
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FIGURE 12. Result of integrated navigation map. (a) The map was
generated using the proposed multi-floor map alignment method. (b) The
proposed integrated navigation map is illustrated.

FIGURE 13. Result of multi-floor route planning algorithm. Examples of
routes are illustrated by rainbow colors in two buildings: (a) building A.
(b) building B.

Next, we verified whether route planning within the
building, using the node information from the generated
topological map, could calculate routes from the current

FIGURE 14. Result of drivable region extraction with cost map. (a) The
robot is waiting for the elevator (door is closed) (b) The robot is boarding
the elevator (door is opened). (c) The robot is got on the elevator (door is
opened). (d) A passenger is boarding the elevator (The robot is in the
elevator). The robot and a passenger are in the elevator together.
((e) door is opened) ((f) door is closed).

robot’s position to the destination. The results are presented
in Fig. 13. The red dots represent the elements that make
up the topological map, with Fig. 13(a) corresponding to
a 3-floor building A, and (b) to an 8-floor building B.
Since the purpose was to verify that routes were correctly
generated in a multi-floor environment, the destinations were
designated to floors different from the start floor. Due to the
connectivity of the elevator nodes located on each floor, the
route could be extended to different floors, and the generated
route enabled the execution of the elevator boarding task. The
generated route was indicated in rainbow colors, with the
route extending from the start point to the elevator node on
the same floor, then recommencing from the elevator node
on the floor where the goal point was located and continuing
to the goal point.

Validation was conducted on the extraction of the drivable
region, which is an important part of the elevator boarding
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FIGURE 15. Various test scenarios for local path planning. (a)-(e) Cases
where the local path is generated in forward directions while the robot is
boarding the elevator. (f)-(h) Cases where the local path is generated in
the reverse direction while the robot is exiting from the elevator.

task, and the results are illustrated in Fig. 14. In the cost
map surrounding the robot red indicates a low cost and
colors closer to blue signify a higher cost. The drivable
region represented in green is generated using the cost value.
In Fig. 14(a), which shows the robot in a waiting state before
the elevator doors open, it can be seen that the drivable region
is not generated behind a person recognized as an obstacle.

FIGURE 16. A snapshot of entering the docking station and waiting for
the parcel after stopping at the docking point.

Figs. 14(b) and 14(c) depict the situation after the elevator
doors open and the robot boards the elevator. Even though
the points of the internal boundary of the elevator were not
all detected, the cost map effectively ensured that the drivable
region was safely generated without penetrating the elevator
wall. Figs. 14(d) - 14(f) show a person boarding the elevator
with the robot. The absence of a drivable region near the
person indicates that the robot can safely board the elevator
with people. As shown in Fig. 14(f), the drivable region was
generated only inside the elevator after the elevator door
closed. Through this, it was demonstrated that the robot’s
elevator boarding judgment was working.

To validate the robustness of local path planning in narrow
environments, the algorithm was evaluated in an elevator
boarding scenario. The results of the generated local path
planning are indicated by blue arrows in Fig. 15. After
moving to the front of the elevator door and recognizing its
opening, the algorithm determined the drivable region and
the destination inside the elevator and generated a local path.
To verify that the local path is generated reliably in various
situations, the robot was positioned to face the elevator from
different directions, and the case of exiting the elevator
was also examined. It was observed that the local path was
stably generated until the robot boarded the elevator from the
front, as well as from the left and right. Additionally, it was
observed that the robot generated a local path towards the rear
when it exited. Similarly, when a person exited the elevator,
the robot generated a local path to exit without collisions.

To validate the docking task, an experiment was conducted
where the robot automatically repeated the process of enter-
ing the docking station and receiving parcels. Docking was
always performed throughout the field tests. The behaviors of
automatically receiving the parcels, departing, and returning
after completing the delivery were all performed at the
station. As shown in Fig. 16, it was observed that the docking
task started from themoment the robot recognized the outside
marker, and it was performed stably until the robot stopped
exactly at the docking point and waited to receive the parcel
from the manipulator. After receiving the parcels, it was
also observed that the robot smoothly transitioned from
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the docking task to the driving task when the rear camera
recognized the outside marker as it left the station.

VI. CONCLUSION
In this study, we developed an indoor delivery mobile robot
and an architecture for a multi-floor building environment.
By integrating four key modules - integrated navigation map
generation, path planning, perception, and task planning -
we have developed a robust system capable of navigating
complex indoor multi-floor environments efficiently. Our
architecture utilized an integrated navigation map that
combines multi-floor map generation and node-graph-based
topological map for accurate localization and effective route
planning across different floors. The successful implemen-
tation of the elevator boarding method and task planning
strategies further enhanced the practicality of this system in
real-world scenarios. From loading the parcel at the docking
station to delivering it to the recipient, the architecture
demonstrated through extensive field testing provides an
advancement in delivery service, operating seamlessly in
ordinary buildings.
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