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ABSTRACT In this paper, a novel Elliptic Crypt with Secured Blockchain-backed Federated Q-Learning
Framework is proposed to offer an intelligent healthcare system that mitigates the attacks and data misused
by malicious intruders. Initially, the entered IoMT data is collected from publicly available datasets and
encrypted using the Extended Elliptic Curve Cryptography (E_ECurCrypt) technique for ensuring the
security. This encrypted data is fed as an input to the blockchain-powered collaborative learningmodel. Here,
the federated Q-learning model trains the inputs and analyzes the presented attacks to ensure better privacy
protection. Afterwards, the data is securely stored in decentralized blockchain technology. Subsequently,
an effective Delegated Proof of Stake (Del_PoS) consensus algorithm is used to validate the proposed
framework. The experiment is conducted using the WUSTL-EHMS-2020 dataset and the performances
are analyzed by evaluating multiple matrices and compared to other existing methods. The performance
of the proposed framework can be assessed using multiple matrices and the results will be compared to other
existingmethods. As a result, the proposedmethod has achieved 99.23% accuracy, 98.42%precision, 98.12%
recall, 98.27% F1 score, 59080.506 average throughput, 59080.506 average decryption time 1.94 seconds
and an average encryption time of 1.84 seconds and are superior to conventional methods.

INDEX TERMS Ciphertexts, consensus mechanism, ECC method, end-devices, encryption and decryption,
Markov decision process, Q-learning.

I. INTRODUCTION
Efficient healthcare systems are more important for a better
quality of life worldwide. The traditional health care structure
cannot evolve due to the rapid increase in the number of
patients with chronic diseases. Traditional health care faces
the challenge of ensuring continuous monitoring, both for
patients and physicians. Due to the advancement of technol-
ogy and computerization, greater impact is being made in the
medical field through safe, fast and easier data analysis tech-
niques. Machine learning (ML) techniques increase efficient
data management and data analysis with high accuracy [1],
[2]. ML and blockchain technologies are used in data analysis
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and ensure the security of medical data. With the help of
blockchain technology, the confidentiality of medical data
can be increased through transparent reporting, high security
and minimal transaction costs [3].

With the advancement of the Internet of Things (IoT),
patient activities can be easily monitored from anywhere
using remote access devices over the Internet. The IoT
also offers the possibility of rapid diagnosis and better
treatment through continuous analysis and remote access
to data [4]. IoT related technologies like Wireless Sensor
Networks (WSN), Bluetooth, Li-Fi, Wi-Fi etc. are used in
communicating, collecting, storing and sharing information
over the internet. Blockchain with IoT provides a better,
privacy-preserving and secure Smart Health System (SHS)
[5]. In the COVID-19 pandemic, artificial intelligence (AI)
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and next-generation networking (NGN) enable intelligent and
safe remote monitoring and control of patients. AI-powered
NGN is based on blockchain, intelligence capabilities, com-
munication, mobile edge computing and rapid response from
health authorities [6].

Blockchain and Mobile Edge Computing (MEC) tech-
nologies are creating a new revolution in smart healthcare.
It offers high security when storing Electronic Medical
Records (EMRs). The MEC reduce healthcare cloud com-
puting costs, increase quality of service (QoS) and provide
high-speed computing services [7]. The IoT connection of
medical devices (IoMT) ensures secure data transmission via
third-party channels. ML techniques like Deep Neural Net-
work (DNN)with blockchain identify intrusion and corrupted
data in IoT devices during communication. Various attacks
are detected and reported with the help of this IoMT [8].
A deep learning (DL) based secure blockchain-powered
intelligent IoT technique is deployed to secure data transit,
medical diagnosis and hash value encryption. This technique
protects health data from attackers [9].

One of deep learning algorithms (DL) [10] such as con-
volution neural network based on Bayesian gray filter and
blockchain is jointly used to develop diagnostic devices
to improve accuracy and protect privacy in smart health-
care [11]. The performance of the DL model is increased by
the amount of data trained by themodel. In healthcare, there is
no way to collect large amounts of health data due to data pro-
tection. To solve this problem, Federated Leaning (FL) is used
in smart healthcare and FL uses a central aggregator server
while still storing the patient data in the local database [12],
[13]. FL solves the problem in SHS, e.g. to reduce the runtime
of the system and to validate user data provided in the system
itself. The use of FL increases the security of the secret trans-
fer through user authentication [14], [15] in SHS. A secure
hierarchical federated learning framework (SHFL) based on
K-anonymity is built for the secure exchange of patient medi-
cal information. This K-anonymity is used to hide the location
of the cluster devices [16]. Unevenly distributed data leads to
trainingwith low efficiency and lower accuracy. This problem
can be reduced by using a privacy-preserving FL framework
in fog computing [17], [18].

A. MOTIVATION
On the other hand, the inevitability to address significant
issues comprising malicious attacks, data privacy, and ser-
vice quality has drove the expansion of a Blockchain-Based
Federated Learning Method in smart healthcare. The demand
for innovative solutions that can expand the efficiency and
security of healthcare systems is growing as due to the
advancement of artificial intelligence and the emergence
of worldwide epidemic events. This approach attempts to
leverage the dispersed nature of MIoT devices and edge
nodes by combining technologies such as blockchain and
federated learning to provide a decentralized and robust
framework for managing clinical data. But, the conventional

federated learning approaches in the healthcare sector com-
monly depend on a central server to distribute and gather
model parameters at the process of training. The central-
ized approach undergoes a notable risk as it becomes an
attack-prone single point of failure. Moreover, there is an
issue with confidentiality and data security if the sensitive
medical data is not adequately protected by typical federated
learning approaches. The integration of blockchain technol-
ogy into federated learning offers a feasible way to address
these limitations by facilitating complete decentralization
and enlightening security, transparency, and immutability
in information sharing across various healthcare entities.
Thereby, the proposedmethod seeks to address the drawbacks
of existing methods and construct a more privacy-preserving
and secure framework for collaborative healthcare data anal-
ysis by fusing the concepts of federated learning with
blockchain technology. The reliability and security of system
are further improved by the usage of effective consensus pro-
tocols and enhanced encryption algorithms, which guarantee
data security without compromising the integrity and accu-
racy of the models trained on distributed clinical data. Thus,
the proposed work motivates to design a blockchain-powered
federated learning model for smart healthcare.

The main contribution of the proposed work are,

• To introduce an Elliptic Crypt with Secured Blockchain
assisted Federated Q-learning Framework for avoiding
attacks in IoMT data.

• To propose an effective encryption scheme, Extended
Elliptic Curve Cryptography (E_ECurCrypt) for secur-
ing the input data with higher integrity.

• To design a new learning model, the federated
Q-learning for training the encrypted data and analyzing
the attacks.

• To afford higher reliability, a decentralized blockchain
mechanism is utilized and is validated through a robust
consensus algorithm.

• To offer an effective Delegated Proof of Stake (Del_PoS)
consensus algorithm for validating the blockchain
technology.

• To validate the performance of the proposed work, dif-
ferent matrices are computed and perform comparison
over other existing methods.

The rest of the organization is given by; section II represents
the related works and problem statement, section III repre-
sents the proposed methodology, section IV represents the
results and discussion, section V represents the conclusion
and future scope.

II. RELATED WORKS
A lot of research has been done on storing and protecting
private healthcare information which are explained below:

Tuli, et al. [19] developed the DL framework based on fog
computing in the centralized IoT for the automatic diagnosis
of heart diseases through efficient data processing with low
latency. This framework automatically diagnose the heart
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patient data. The DL model was used to calculate resources
such as the Central Processing Unit (CPU) and the Graphi-
cal Processing Unit (GPU) for training and prediction. The
HealthFog model was viewed and evaluated using various
types of performance measurements, including accuracy, net-
work bandwidth, power consumption, and response time.
This framework enabled high accuracy and performance
in diagnosing cardiac patient data. The limitation of this
framework was that it required smarter group training to
increase accuracy, but this framework used separate training
nodes. Rahman et al. [20] developed the method to ensure
privacy of Internet of Health Things (IoHT) using FL and
blockchain techniques like DP. This method used the fully
encrypted dataset and model training. To aggregate the effi-
cient model parameters, each federated edge node performs
additive encryption while the blockchain operates with mul-
tiplicative encryption. The IoHT-based system proves to be a
strong and efficient method in health management compared
to other DL methods. The limitation of this method was
that the Trusted Execution Environment (TEE) caused the
difficulty in computing GPU memory for cloud providers.

Deep federated q-learning (DFQL)-based network slic-
ing was described by Seifeddine Messaoud et al. [21] for
Industrial IoT (IIoT). In order to enable differentiated QoS
services in future IIoT networks, this method aimed to pro-
vide a federated and dynamic network management and
resource allocation. To meet the QoS requirements of the
IIoT slices, spreading factor (SF) and transmission power
(TP) must be allocated. There were two primary phases to
influence the DFQL. In the first phase, a multi-agent deep
Q-learning dynamic slices approach was used to optimize
self-QoS requirements concerning both delay and through-
put. In the next phase, by applying the shared experiences
of agents, deep federated learning was used to learn multi-
agent self-models and permit to determine the best action
that would fulfill IIoT virtual network slice QoS reward.
In contrast to conventional methods, simulation results of
DFQL framework had demonstrated an efficient perfor-
mance. However, the complexity was higher. For the secure
transmission of medical patient data, Al-Marridi et al. [22]
proposed a solution based on deep reinforcement learning
(DRL) and blockchain. This low-cost blockchain technol-
ogy has intelligently and automatically changed the structure
while increasing security and reducing latency. This model
was created as a Markov Decision Process (MDP) that
includes three RL techniques such as Dueling Double Deep
Q-Networks (D3QN). Deep Q-Networks (DQN) and Double
Deep Q-Networks (DDQN) have been used to effectively
solve MDP. The Healthcare RLmethod is evaluated using the
Random Selection (RS) method and offers high performance
compared to other methods such as DQN, DDQN and D3QN.
However, the RS method resulted in poor performance on
average accumulated rewards.

Ali, et al. [23] proposed the method to solve the privacy
issues in FL and blockchain-based IoT health applications.
FL based privacy issues were solved using the central

Orchestrator server and was useful to learn the process
without updating the sensitivity data on the central server.
FL used the model parameters for learning process and thus
ensured high confidentiality of the patient data. Blockchain
privacy issues have been solved using Differential Privacy
(DP). Here, noise was added to the original data to protect
the medical data with less processing power. Implementing
this method, blockchain-based IoT devices improved privacy
and security. When there were multiple queries, the balance
between privacy and accuracy rate tends to be complex.
Poap et al. [24] proposed an architecture to ensure patient
medical data privacy through the Internet of Medical Things
(IoMT) based on a multi-agent system. The multi-agent sys-
tem divides the process into agents. This multi-agent idea was
used to perform parallel classification training and achieve
a single classifier architecture by grouping the classifier
weights. Using the blockchainmulti-agent system, the patient
data was securely shared and protected during the transmis-
sion of medical data. The limitation of this model was the
high delay in data transfer.

Smart contract-enabled secure sharing of health data for
a mobile cloud-based e-health system was suggested by
P. Chinnasamy et al. [25]. Here, a reliable smart
contract-based access control system was utilized and
enhanced the security when exchanging electronic health
records between different patients and medical profession-
als. This was a proactive approach for safe data sharing in
mobile computing while shielding private medical records
from attacks. The framework valuation and protection tech-
nique was assessed by noting improvements in the viability
of lightweight access control architecture, low network
expectancy, and significant degrees of data concealment and
security. Suyel Namasudra and Sagnik Datta [26] presented
a smart contract model based on blockchain that uses con-
sumer electronics and mobile edge computing to secure
healthcare transactions. It safeguards the system throughout
the patient-doctor Health Information Exchange (HIE) pro-
cess. Here, EMRs and diagnosis reports are generated and
uploaded using consumer electronics devices and MEC. The
proposed scheme stores EMRs securely so they cannot be
tampered with and are always accessible to authorized users.
It does this by using techniques such as Advanced Encryp-
tion Standard (AES), Rivest Shamir and Adleman (RSA),
Edwards-curve Digital Signature Algorithm (EdDSA), Ellip-
tic Curve Digital Signature Algorithm (ECDSA), and
Inter-Planetary File System (IPFS). However, the encryption
time and decryption time was higher.

Currently, various techniques to solve the security prob-
lems in smart health systems have been developed. Due to
their limited abilities, they failed to achieve better results.
Several studies used different encryption schemes to ensure
data integrity and privacy, but security is also the primary
concern. This investigation’s focus is on the challenges that
arise in the field of smart healthcare, explicitly with regard
to protecting sensitive data, preventing harmful assaults,
and guaranteeing excellent service quality. The necessity for
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TABLE 1. Contribution and limitations of the existing methods.

effective and secure healthcare solutions has increased due to
the development of artificial intelligence and the occurrence
of global health problems. Due to their frequent struggles
with centralized data storage, the conventional healthcare
systems are more susceptible to privacy violations and single
points of failure. The incorporation of federated learning
with blockchain technology offers a feasible solution to these
challenges, expanding the efficiency and security of helath-
care services. Thereby, the goal of the proposed method
is to provide enhanced federated learning using blockchain
technology in smart healthcare environments. At first, the
ways that federated learning and blockchain technology can
effectively use distributed clinical data to surge the accuracy
of disease diagnosis as well as medical services is focused.
Next, analyzed on how the proposed approach can ensure

security and data privacy from different attacks by adversaries
in the healthcare industry. Further, to avert attacks, preserve
consensus, and thwart single points of failure, investigates
on the effective mechanism. Through the investigation of
these issues, the proposed method seeks to offer insights
into the possible benefits and difficulties of incorporating
blockchain-based federated learning in smart healthcare envi-
ronments. Eventually intending to improve data security,
patient privacy, and overall service quality in the healthcare
industry.

III. METHODOLOGY
The development of artificial intelligence technology
enables the smart healthcare system to offer more vital
services. The openness and interconnectedness of smart
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FIGURE 1. Basic block diagram of the proposed model.

healthcare facilities, however, make them vulnerable to attack
and misuse by malicious outsiders, which emphasizes the
importance of cyber security. Therefore, the suggested study
created a unique elliptic crypt with Secured Blockchain aided
Federated Q-learning Framework to address this issue. Data
collection, encryption, attack detection, safe storage, and
validation are all part of the proposed system. IoMT input
data are initially gathered from publically accessible datasets.
The Extended Elliptic Curve Cryptography (E_ECurCypt)
method is used to encrypt the inputs in order to ensure
their security. Input for the proposed block chain-assisted
federated learningmodel is provided via these encrypted data.
As a result, a greater level of privacy protection is provided
by the federated Q-learning model, which trained the inputs
and examined the assaults that were given. Finally, using
decentralized blockchain technology, the data are safely kept.
The proposed system is validated using the Delegated Proof
of Stake (Del_PoS) consensus mechanism. Several matrices
are evaluated in order to assess the effectiveness of the
proposed structure and results are then contrasted with those
obtained using other existing methods. Figure 1 represents
the basic block diagram of the proposed model.

A. EXTENDED ELLIPTIC CURVE CRYPTOGRAPHY
Encryption data produced by the IoMT is vital in healthcare
since it helps to protect private and sensitive patient data from
breaches and unauthorized access. Robust encryption meth-
ods, comprising Secure Sockets Layer (SSL) and advanced
encryption standard (AES), are employed to encrypt the data
stored in IoMT devices and make the system indecipherable
to outsiders. Through the use of sophisticated algorithms, the
data is encoded during the encryption process, scrambling it
into an unreadable format and only accessible to authorized
users with required decryption keys. Healthcare organiza-
tion can reduce the risks of data breaches and unauthorized
access by implementing encryption in IoMT systems, pro-
tecting patient privacy and security. Thereby, encryption is
indispensable to maintain the confidentiality and integrity of
IoMT data, which encourages confidence in the increasingly
associated healthcare delivery system. Elliptic curve cryptog-
raphy (ECC) [27] is considered as a prominent encryption
technique for protecting IoMT data in the healthcare industry
because of its scalability, effectiveness, and strong security
features. ECC offers comparable security with much smaller
key sizes than standard encryption techniques such as RSA,
and makes it more appropriate for IoMT devices with limited

computational capacity and battery constraints. The IoMT
networks transmit data in real time with less delay because
of the faster encryption and decryption operations brought
by reduced key size. Besides, the mathematical properties
of ECC offer inherent resistance against emerging threats
and guaranteeing the long-term sustainability and security
of medical data. Furthermore, the smaller key sizes of ECC
help to lower storage needs, which maximizes the use of
storage resources in IoMT systems and devices. Overall, the
use of ECC in IoMT contexts for healthcare not only rein-
forces security but also progresses performance and resource
efficiency, building it an effective encryption technique
for protecting sensitive patient data in an interconnected
healthcare ecosystem.

In the proposed method, the IoMT data is encrypted using
the Extended Elliptic Curve Cryptography (E_ECurCypt)
encryption method. The introduction of E_ECurCypt serves
as a more secure alternative against conventional ECC owing
to certain the shortcomings and vulnerabilities. Standard ECC
has several problems however, the major issue is the possibil-
ity of implementation flaws that compromise the encryption
process’s security. For encryption and decryption, standard
ECC generally necessitates the creation of public and pri-
vate keys, which cannot be enough to safeguard against
sophisticated cyberattacks. On the other hand, E_ECurCypt
alleviates these concerns by adding an additional secret key,
which increases the complexity of the encryption scheme
and strengthening its security against intrusions. E_ECurCypt
is based on a curve with a defined base point computed
from functions of primes as shown in Figure 2. Unlike
E_ECurCypt, which generates a third key (secret key) to
increase system security, Standard ECC only generates two
types of keys: public and private. The decryption formula is
calculated by subtracting the created secret key from it and
adding it to the encryption formula. This increases the com-
plexity of the two phases. It is quite difficult to identify the
original data when both decryption and encryption are very
complex processes. The security level of the data is increased
immediately. Equations (1) to (7) are used to mathematically
illustrate the extended ECC.

In the proposed method, the IoMT data is encrypted using
the Extended Elliptic Curve Cryptography (E_ECurCypt)
encryption method. The introduction of E_ECurCypt serves
as a more secure alternative against conventional ECC owing
to certain the shortcomings and vulnerabilities. Standard ECC
has several problems however, the major issue is the possibil-
ity of implementation flaws that compromise the encryption
process’s security. For encryption and decryption, standard
ECC generally necessitates the creation of public and pri-
vate keys, which cannot be enough to safeguard against
sophisticated cyberattacks. On the other hand, E_ECurCypt
alleviates these concerns by adding an additional secret key,
which increases the complexity of the encryption scheme
and strengthening its security against intrusions. E_ECurCypt
is based on a curve with a defined base point computed
from functions of primes as shown in Figure 2. Unlike
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E_ECurCypt, which generates a third key (secret key) to
increase system security, Standard ECC only generates two
types of keys: public and private. The decryption formula is
calculated by subtracting the created secret key from it and
adding it to the encryption formula. This increases the com-
plexity of the two phases. It is quite difficult to identify the
original data when both decryption and encryption are very
complex processes. The security level of the data is increased
immediately. Equations (1) to (7) are used to mathematically
illustrate the extended ECC.

a2 = b3 + xb+ y (1)

Using integers x and y. The mechanism utilized to gener-
ate keys in a cryptographic operation influences the reliability
of the encryption. The proposed approach requires the gen-
eration of three different types of keys. For the purpose of
encrypting data, a public key is first created. Making a private
key is the next step in the process of decrypting data. For data
encryption, the public key is initially produced. A private key
is subsequently produced and used to decode the data. Finally,
a secret key is created using the private key, the public key,
and the points on the elliptic curve. Assume that the elliptic
curve’s base point is at PB. To create a private key Pvk , pick a
random integer among 0 and i−1. According to equations (2)
and (3), the public key Pbk is generated.

Pbk = Pvk ∗ PB (2)

Evaluate the following equation:

Pbk =
∏

(Pvk , PB) (3)

Equation (3) states that the secret key is created by adding
Pbk , Pvk and PB:

Seck =
∑

(Pvk , Pbk , PB) (4)

Seck stands for the secret key. The values collected from the
IoT devices are encrypted following the creation of the key.
Two ciphertexts, equations (5) and (6) are contained in the
encrypted data.

CT1 = (Sec1 ∗ PB)+ Seck (5)

CT2 = m+ (Sec1 ∗ Pbk)+ Seck (6)

(6) If m denotes the original message, CT1 and CT2 stand for
ciphertexts 1 and 2 and Sec1 is a random integer that ranges
from 1 and i− 1, respectively. The decryption process yields
the original data. Decryption is the opposite of encryption,
therefore equation (7) shows that the secret key obtained
during the decryption phase is removed from the standard
equation for decryption.

m = ((CT2 − Pvk) ∗ CT1)− Seck (7)

Input for the proposed block chain-assisted federated
learning model is provided via these encrypted data. As a
result, a greater level of privacy protection is provided by
the federated Q-learning model, which trained the inputs and
examined the attacks that were given.

B. ATTACK DETECTION BASED ON FEDERATED
Q-LEARNING MODEL
Detecting and mitigating attacks through the incorporation
of modern technologies like blockchain and federated learn-
ing has developed as a potential strategy in the healthcare
industry, where patient data privacy and security aremore sig-
nificant. Sensitivemedical data is initially encrypted as part of
the process to ensure its security. In the proposed method, the
encrypted data is fed to the input of new blockchain-assisted
federated learning model, which combines the collaborative
and privacy-preserving aspects of federated learning with
the immutability of blockchain. In this system, the privacy
of individual data sources is preserved by the federated
Q-learning model, which is responsible for training on the
encrypted inputs gathered from different healthcare entities.
Through the application of reinforcement learning techniques
like Q-learning, the model is able to incessantly progress
its understanding of typical data patterns and distinguish
deviations that can be a signs of anomalies or possible attacks.
The model’s ability to dynamically modify its detection abil-
ities through adaptive learning reinforces its resilience to
changing threats in the healthcare industry. Furthermore, the
blockchain constituent is essential to uphold the transparency
and integrity of the federated learning process. Blockchain
technology preserves a decentralized, tamper-proof ledger
of model updates and training data inputs from many par-
ticipants, improving the system’s overall auditability and
reliability. Accordingly, federated learning with blockchain
support enables increased privacy protection and efficiently
identifies and counteracts attacks in the healthcare sector.
This creative method provides healthcare organizations, the
ability to protect patient information confidentiality and
integrity while staying ahead of emerging attacks.

C. REINFORCEMENT LEARNING (RL)
According to its definition, reinforcement learning is a
form of machine learning that incorporates agent interaction
and improves reward accumulation for environmental activi-
ties. Dynamic programming techniques are used in machine
learning’s Markov Decision Process (MDP) to create the
best possible strategy for maximizing rewards over time.
Following are RL’s crucial actions:
• To begin with, the agent interacts directly with surround-

ings in each of its states to conduct actions and gather data.
• Second, the environment responds to the activity made

by granting as positive or negative rewards, respectively.
• Third, the agent optimizes the rewards already gathered

by recognizing changes in the surrounding environment.
• Fourth, starting from the current situation, the RL

approach will be used at this point to increase the predicted
reward value.

Many confidentiality and secure systems, including intru-
sion detection and prevention systems (IDS) and intrusion
detection systems (IPS), have incorporated RL as a com-
ponent. It might be beneficial to employ a distributed RL
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FIGURE 2. Elliptic curve.

process where every sensor/agent keeps track of the obser-
vations obtained from the states and sends them to a central
sensor/agent. The agents at the top of the hierarchy are
responsible for the analysis of the information collected and
the transmission of the dangerous condition to the network
moderator. The Markovian Reward Process (MRP) has been
used to perform an RL-based IDS using a series of system
calls to duplicate the behavior of system calls, transforming
the intrusion detection to forecast the MRP value function.
The research developed an adaptable neural network for IDS
with the assistance of RL can identify new assaults on its own.

D. Q-LEARNING (QL)
A reinforcement learning method called QL uses the idea of
value iteration, where the agent determines which action (N )

yields the largest reward (R) by estimating the value function
and updating all its states and behaviors for all iterations.
It is not model-based and can deal with stochastic rewards
in a non-adaptive way. In its most basic form, an agent in a
state (S) performs an action (N ), records its reward (R) along
with the following state

(
Ŝ
)
and then predicts the Q value

by applying equation (8), where Ni, Ri and Si are the action,
reward and state at time (i), 0 < β < 1 is the learning rate
and 0 < χ < 1 is the relative value of rewards, respectively.

Q+ (Ni, Si)← (1− β)Q+ (Ni, Si)

+ β
(
Ri + χmaxQ+

(
N+i S

+

i

))
(8)

‘‘It is significant to note that this research picked
Q-learning as one of the reinforcement learning techniques
because of its model-free feature. Additionally, using Q-
learning, stochastic incentives may be approached in a non-
adaptive way. Furthermore, Q-learning is capable of learning
without always following the rules at the moment. The
future reward may be calculated using Kλ (S) as described
in equation (9), where BSS+ (N ) denotes the probability of a
state transition, R

(
S, S+, N

)
denotes the reward calculated

with the state transition and w is the weight of the reduction
among the future and present rewards.

Kλ (S) =
∑
N

λ (N , S)∑
S+

BSS+ (N )R
(
S, S+, N

)
+ wKλ

(
S+

)
(9)

In order to do this, the value iteration mechanism is cal-
culated by the formula (10), where Kλ

j

(
S+

)
denotes the

estimated value of R at S+ in its original iteration j and
Kλ
j+1

(
S+

)
denotes the calculated value of R at the updated

iteration j + 1. It is important to keep in mind that each
iteration can be completed with G

(
|N | |S|2

)
and that the

amount of iterations in reinforcement learning can increase
exponentially.

Kλ
j+1 (S) = maxN

∑
S+

BSS+ (N )R
(
S, S+, N

)
+ wKλ

(
S+

)
(10)

Algorithm 1 FDLavg
1: Technique: FDLavg (End device side)
2: Receiver di from the central server
3: Initialize d li, 0 = di d0: Server initialization
4: For z = 0, 1, 2, . . . do
5: Select a sample µ form Fin Fin = End device local dataset
6: Update d li, z+1 = d li, z −

(
d li, z, µ

)
7: End for
8: Set d li+1 = d li,Zi
9: Send d li+1 back to the server
10: Technique FDLavg(Central server)
11: Initialization: d0: initialization of server model
12: For each iteration i = 0, 1, 2, . . .do
13: |Ti| = T · L ≥ 1;
14: For each client l ∈ |ti| do d li+1 End device update
15: di+1 =

∑
l∈ti

xl
xβ
d li+1 xβ =

∑
l∈ti xl

16: End for
17: End for

E. FEDERATED LEARNING (FDL)
Federated learning (FDL) represents a collaborative machine
learning system [30] where data is gathered locally and
taught at the enddevices. To create a global model, the train-
ing models are then averaged. End-devices only exchange
the variables of their local models with the server and do
not divulge the local training/testing datasets. Instead, they
train their own models locally. The FDL-Averaging method
(FDLavg), which handles the end-device training models in
the centralized server to produce a shared global method has
been used in the proposed framework.

The Stochastic Gradient Decent (SGD) system [31] is used
to execute reinforcement learning training on end devices by
consideration of gradient descent optimization approxima-
tions and exchanging dataset variables with calculated values
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after randomly selecting a subset from the primary dataset.
FDLavg takes into account three variables:

the percentage of end-device calculations, ii) the volume
of mini-batch operations and iii) the number of training
exercises performed on the end-devices dataset. On the end
devices, these variables make it easier to share the gra-
dient decrease. The server then averages the final trained
models, offers a modification and transmits the updated mod-
els together with the updated variables for the subsequent
round. The selected FDLavg technique is briefly described in
Algorithm 1.

Both the server system and the end devices are targeted
by the FDLavg. The server’s global model, selected as d0 is
randomly adjusted to start. The first round then starts with
the centralized server choosing a subset of the end devices (ti
such that |ti| = T , L ≥ 1) and dispersing its present global
model di, among all of the end devices in ti. When the server’s
shared model di is updated, the end devices update their own
models (d li ). Then, the end devices divide their local datasets
into size α-related subgroups and execute SGD Iterations.
After receiving individual trainedmodels from all end devices
(d li+1) and uploading them to it, the centralized server then
builds the new updated global model di+1 by performing
a biased sum of all the aggregated local models as shown
in Algorithm 1. The terms T , α, iter, ξ and σ denote the
client’s fraction, subset size (batches), iteration number prior
to update the global model, learning rate and learning rate
decay. For training reasons, SGD has adopted the acronyms
ξ, α, iter and σ .

F. DECENTRALIZED BLOCKCHAIN TECHNOLOGY
To ensure the validity of the collected local data and learned
models, blockchain is used to enable the federated learning
process. Since decentralized tasks are usually based on the
cooperation of untrustworthy end devices, a consensus mech-
anism must be taken into account to ensure that the tasks,
data or services offered are correct and reliable. Blockchain
technology is a decentralized [32], impenetrable ledger that
builds trust without relying on a central authority. Blockchain
is defined as a collection of blocks that, in its simplest
form, keep the data for a collection of application-oriented
transactions secret. Using hash pointers, the blocks are con-
catenated together using a cryptographic data model, with
the header of each new block pointing to the hash of the
previous block’s contents. To confirm the order, content, and
hash clues to the blockchain technology, participants verify
the locally stored copies of the blockchain using a consensus
process. Major IoT infrastructures can benefit from numer-
ous valuable solutions that blockchain technology can offer,
especially those that address trust and security concerns. For
example, without using a central server, the blockchain can
immediately provide a unique identity for IoT end devices.
In addition, the endpoints use the unique identity and key to
cryptographically sign the traffic routed from the endpoints
to the blockchain. It enables secure and reliable exchange
of device model updates by merging blockchain technology

FIGURE 3. Updation procedure of proposed method.

with the crucial infrastructure provided by federated learning.
Blockchain technology is used in the proposed strategy as
an additional layer of defense to ensure device reliability.
The blockchain is expanded to include the trusted devices,
the untrusted devices are removed and not sent to the cloud.
With the proposed blockchain-backed FL architecture, any
consensus algorithm can be used. Nevertheless, the Del_PoS
is extremely successful against defects, since end devices can
be portable. The system is unaffected by terminals that fail
to provide a consensus response or do so in an erroneous or
erroneous manner, and consensus can be assured. Model vali-
dation is performed byminers, which can be trusted endpoints
or edge devices.

The locally learned model is uploaded from each end
device to the appropriate miner selected by the cloud. Miners
perform mutual verification by exchanging updates to the
local model and comparing it to the overall model. The local
model changes are then checked using a consensus technique
(i.e. Del_PoS) and a block is formed that keeps track of all
updates. The block created is then included in the distributed
ledgers, which are downloaded by the end devices to calculate
the global model update. The blockchain-based model update
process is shown in Figure 3. For example, the automobile can
use Q-Learning to analyze its local data before sending the
learned model to Miner 3, which then compares the trained
local model to the global model and validates it using the
consensus method. The latest changes are saved in a block
and finally added as a record to the distributed ledger. The
Del_PoS consensus algorithm is used to validate the proposed
model.

G. VALIDATION USING DELEGATED PROOF OF STAKE
(DEL_PoS) CONSENSUS ALGORITHM
Each blockchain contains unique techniques for establishing
consensus about the inputs to be introduced into the network.
Consensus layer, network layer, application layer, incentive
layer, data layer and contract layer are the six layers that make
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up the structure of the blockchain. The consensus mecha-
nism is a cooperative algorithmic process that describes in
detail how each consensus node comes to an agreement and
how records are validated. Every blockchain user uses it to
decide if the transaction is legitimate and to keep accounts
in sync. As a result, each consensus node on the blockchain
validates and evaluates the data using the algorithm. For
a blockchain network the selection of consensus mecha-
nism [33] is crucial since it has an instant influence on aspects
like decentralization, scalability, security, and energy effi-
ciency. The consensus mechanism Delegated Proof of Stake
(Del_PoS) is unique among other consensus procedures such
as Proof of Work (PoW), Proof of Stake (PoS), and practical
Byzantine Fault Tolerance (pBFT) owing to various factors.
At first, when comparing to PoW, DPoS provides a more
scalable and energy-efficient alternative. In contrast to Proof
of Work (PoW), which necessitates high processing capacity
and energy consumption to solve intricate cryptographic puz-
zles, Del_PoS achieves consensus through a small group of
elected delegates, significantly lowering the energy require-
ments and computational burden. In large-scale blockchain
networks like those intended for smart healthcare, where
data processing and real-time transactions are critical, this
efficiency and scalability are more important.

Moreover, when related to conventional PoS and PoW
algorithms, Del_PoS offers a greater degree of decentraliza-
tion. Del_PoS distributes decision-making authority across
a group of elected delegates selected by stakeholders while
PoS can effect in centralization among the wealthiest par-
ticipants as well as PoW lead to concentrate power among
miners with the most computational resources. By promoting
a more decentralized and democratic governance model, this
strategy strengthens the network’s resistance against central-
ization. In addition, Del_PoS has strong security features that
are identical to pBFT. While Del_PoS accomplishes similar
security through a reputation-based system, in which elected
delegates are enthused to perform fairly to keep their rep-
utation and rewards, pBFT delivers deterministic and quick
finality by tolerating a specified amount of Byzantine faults.
This guarantees byzantine fault tolerance while ensuring
effective transaction finality and block production and makes
Del_PoS as a compelling choice for applications that require
both performance and security, like intellectual healthcare
systems.

Del_PoS is an improved form of PoS with increased speed
and high security features. The democratic nature of the
blockchain is further defined by the fact that different users
often vote on which delegation becomes the block producer.
In the Del_PoS, a delegate is chosen to cast votes on behalf
of other people who picked them and as a result, the Voters
have the power. A new delegate may be elected in their place
if the elected witnesses perform inadequately or inaccurately
represent their constituents. The voters who choose the del-
egates receive a portion of the advantages they receive. The
validation process is provided control by a small number of
selected users. As they are in charge of verifying block chains

TABLE 2. Hyper parameters.

TABLE 3. Dataset details.

and the structure allows users to choose who represents them,
the delegates canmisuse their position of power. The presence
of such cartels renders the system vulnerable to assaults and
lessens the decentralization of the blockchains.

IV. RESULTS AND DISCUSSION
The implementation is done by the PYTHON platform with
the system specifications of Intel(R) Core (TM) i7-3770
CPU @ 3.40GHz with installed memory of 16 GB with
an operating system of 64-bit without using a pen or touch
input. The performance are evaluated based on the met-
rics of accuracy, precision, recall, f1-score and Area Under
the Curve (AUC). Also, the recent baseline methods are
chosen for comparing with proposed study. The existing
models like Blockchain based XOR Elliptic Curve Cryp-
tography (BC-XORECC) technique, DES, RC4, AES and
Blowfish techniques are compared with proposed model.
The hyper parameters are given in Table 1. The work is
implemented using the WUSTL-EHMS-2020 dataset. The
WUSTL-EHMS-2020 dataset’s statistical data is shown in
Table 2. This dataset contains 44 features including features
for the label and network flow measurements.
Performance Matrices:
The proposed approach is evaluated by comparing it to

current models in terms of accuracy, precision, recall and
f1-score using a basic evaluation matrix such as true negative
TN , true positive TP, false negative FN and false positive FP.
More information about the assessment matrix is provided
below:

➢ True Positive - The proportion of samples correctly
classified as normal in the normal section and as a threat
in the threat section.

➢ True Negative - The percentage of samples correctly
classified as posing a threat to the normal portion or as
posing a threat to the normal section.
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➢ False positives are the number of samples that were
wrongly recognized as threats in the threat section and
as normal in the normal section.

➢ False Negative - The percentage of samples recognized
mistakenly as normal in the threat and threat in the
normal parts.

The performance of the proposed approach may be defined
using the evaluation matrices as follows:
Accuracy- Accuracy is the percentage of samples that can

be successfully located in the total data set. Because the data
set is unbalanced, this statistic is irrelevant for comparing
approaches. The accuracy may be expressed as follows:

Accuracy =
TN + TP

TN + TP+ FP+ FN
(11)

Precision-Precision is the ratio of the number of samples
properly recognized as normal in the normal section or as
a threat in the threat portion to the total number of samples
correctly identified as normal/threatening.

precision =
TP

TP+ FP
(12)

Recall-Recall is the proportion of samples correctly rec-
ognized as normal in the normal component or as a threat in
the threat component relative to the total number of samples
correctly categorized as normal/threat in the dataset.

recall =
TP

TP+ FN
(13)

F1-score- The harmonic mean of recall and precision is
represented by the F1-score.

F1− score =
2× recall × precision
recall + precision

(14)

Throughput-Throughput is the number of information units
that a system can process in a given amount of time. It is
frequently employed in devices ranging from organizations
to various device components and networks. Through put can
be expressed as:

Throughput (bits per sec) =
Total packet received

time
(15)

A. PERFORMANCE EVALUATION
Figure 4 represents the confusion matrix of the proposed
model. A confusion matrix deals with a binary classification
procedure. The resultant table has two rows of data and two
rows of columnswhich each containing four values: true posi-
tives, false positives, true negatives and false negatives. A real
positive occurs in the confusion matrix when the result is
positive and the prediction is positive. A false positive occurs
when the result observed is negative while the prediction is
positive. A real negative occurs when a result is negative with
a negative predicted, while a false negative occurs when an
assessment is positive with a negative prediction.

Figure 5 represents the performance of the proposed and
existing model. The performance matrix such as accuracy,
precision, recall and f1-score are used to evaluate the existing

FIGURE 4. Confusion matrix.

FIGURE 5. Performance analysis of proposed and existing model.

model and proposed approach. The existing model includ-
ing ResNet, BiGRU, CNN, DCNN and BiLSTM are used
which the ResNet achieved the value of 98.68% and BiGRU
achieved the value of 95.49%. CNN have the accuracy value
of 93.5% while DCNN and BiLSTM achieved the value
of 96.9% and 94.02%, respectively. The precision value of
the ResNet is 97.08% and the precision value of DCNN is
93.15%. The BiGRU, BiLSTm and CNN achieved the value
of 90.28%, 86.59% and 85.31%, respectively. The recall
value of the existing and proposed model is given as: ResNet
have value of 96.98%, DCNN achieved the value of 92.88%,
BiGRU have the value of 89.2%, BiLSTM have the value
of 86.51% and CNN have the value of 85.6%, respectively.
The F1-score of the proposed and existing model is given by:
the ResNet have the value of 97.03%, the DCNN and CNN
achieved the value of 93.02% and 85.45%, respectively. The
BiGRU and BiLSTM have the value of 89.74% and 86.55%,
respectively. The proposed model achieved the accuracy of
99.23%, precision value of 98.42%, recall value of 98.12%
and F1-score of 98.27%, respectively. The figure states that
the proposed model achieved the best performance among all
other existing models.

Figure 6 represents the encryption time of the proposed and
existing models. The data size is varied from 100 to 500 MB.
The existing models like Blowfish, DES, RC4, AES and
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FIGURE 6. Encryption time vs data size.

FIGURE 7. Decryption time vs data size.

BC-XORECC are used to evaluate the proposed model. The
Blowfish algorithm achieved the value of 8.97 at 100 MB
and achieved 14.89 at 500 MB while DES have the
value of 6.55 at 100 MB and achieves the value of
11.45 at 500MB, respectively. RC4model achieved the value
of 5.64 at 100 MB and 9.84 in 500 MB data size. AES model
achieved 3.45 at 100 MB and later it becomes 8.97 when the
data size becomes 500 MB. BC-XORECC model achieved
the value of 1.2 when the data size become 100 MB and
becomes 3.78 when the data size is 500 MB. The pro-
posed model achieved the value of 0.54 when the data size
is 100 MB and becomes 3.44 at 500 MB data size.

The figure 7 represents the decryption time of the pro-
posed and existing model. Blowfish scored a rating of
7.89 at 100 MB and 16.45 at 500 MB, whereas DES
achieved a value of 5.9 at 100 MB and 10.73 at 500 MB,
respectively. The RC4 model scored 4.89 at 100 MB
and 9.01 at 500 MB. The AES achieved the value of
2.48 at 100 MB and achieved the value of 8.84 at the data
size 500MB.When the data amount increased to 100MB, the
BC-XORECC model reached a value of 1.2 and it increased
to 4.12 when the data size increased to 500 MB. When the
data size is 100 MB, the proposed model achieves 0.67 and
increases to 3.24 when the data size is 500 MB.

The throughput value of the proposed and existing model
is shown in figure 8. The proposed model is compared

FIGURE 8. Throughput vs data size.

with existing models like RC4 and RC4-EA. The RC4
algorithm achieved the value of 18098.39 at 20 KB,
35552.48 at 40 KB, 50422.4 at 60 KB, 65844.64 for 80 KB
and 79362.42 at 100 KB. The RC4-EA algorithm achieved
the value of 19287.85 for 20 KB, 38277.92 for 40 KB,
57299.23 for 60 KB, 75983.77 at 80 KB and 93811.31
for 100 KB. The proposed model achieved the value of
21911.27 for 20 KB, 40301.93 for 40 KB, 58692.59 for
60 KB, 79021.71 for 80 KB and for 100 KB, the proposed
model achieved a value of 95475.03 KB/s.

V. CONCLUSION
In this study, an elliptical crypt with secured
blockchain-assisted FederatedQ-Learning Framework is pro-
posed. Data gathering, encryption, attack detection, safe
storage and validation are all part of the proposed system.
The input IoMT data are initially gathered from publi-
cally available datasets. Encryption is used to secure the
provided inputs using the Extended Elliptic Curve Cryptog-
raphy (E_ECurCypt) approach. This encrypted data is fed as
an input to the proposed blockchain-powered collaborative
learning model. The federated Q-Learning model processed
the inputs and analyzed the attacks provided to ensure better
privacy. Finally, the data is securely stored on decentralized
blockchain technology. To validate the proposed architecture,
the Delegated Proof of Stake (Del_PoS) consensus tech-
nique is used. The WUSTL-EHMS-2020 dataset is used to
carry out the investigation. The performance of the proposed
framework will be evaluated using multiple matrices and
the results will be compared to other current approaches.
The proposed model returned the following results: 99.23%
accuracy, 98.42% precision, 98.12% recall, 98.27% F1
score, 59080.506 average throughput, 1.94 seconds average
decryption time and 1.84 seconds average encryption time.
Although there is potential to expand security and privacy in
smart healthcare systems through the integration of elliptic
cryptography with a secured blockchain assisted federated
Q-learning framework, there are a few potential limitations
to take into consideration. Initially, latency problems can
be brought about by the processing expense of extended
elliptic curve, which would affect the real-time responsive-
ness desirable in healthcare environments. Besides, the usage
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of blockchain technology increases scalability problems as
the transaction volume increases, and the size of blockchain
also expands. This possibly demanding more processing and
storage capacity. Additionally, maintaining data synchroniza-
tion and consistency among dispersed nodes can provide
problems for the federated learning technique, predominantly
in heterogeneous healthcare environments with changing data
formats and standards.

Subsequently, there are privacy concerns about storing
sensitive medical records on a blockchain, since encrypted
data might be vulnerable to attacks or other sophisticated
data breaches that permit for unauthorized access or analysis.
Thereby, even if the proposed framework improves secu-
rity and collaborative learning, undertaking these concerns
is indispensable to its successful application in intelligent
healthcare systems. In the future, this research would want
to add more complex assaults as well as more recent datasets
to train the proposed algorithm. This research is interested in
studying consensus mechanisms that can identify all assaults,
including resend attacks and boost efficiency.
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