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ABSTRACT Solutions to vision tasks in gastrointestinal endoscopy (GIE) conventionally use image
encoders pretrained in a supervised manner with ImageNet-1k as backbones. However, the use of modern
self-supervised pretraining algorithms and a recent dataset of 100k unlabelled GIE images (Hyperkvasir-
unlabelled) may allow for improvements. In this work, we study the fine-tuned performance of models with
ResNet50 and ViT-B backbones pretrained in self-supervised and supervised manners with ImageNet-1k
and Hyperkvasir-unlabelled (self-supervised only) in a range of GIE vision tasks. In addition to identifying
the most suitable pretraining pipeline and backbone architecture for each task, out of those considered,
our results suggest three general principles. Firstly, that self-supervised pretraining generally produces
more suitable backbones for GIE vision tasks than supervised pretraining. Secondly, that self-supervised
pretraining with ImageNet-1k is typically more suitable than pretraining with Hyperkvasir-unlabelled, with
the notable exception ofmonocular depth estimation in colonoscopy. Thirdly, that ViT-Bs aremore suitable in
polyp segmentation and monocular depth estimation in colonoscopy, ResNet50s are more suitable in polyp
detection, and both architectures perform similarly in anatomical landmark recognition and pathological
finding characterisation. We hope this work draws attention to the complexity of pretraining for GIE vision
tasks, informs this development of more suitable approaches than the convention, and inspires further
research on this topic to help advance this development. Code available: github.com/ESandML/SSL4GIE.

INDEX TERMS Gastrointestinal endoscopy, computer vision, self-supervised pretraining, anatomical land-
mark recognition, pathological finding characterisation, polyp detection, polyp segmentation, monocular
depth estimation.

I. INTRODUCTION
Gastrointestinal endoscopy (GIE) is a procedure for screening
and treating various digestive disorders that involves the
insertion of a thin, flexible tube with a camera and light
at the end, known as an endoscope, into either the mouth
(gastroscopy) or anus (colonoscopy or sigmoidoscopy) of
the patient. The endoscope is then traversed through the
gastrointestinal tract as it transmits images of the inner lining
to a monitor, where the endoscopist can inspect them for
abnormalities and perform any necessary interventions. How-
ever, this poses several challenges for the endoscopist, such
as the high volume and complexity of visual information, the
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variability and subtlety of the lesions, and the need for real-
time decision making [1].

To help overcome these challenges, computer vision
has been identified as offering a promising set of tools
for assisting endoscopists with various aspects of data
analysis. Such aspects may be framed as traditional computer
vision tasks such as image classification, object detection,
semantic segmentation, and monocular depth estimation,
among others, where the current state-of-the-art solutions for
these tasks use deep learningmodels trained on large amounts
of data.

A. RELATED WORK
While large datasets suitable for training models to perform
image classificationwith everyday images exist; most notably
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the publicly available ImageNet-1k [2], but also the privately
held JFT-300M [3], [4] and JFT-3B [5]; the datasets available
for other computer vision tasks and distributions of images,
particularly GIE images [6], are notably smaller. It has
become clear that the amount of data a model is trained on
has a strong influence on its performance [7], and efforts have
therefore been taken to identify ways in which the largest
available datasets can be leveraged in the training of models
for tasks which these large datasets do not include suitable
annotations for, and whichmay involve images of a dissimilar
distribution. A now well-established approach [8] is to train
(pretrain) an image classifier from random initialisation with
the ImageNet-1k dataset (1.2M everday images), remove the
classification layer and add any decoder components required
for the intended (downstream) task to the then pretrained
image encoder, and train (fine-tune) the resulting model with
a dataset which does include suitable annotations for the
downstream task. Encoders used in this manner are often
referred to as backbones.
The approach of pretraining backbones on image classifi-

cation with ImageNet-1k may however be limiting for two
main reasons. Firstly, the model will learn to make high-level
abstractions during pretraining, and since this pretraining is
task-specific, these abstractions may not generalise well and
may need to be unlearned during fine-tuning. For example,
the ground truth class of many images in ImageNet-1k refers
to objects in the foreground and training a model to classify
images on this basis may lead to the model learning to
pay less attention to the background, which could contain
information that is useful for the downstream task. Secondly,
image classification datasets require annotations which can
be expensive to produce, limiting the degree to which we can
leverage more data in pretraining. This is particularly true of
GIE images [6], which are especially expensive to annotate,
and the use of which in pretraining may be beneficial when
the downstream task involves such images.

With the aim of addressing these limitations, a significant
amount of research into self-supervised pretraining has been
undertaken in recent years, leading to a range of popular
algorithms [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19]. Self-supervised pretraining algorithms set task-
agnostic objectives that require models to predict targets
extracted from the input data, which can allow for the learning
of generalisable high-level feature recognition. Additionally,
since this paradigm of learning does not require annotations,
it provides the potential for leveraging a much larger amount
of data and/or data of a more similar distribution to that
involved in the downstream task.

A significant amount of research into self-supervised
pretraining with everyday images [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], as well as several modalities
of medical images [20], [21], [22], [23], [24], [25], [26],
[27], has now been undertaken. However, it is still the
convention in GIE to employ backbones that have been
pretrained in a supervised manner with ImageNet-1k. A set
of 99,417 unlabelled GIE images (Hyperkvasir-unlabelled)

was however included in the recently released Hyperkvasir
dataset [28] which, while much smaller than ImageNet-1k,
is significantly larger than other datasets of GIE images.
This data should allow for the self-supervised pretraining
of GIE-specific backbones, which may be better suited to
some tasks in GIE than the described convention. Addition-
ally, self-supervised pretraining with datasets of everyday
images, e.g. ImageNet-1k, may also provide opportunities for
improvements.

B. CONTRIBUTIONS
This paper presents a study on pretraining encoders for use
as backbones in solutions to vision tasks in GIE. We consider
twelve encoders, each of a ResNet50 [29] or ViT-B [30]
architecture and pretrained with one of six pipelines,
including two self-supervised pretraining algorithms per
architecture, each used separately with both ImageNet-1k and
Hyperkvasir-unlabelled, as well as baselines of supervised
pretraining with ImageNet-1k and random initialisation (not
pretrained). We use state-of-the-art methods for adapting
and fine-tuning each encoder for a range of vision tasks in
GIE, namely: anatomical landmark recognition, pathological
finding characterisation, polyp detection, polyp segmenta-
tion, and monocular depth estimation in colonoscopy; and
we compare the resulting models on the basis of their
fine-tuned performance using well-established metrics. The
overall workflow of our experimentation is illustrated in
Fig. 1.
In addition to identifying which architecture and pretrain-

ing pipeline (algorithm and data) is most suitable for each
task, our results suggest that self-supervised pretraining with
ImageNet-1k consistently allows for better performance than
supervised pretraining with ImageNet-1k, across all consid-
ered tasks and architectures. We also demonstrate that self-
supervised pretraining with ImageNet-1k is typically more
suitable than self-supervised pretraining with Hyperkvasir-
unlabelled, with the notable exception of monocular depth
estimation in colonoscopy where the similarity of the
pretraining data to the downstream data appears to be more
critical than the amount of pretraining data. Additionally,
we find that ViT-B backbones are typically more suitable
for polyp segmentation and monocular depth estimation in
colonoscopy, that ResNet50 backbones are more suitable for
polyp detection, and that both architectures perform similarly
in anatomical landmark recognition and pathological finding
characterisation.

While a number of studies have experimented with self-
supervised pretraining for certain GIE vision tasks before
[31], [32], [33], [34], [35], only two [34], [35] have
compared self-supervised pretraining against the convention
of supervised pretraining with ImageNet-1k. Additionally,
in their experiments with GIE vision tasks, these works either
compared self-supervised pretraining against supervised
pretraining of a different architecture with the same dataset,
or the same architecture with a different dataset. Our work
is therefore the first to compare self-supervised pretraining
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FIGURE 1. The overall workflow of our experimentation.

against supervised pretraining for the same encoder architec-
ture and pretraining data, in terms of fine-tuned performance
on GIE vision tasks. Additionally, we consider a much
wider scope of self-supervised pretraining algorithms and
GIE vision tasks than these previous works, each of which
focuses on a single task, and are the first that we know
of to experiment with self-supervised pretraining for polyp
detection and monocular depth estimation in colonoscopy.
Beyond the value of these results in isolation, this wide scope
allows us to expose the general principles revealed by our
analysis.

II. INVESTIGATED SELF-SUPERVISED PRETRAINING
ALGORITHMS
Self-supervised algorithms for pretraining image encoders
for use as backbones can be grouped into four families [36]:

• Deep metric learning (DML)-based self-supervised
pretraining algorithms train an encoder to describe
semantically similar images with quantifiably similar
representations, and semantically dissimilar images with
quantifiably dissimilar representations. This is typically
achieved by creating positive pairs, which are distorted
variants of the same image, and negative pairs, which
are distorted variants of different images, and training
the encoder with a contrastive loss that is minimised
through a reduction in the distance or angle between the
representations of positive pairs, and an increase in the
distance or angle between the representations of negative
pairs.

• Self-distillation-based self-supervised pretraining algo-
rithms train an encoder to describe a variant of an image
with a representation that allows for a representation of
a different variant of the image, produced by another
encoder, to be predicted. As a means of avoiding
collapse, which occurs when both encoders learn to
output the same representation for all images, the second
encoder is typically an exponential moving average of

the encoder being optimised, though collapse can be
avoided through a Siamese network with a stop-gradient
on one branch [19].

• Canonical correlation analysis (CCA)-based self-
supervised pretraining algorithms train an encoder to
describe an image in such a way that each feature of
its representation is informative of a distinct attribute of
the image. This is typically achieved with a loss function
that encourages the encoder tomaintain a certain amount
of variance for each feature in the representation, while
establishing uncorrelatedness between features.

• Masked image modelling (MIM)-based self-supervised
pretraining algorithms aim to reproduce the success of
masked language modelling (MLM) pretraining algo-
rithms, first introduced for pretraining the transformer-
based text encoder BERT [37], in the domain of vision.
MIM algorithms are therefore typically used with ViT
architectures, which are also inspired by BERT, where
the image is split into patches that are treated as a
sequence of visual tokens akin to the sequence of word
tokens used to represent input text for BERT. In both
MLM andMIM, input tokens are randomlymasked, and
a model is trained to reconstruct these tokens based on
the information contained in the remaining tokens.

The rest of this section presents the selection of algo-
rithms considered in our experimentation, which we ensured
spanned these four families of self-supervised algorithms.
We illustrate and provide a definition of the key details of
each algorithm, where we use fθ to denote the image encoder
being optimised for use as a backbone, and explain how we
obtained and used encoders pretrained using each algorithm
with either ImageNet-1k or Hyperkvasir-unlabelled. Note
that any training performed as part of this work was done on
an ASUS ESC8000-G4 GPU server with 6× NVIDIA RTX
A6000 48GB GPUs. Due to the number of GPUs and amount
of memory, the batch sizes used are in multiples of 6 and, for
pretraining, are the maximum that we could allow for.
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FIGURE 2. Visualisation of the MoCo v3 algorithm. Shown for a per-GPU batch size of 2, and 3 GPUs. We use gθ to denote the
projector, hθ to denote the predictor, φ to denote the momentum parameters that are computed with an exponential moving average
(denoted ema) of the online parameters θ , and sg is a stop-gradient.

A. MoCo v3
MoCo v3 [14], illustrated in Fig. 2, is the latest iteration
of the momentum contrast (MoCo) algorithm, which started
as an example of DML. While the distinguishing feature
of all iterations of MoCo is the momentum encoder and
projector gφ ◦ fφ , which is used to compute a representation
for one image variant in each pair, rather than using the online
encoder and projector gθ ◦ fθ to compute both representations
as is more conventional in DML, e.g. SimCLR [9], MoCo v3
incorporates a prediction head hθ . The resulting algorithm can
be framed as either a DML algorithm that incorporates the
principle of self-distillation, or a self-distillation algorithm
which uses a contrastive loss. As such, we consider MoCo
v3 as a representative of both the DML and self-distillation
families.

We define a batch of positive pairs of image variants

on a single GPU as {(xi,1, xi,2)}
Nb
i=1. We then define the

representations used by MoCo v3 as:

qi,j = hθ

(
gθ

(
fθ
(
xi,j
)))

, i = 1, . . . ,Nb and j = 1, 2 (1)

ki,j = gφ

(
fφ
(
xi,j
))

, i = 1, . . . ,NGb and j = 1, 2 (2)

where NGb = NGNb, where NG is the number of GPUs,
and the representations {ki,j}

NGb,2
i=Nb+1,j=1 are gathered from the

other GPUs (see Fig. 2), where they are computed in the
same manner as {ki,j}

Nb,2
i=1,j=1 on different image variants, i.e.

{(xi,1, xi,2)}
NGb
i=Nb+1. The loss function used by MoCo v3 for a

batch on a single GPU can then be defined:

LMC3
(
{qi,1}

Nb
i=1, {ki,1}

NGb
i=1 , {qi,2}

Nb
i=1, {ki,2}

NGb
i=1

)
=

2τ
Nb

Nb∑
i=1

[
LINCE

(
qi,1, {kj,2}

NGb
j=1

)
+ LINCE

(
qi,2, {kj,1}

NGb
j=1

)]
(3)

where τ is the temperature parameter, a constant positive
scalar, and LINCE is the InfoNCE loss [38], which is defined:

LINCE (qi, {kj}Nj=1) = − log

(
eCoSim(qi,ki)/τ∑N
j=1 e

CoSim(qi,kj)/τ

)
(4)

where CoSim is the cosine similarity:

CoSim(a,b) =
a⊤b

∥a∥∥b∥
(5)

Note that Fig. 2 can be seen as illustrating

2τ
Nb

Nb∑
i=1

LINCE
(
qi,1, {kj,2}

NGNb
j=1

)
(6)

whereas LMC3 makes this symmetrical.
The algorithm has been designed to work effectively for

optimising both ResNet and ViT architectures of fθ . For
ViT architectures, the patch embedding layer is frozen as a
random linear projection for stability reasons, and the class
token [cls] is taken as the output of fθ . The projectors
gθ and gφ , and the predictor hθ , are defined as multilayer
perceptrons (MLPs) composed of fully connected layers,
batch normalisation and ReLU activations.

We consider the use of MoCo v3 for pretraining
both ResNet50 and ViT-B architectures, and use the
torchvision implementation of ResNet50 and the ViT-B
implementation from the official MoCo v3 codebase. For
the encoders pretrained using MoCo v3 with ImageNet-1k,
we use the weights provided by the authors. We then used
the implementation of MoCo v3 in the official codebase
to pretrain encoders with Hyperkvasir-unlabelled, modifying
the code only for loading Hyperkvasir-unlabelled and to
change the batch size from 4096 to 1536/768 (ResNet50/
ViT-B). When fine-tuning the ViT-B models, we unfreeze the
patch embedding layer.

B. BARLOW TWINS
Barlow Twins [13], illustrated in Fig. 3, is an example
of a CCA algorithm. Barlow Twins trains a model to
maintain a certain amount of variance for each feature
and to establish uncorrelatedness between features with a
loss function that encourages an identity empirical cross-
correlation matrix between representations of two distorted
variants of the same image. Other examples of CCA differ
mainly in the loss function. For example, the loss function
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FIGURE 3. Visualisation of the Barlow Twins algorithm. Shown for a per-GPU batch size of 2, and representations of
dimensionality 4. We use gθ to denote the projector.

used by VicReg [16] encourages the variance of features to
be maintained, and uncorrelatedness between features to be
established, on representations of individual variants of an
image directly, as well as minimising the Euclidean distance
between representations of two variants of the same image.
We define a batch of positive pairs of image variants

on a single GPU as {(xi,1, xi,2)}
Nb
i=1. We then define the

representations used by Barlow Twins as:

zi,j = gθ

(
fθ
(
xi,j
))

, i = 1, . . . ,Nb and j = 1, 2 (7)

which may also be written as
(
zi,j,k

)d
k=1 = zi,j. These

representations are normalised to give:

ẑi,j,k =
zi,j,k −

1
Nb

∑Nb
m=1 zm,j,k√

1
Nb

∑Nb
n=1

(
zn,j,k −

1
Nb

∑Nb
m=1 zm,j,k

)2 (8)

The elements of the empirical cross correlation matrix
(ck,l)

d,d
k=1,l=1 can then be defined:

ck,l =
1
Nb

Nb∑
i=1

ẑi,1,k ẑi,2,l (9)

which is averaged across GPUs, the result of which we denote
(c̄k,l)

d,d
k=1,l=1. Finally, the Barlow Twins loss can be defined:

LBT
(
(c̄k,l)

d,d
k=1,l=1

)
=

d∑
k=1

(1 − c̄k,k )2 + λ

d∑
k=1

d∑
l=1

1[k ̸=l]c̄2k,l

(10)

where λ is a constant positive scalar and 1 is an indicator
function.

The algorithm has been designed to work effectively
for ResNet architectures of fθ . The projector gθ is defined
as an MLP composed of fully connected layers, batch
normalisation and ReLU activations.

We consider the use of Barlow Twins for pre-
training ResNet50 architectures, for which we use the
torchvision implementation. For the ResNet50 pre-
trained using Barlow Twins with ImageNet-1k, we use

the weights provided by the authors. We then used the
implementation of Barlow Twins in the official codebase to
pretrain a ResNet50 with Hyperkvasir-unlabelled, modifying
the code only for loading Hyperkvasir-unlabelled and to
change the batch size from 2048 to 1536.

C. MAE
Masked autoencoders (MAE) [12], illustrated in Fig. 4, is a
particularly popular example of the MIM family. It differs
from other popularMIM algorithms on twomain fronts. First,
examples such as BEiT [15], PeCo [39], and SimMIM [40]
use an arbitrary token in place of the masked tokens in the
input to fθ , where MAE simply omits them. Notably, this is
only possible with ViTs due to the use of position embeddings
that inform a model of the specific patch of an image that
a token corresponds to explicitly. For reconstruction, this
does however require the insertion of an arbitrary token at
each position of a masked token in the output of fθ , and the
processing of the resulting sequence of tokens by a decoder
gθ , which has a smaller ViT architecture. Secondly, BEiT
and PeCo use the discrete variational autoencoder introduced
as a component of DALL-E [41] to quantise all possible
image patches into a finite set of visual tokens akin to a
vocabulary of words, rather than directly using the patches
as visual tokens. This allows the reconstruction to be framed
as classifying which token in this finite set the masked token
should be, closely following BERT. MAE however takes
a more conventional approach to image reconstruction and
frames it as a regression problem.

As is typical for a ViT, an image is first divided into
a sequence of flattened non-overlapping patches that are
projected by a patch embedding layer and translated by
a position embedding to produce the sequence of visual
tokens (xi)

Np
i=1 that are to be concatenated with the [cls]

token and fed into the first block. Before concatenating
with the [cls] token however, MAE generates a set of
uniformly distributed random values {αi ∼ U(0, 1)}Npi=1 and
computes the permutation σ which sorts the set into reverse
order, i.e. ασ (i) ≥ ασ (i+1) for i = 1, . . . ,Np − 1. For a
proportion of masking γ ∈ [0, 1], selected to ensure that
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FIGURE 4. Visualisation of the MAE algorithm. Shown for a ViT encoder that treats an image as a 4 × 4 grid
of patch tokens, with 75% masking.

γNp − ⌊γNp⌋ = 0, the sequence passed forward is then
(x̃i)

(1−γ )Np
i=1 = (xσ (i))

(1−γ )Np
i=1 . In contrast to MIM algorithms

that replace rather than omit the masked tokens from the
input to fθ , it is important in MAE that the same number of
tokens in each input are masked, i.e. γNp is constant, to allow
for batching. If the sequence of visual tokens, i.e. omitting
the [cls] token, in the output of fθ is denoted (z̃i)

(1−γ )Np
i=1 ,

we then create the sequence (zi)
Np
i=1, where:

zi =

{
z̃σ−1(i) if 1 ≤ σ−1(i) ≤ (1 − γ )Np
m if (1 − γ )Np + 1 ≤ σ−1(i) ≤ Np

(11)

where m is a learnt arbitrary token. The tokens in (zi)
Np
i=1

are then translated by another position embedding and fed
through the decoder blockswith the[cls] token. The output
of the decoder blocks is then fed through a prediction head
and the [cls] token is removed, leaving the sequence of
reconstructed flattened patches for the entire image (ŷi)

Np
i=1.

Denoting the sequence of ground truth flattened patches
(yi)

Np
i=1, in which the features have been zero-centred and

scaled to unit variance for each patch independently, the loss
function is defined:

LMAE
(
(ŷi)

Np
i=1

)
=

1
γNpdp

Np∑
i=1

1[(1−γ )Np+1≤σ−1(i)≤Np]∥ŷi − yi∥2 (12)

where dp is the dimensionality of a patch. The loss is then
averaged over all images in the batch on a single GPU, and
the update to the model is averaged over GPUs, as is typical
in distributed supervised learning.

As mentioned, MAE has been designed for pretraining
ViT architectures specifically. A notable distinction between
the use of ViT in MAE and in MoCo v3 is that the loss is
computed on the processed visual tokens in MAE, whereas it
is computed on the processed [cls] token in MoCo v3.
We consider the use of MAE for pretraining ViT-B

architectures, for which we use the implementation from
the official MAE codebase. For the ViT-B pretrained using
MAE with ImageNet-1k, we use the weights provided by
the authors. We then used the implementation of MAE in
the official codebase to pretrain a ViT-B with Hyperkvasir-
unlabelled, modifying the code only for loading Hyperkvasir-
unlabelled and to change the batch size from 4096 to 768.

III. BASELINES
For each of the considered encoder architectures, ResNet50
and ViT-B, we consider two baselines to compare the
discussed self-supervised pretraining pipelines against.
Most importantly, we consider supervised pretraining with
ImageNet-1k, representing the conventional approach for
pretraining image encoders for use as backbones in solutions
to GIE vision tasks. We then consider no pretraining,
i.e. finetuning from random initialisation. We use the
torchvision implementation and weights for ResNet50,
and the timm implementation and weights for ViT-B.
We note that we do not directly compare against the state-

of-the-art methods for each task. While our primary aim
is to study the relative effectiveness of different pretraining
pipelines, which such comparisons would not be suitable for
due to the need for consistency in all other details, we believe
that this would still be informative. However, we cannot
compare against previously reported results due to the lack
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of standardisation in the benchmarks, with different works
using different splits and different evaluation methodologies,
and re-implementing these methods to allow for a direct
comparison would be too time-consuming. To the best of
our knowledge, the state-of-the-art for each task uses either a
convolutional neural network or some derivative of ViT that
has been pretrained in a supervisedmanner with ImageNet-1k
as a backbone, and as such we consider models with a
ResNet50 or ViT-B backbone that has been pretrained in a
supervised manner with ImageNet-1k as representative of the
state-of-the-art.

IV. IMAGE CLASSIFICATION
Image classification is the problem of determining which,
out of a predefined set of classes, a given image should
be assigned to. In the context of GIE, the predefined set
of classes may cover, for example, possible anatomical
landmarks, pathological findings, or categories of polyps.
In this section, we detail and present our evaluation of the
fine-tuned performance of backbones in two of these image
classification tasks, namely anatomical landmark recognition
and pathological finding characterisation.

A. DATA
The data used in our image classification experiments is
taken from the Hyperkvasir-labelled dataset [28], which
does not share any instances with Hyperkvasir-unlabelled.
We specifically used the anatomical landmarks and patholog-
ical findings subsets, which we treated the classification of
as two separate problems. For each subset, we combined the
data for the upper and lower gastrointestinal tract, and applied
a random 80%/10%/10% training/validation/test split, where
the validation data is used to determine whether to save the
weights after each epoch of training on the training data, and
the test data is reserved for evaluating the model after fine-
tuning. The number of instances of each class, in total and in
each split, are given in Table 1.

B. DECODERS
In image classification, it is typical to simply add a
linear classifier to the final representation computed by
an encoder to allow for prediction. Following convention,
we implement this as a fully connected layer that maps the
final representation to a vector of logits, one for each possible
class, which is softmax normalised prior to computation of
the loss. For the ViT-B models, we use the output [cls]
token as the final representation.

C. FINE-TUNING PROCEDURE
We separately train each model to perform both anatomical
landmark recognition and pathological finding characteri-
sation through the same procedure. We use the common
fine-tuning procedure hyperparameters given in Table 3 and
pre-process the training images using the pipeline detailed in
Table 2. The loss is then computed using a cross entropy loss
function which, due to the significant class imbalance in the

data, is weighted with a value of ND/NiNc for the ith class,
where ND is the total number of images in the dataset, Ni
is the number of images in a particular class, and Nc is the
number of classes. Note that these numbers are for the entire
dataset, rather than the training set. This weighting ensures
that the total sum of weights across all instances is ND, for
consistency with unweighted cross entropy.We use the macro
F1-score (mF1)1 as the validation metric:

mF1 =
1
Nc

Nc∑
i=1

2TPi + ϵ

2TPi + FPi + FNi + ϵ
(13)

where TPi is the number of true positives for the ith class,
FPi is the number of false positives, FNi is the number
of false negatives, and ϵ = 1e − 8. The transformations
applied to the validation images include the same resizing
and normalisation applied to the training images. Finally,
the model is trained on this basis for 50 epochs, with
the parameters saved after each epoch that leads to an
improvement in mF1 on the validation set, with any batch
normalisation synchronised across GPUs.

D. EVALUATION
We evaluate the resulting image classification models using
the corresponding test data, which is pre-processed in the
same manner as the validation data, with four metrics,
namely mF1 (as defined in (13)), mPrecision, mRecall, and
Accuracy:

mPrecision =
1
Nc

Nc∑
i=1

TPi + ϵ

TPi + FPi + ϵ
(14)

mRecall =
1
Nc

Nc∑
i=1

TPi + ϵ

TPi + FNi + ϵ
(15)

Accuracy =

∑Nc
i=1 TPi
ND

(16)

where ϵ = 1e− 8.
For all metrics, a higher value indicates better performance.

The results for anatomical landmark recognition are pre-
sented in Table 4 and the results for pathological finding
characterisation are presented in Table 5.

V. OBJECT DETECTION
Object detection is the problem of recognising and locating
any objects of interest in an image. In the context of GIE, the
objects of interest may be polyps, tools, artefacts, or disease.
In this section, we detail and present our evaluation of
the fine-tuned performance of backbones in polyp detection
specifically.

A. DATA
The data used in our object detection experiments is taken
from the Kvasir-SEG dataset [45], which does not share

1Two different formulations of mF1 can be found in the literature — (13)
is the more robust [42] arithmetic mean of individual F1 scores.
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TABLE 1. Number of instances of each class, in total and in each split.

TABLE 2. Pre-processing of training images, which is performed online during training. 1) pads to max(h, w) × max(h, w) for original height h and width
w . 2) resizes to 224 × 224 using bicubic interpolation with anti-aliasing [43]. 3) applies colour jitter with brightness factor sampled uniformly from
[0.6, 0.4], contrast factor sampled uniformly from [0.5, 1.5], saturation factor sampled uniformly from [0.75, 1.25], and hue factor sampled uniformly
from [0.99, 1.01]. 4) applies Gaussian blur with a 25 × 25 kernel with a standard deviation sampled uniformly from [0.001, 2]. 5) applies a rotation of
90°with a probability of 0.5. 6) applies a horizontal flip with a probability of 0.5. 7) applies a vertical flip with a probability of 0.5. 8) applies a rotation of
an angle sampled uniformly from [−180°, 180°]. 9) applies an affine transform with, horizontal translation sampled uniformly from [−28, 28], vertical
translation sampled uniformly from [−28, 28], scaling with factor sampled uniformly from [0.5, 1.5], and shearing of an angle sampled uniformly from
[−22.5°, 22.5°]. 10) applies normalisation using the ImageNet-1k pixel mean and standard deviation, for consistency with all pretraining pipelines.

TABLE 3. Common fine-tuning procedure hyperparameters.

any instances with Hyperkvasir-unlabelled. The dataset
includes 1000 GIE images, each of which shows at least
one polyp and is paired with both a set of bounding boxes,
specifying the location and the horizontal and vertical dimen-
sions of any polyps in the image, and a binary segmentation
map indicating which pixels correspond to a polyp and
which don’t. While the segmentation maps were used in our
semantic segmentation experiments, here we use the sets
of bounding boxes. We applied a random 80%/10%/10%

training/validation/test split, where the validation data is used
to determine whether to save the weights after each epoch of
training on the training data, and the test data is reserved for
evaluating the model after fine-tuning.

B. DECODERS
For our object detection experiments, we implemented the
listed backbones within a Faster R-CNN pipeline [46] with
feature pyramid network (FPN) [47], which we used the
torchvision implementation of. We used the existing
implementation of the pipeline with a ResNet50 backbone,
specifying that all layers of the backbone should be trainable.
For the ViT-B models, based on previous analyses of using
ViT backbones in object detection [48], [49], we first
modified the encoders to efficiently process larger image
sizes2 by bilinearly interpolating the position embeddings

2All considered pretraining was done with images resized to 224 × 224,
whereas object detection typically involves larger images, e.g. 1024× 1024.
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TABLE 4. Performance in anatomical landmark recognition. The best results for each architecture are highlighted as bold, and the best results overall are
underlined.

TABLE 5. Performance in pathological finding characterisation. The best results for each architecture are highlighted as bold, and the best results overall
are underlined.

and using non-overlapping window self-attention in all but
the 3rd, 6th, 9th, and 12th blocks. Window attention, also
known as restricted attention [50], independently applies
attention to subsets of the sequence of visual tokens, where
each subset corresponds to the tokens in a square window of
the equivalent feature map, with no overlapping windows.
We used 256 tokens in each subset, corresponding to a
16×16window of a feature map.We thenmodified the Faster
R-CNN pipeline to use the resulting encoders as backbones
with a ViTDet FPN [49].

C. FINE-TUNING PROCEDURE
In the fine-tuning of both model architectures, we use
the common fine-tuning procedure hyperparameters given
in Table 3 and pre-process the training images using the
pipeline detailed in Table 2. For the ResNet50 models,
using the default pre-processing pipeline for the Faster
R-CNN implementation, the images in a batch are then
each resized with bilinear interpolation to a scale of
min(800/min(h,w), 1333/max(h,w)) of the original size h×

w, and then padded to H × W , where H is the maximum

height of the resized images andW is the maximum width of
the resized images across the batch. For the ViT-B models,
inspired by a previous analysis [48], the images are padded
to 1024 × 1024 — since several images in the dataset
have a height or width larger than 1024, these images are
downsampled to half the resolution using bicubic interpola-
tion with anti-aliasing before padding. Transformations are
also applied to the bounding boxes in accordance with any
spatial transformations applied to the image. The usual multi-
task loss function for the Faster R-CNN pipeline is used to
compute the loss, and we use AP@[.5:.95] as the validation
metric for predicted bounding boxes that have a confidence
score ≥0.05:

AP@[.5:.95] =
1
10

∑
t∈T

AP@t (17)

where T = {0.5, 0.55, . . . , 0.95} is the set of intersection
over union (IoU) thresholds and AP@t is the average
precision at the t th IoU threshold. We compute AP@t by
first ranking all predicted bounding boxes with respect to the
confidence score, from high to low. We then step through
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the predicted bounding boxes in rank order and assign the
prediction to the true positives if it has an IoU with a target
bounding box for the same image that is greater than the
IoU threshold, and otherwise assign it to the false positives.
At each rank, we then compute the precision and recall using
the cumulative number of true positives and false positives
and the total number of false negatives. We then determine
a strictly monotonically increasing sequence of recall values
(ri)

Nr
i=1, with r1 = 0, rNr = 1, and (ri)

Nr−1
i=2 being the recall

values (excluding 0 and 1) for ranks where false positives
and resulting drops in the precision occur, and AP@t is
then:

AP@t =

Nr∑
i=2

(ri − ri−1) p(ri) (18)

where p(ri) is the maximum precision value out of those
which correspond to ri, for i = 2, . . . ,Nr . The transfor-
mations applied to the validation images include the same
resizing and/or padding and normalisation applied to the
training images, and a batch size of 1 is used to ensure the
evaluation of a ResNet50 model on a particular instance is not
influenced by other images in a batch (through the padding
to H × W ). Finally, the model is trained on this basis for
200 epochs, with the parameters saved after each epoch that
leads to an improvement in AP@[.5:.95] on the validation set,
with any batch normalisation synchronised across GPUs.

D. EVALUATION
We evaluate the resulting object detection models using the
test data, which is pre-processed in the same manner as
the validation data, with AP@[.5:.95] (AP for conciseness),
AP@.5 (AP50), and AP@.75 (AP75) computed for predicted
bounded boxes with a confidence score ≥0.05. For all
metrics, a higher value indicates better performance. The
results are presented in Table 6, and some examples for
predicted bounding boxes with a confidence score ≥0.5 are
shown in Fig. 5.

VI. SEMANTIC SEGMENTATION
Semantic segmentation is the problem of determining which,
out of a predefined set of classes, each pixel in an image
should be assigned to. In the context of GIE, the predefined
set of classes will typically include a background class that
accounts for anything that is not of interest, as well as
any classes that are of interest, for example, polyps, tools,
artefacts, or disease. In this section, we detail and present
our evaluation of the fine-tuned performance of backbones
in polyp segmentation specifically, which is notably a binary
segmentation problem.

A. DATA
We used two datasets in our semantic segmentation exper-
iments, namely Kvasir-SEG [45] and CVC-ClinicDB [51].
Kvasir-SEG has already been discussed in the context
of our object detection experiments, and we use the

same training/validation/test split here. CVC-ClinicDB
includes 612 GIE images, each of which shows at least one
polyp and is pairedwith a binary segmentationmap indicating
which pixels correspond to a polyp and which don’t.
We applied a random 80%/10%/10% training/validation/test
split, where the validation data is used to determine whether
to save the weights after each epoch of training on the training
data, and the test data is reserved for evaluating the model
after fine-tuning.

B. DECODERS
For our semantic segmentation experiments, we used the
listed ResNet50 backbones with a DeepLabV3+ [52]
decoder, using the segmentation-models-pytorch
implementation. We then used the ViT-B backbones with
the segmentation variant of the dense prediction transformer
(DPT) [53] decoder, using the implementation provided in the
official codebase.

C. FINE-TUNING PROCEDURE
We separately train each model to perform polyp seg-
mentation with each dataset through the same procedure.
We use the common fine-tuning procedure hyperparameters
given in Table 3 and pre-process the training images using
the pipeline detailed in Table 2. Transformations are also
applied to the segmentation maps in accordance with any
spatial transformations applied to the image. The loss is then
computed using the Dice loss function [54], and we use
mDice as the validation metric:

mDice =
1
Ne

Ne∑
i=1

2TPi + ϵ

2TPi + FPi + FNi + ϵ
(19)

where Ne is the number of instances in the validation/test
set, TPi is the number of true positives for the ith image,
FPi is the number of false positives, FNi is the number
of false negatives, and ϵ = 1e − 8. The transformations
applied to the validation images include the same resizing
and normalisation applied to the training images, with the
validation maps also resized to 224× 224. Finally, the model
is trained on this basis for 200 epochs, with the parameters
saved after each epoch that leads to an improvement in
mDice on the validation set, with any batch normalisation
synchronised across GPUs.

D. EVALUATION
We evaluate the resulting semantic segmentation models
using the corresponding test data, where the images are
pre-processed in the same manner as the validation images,
but the segmentation maps are left at their original size.
The predictions are therefore resized to this original size
using bilinear interpolation prior to binarisation. We then use
four metrics, namely the mDice (as defined in (19)), mIoU,
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TABLE 6. Performance in polyp detection. The best results for each architecture are highlighted as bold, and the best results overall are underlined.

FIGURE 5. Targets (yellow bounding boxes) and predictions (green bounding boxes) for two randomly selected instances of the Kvasir-SEG test set.
For conciseness, we denote ResNet50s with RN, ViT-Bs with VT, Hyperkvasir-unlabelled with HK, ImageNet-1k with IN, MoCo v3 with MC, Barlow
Twins with BT, MAE with MA, supervised pretraining with SL, and no pretraining with NA-NA.

mPrecision, and mRecall:

mIoU =
1
Ne

Ne∑
i=1

TPi + ϵ

TPi + FPi + FNi + ϵ
(20)

mPrecision =
1
Ne

Ne∑
i=1

TPi + ϵ

TPi + FPi + ϵ
(21)

mRecall =
1
Ne

Ne∑
i=1

TPi + ϵ

TPi + FNi + ϵ
(22)

For all metrics, a higher value indicates better performance.
The results for Kvasir-SEG are presented in Table 7 and the
results for CVC-ClinicDB are presented in Table 8. Examples
for Kvasir-SEG are shown in Fig. 6.

VII. MONOCULAR DEPTH ESTIMATION
Monocular depth estimation is the problem of predicting the
length of the ray of light, that a particular pixel in an image
corresponds to, between the camera and the object that the ray
of light has come from, for every pixel in the image. Since the
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TABLE 7. Performance in polyp segmentation with Kvasir-SEG. The best results for each architecture are highlighted as bold, and the best results overall
are underlined.

TABLE 8. Performance in polyp segmentation with CVC-ClinicDB. The best results for each architecture are highlighted as bold, and the best results
overall are underlined.

absolute scale of the scene can only be determined from the
parallax observed with a second view, the problem is however
inherently ill-posed and only relative scale can be determined.
In this section, we detail and present our evaluation of the
fine-tuned performance of backbones in monocular depth
estimation in colonoscopy.

A. DATA
The data used for our depth estimation experiments is taken
from the C3VD dataset [55], the only dataset that we know of
which includes images captured with a clinical GIE camera
(colonoscope, specifically) with paired ground truth depth
maps. The dataset was collected by recording segments
(sigmoid, descending, transcending, ascending, and cecum)
of a high-fidelity 3D silicone phantom colon model with
varying textures, emulating different patient-specific tissue
features and vasculature patterns at varying optical depths,
and varying illumination modes with a clinical colonoscope.
Views of an equivalent 3D virtual colon model were then
registered with key frames of the resulting videos, allowing

for the rendering of a ground truth depth map for each frame,
as well as a surface normal, optical flow, and occlusion map.
Each video is also paired with ground truth camera pose,
surface model, and coverage map. 22 videos were recorded,
with variation in the segment, camera pose, textures, and
illumination, amounting to 10015 frames in total.We selected
18 videos (8610 frames) for training, 2 videos (977 frames)
for validation, and 2 videos (528 frames) for testing, where
the validation and test sets each include one randomly
sampled video of the cecum and one randomly sampled
video of the transcending segment, since the majority of
videos were of one of these segments (8 of cecum and 9 of
transcending).

B. DECODERS
For our monocular depth estimation experiments, we used
the listed ViT-B backbones with the depth estimation variant
of the dense prediction transformer (DPT) [53] decoder,
using the implementation provided in the official codebase.
Since there is no clear precedent for a decoder architecture
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FIGURE 6. Targets and predictions for two randomly selected instances of the Kvasir-SEG test set. For conciseness, we denote ResNet50s with RN,
ViT-Bs with VT, Hyperkvasir-unlabelled with HK, ImageNet-1k with IN, MoCo v3 with MC, Barlow Twins with BT, MAE with MA, supervised pretraining
with SL, and no pretraining with NA-NA.

TABLE 9. Performance in monocular depth estimation in colonoscopy. The best results for each architecture are highlighted as bold, and the best results
overall are underlined.

for ResNet50-based depth estimation,3 we designed our
own. This decoder, designed to mirror the architecture of
ResNet50, has three fusion levels. The first starts with the
final feature maps output by a ResNet50 and halves the num-
ber of channels with a 1 × 1 convolutional layer followed by
batch normalisation, before upsampling the resulting feature
maps to twice the resolution with bilinear interpolation and
concatenating it with the feature maps output by the previous
level of the ResNet50. The concatenated features are then
processed by three blocks that have the same design as the
blocks used in each level of ResNet50. The second and third

3Popular dense prediction architectures that adopt certain details of
ResNets in their design and which may be suitable for depth estimation, such
as ResUNet [56] or ResUNet++ [57], do not actually use a ResNet encoder.

levels of the decoder follow the same logic as the first, except
that they start with the output of the previous level of the
decoder. A prediction head, which has the same design as
the prediction head used in the depth estimation variant of
the DPT decoder, is then used to predict a depth map from the
output of the third level.

C. FINE-TUNING PROCEDURE
In the fine-tuning of both model architectures, we use the
common fine-tuning procedure hyperparameters given in
Table 3 and pre-process the training images using the pipeline
detailed in Table 2. Transformations are also applied to the
depth maps in accordance with any spatial transformations
applied to the image, with absolute depth values scaled to
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FIGURE 7. Targets and post-processed predictions for a randomly selected instance from each of the test videos for C3VD. For conciseness, we denote
ResNet50s with RN, ViT-Bs with VT, Hyperkvasir-unlabelled with HK, ImageNet-1k with IN, MoCo v3 with MC, Barlow Twins with BT, MAE with MA,
supervised pretraining with SL, and no pretraining with NA-NA.

FIGURE 8. Error maps for the post-processed predictions shown in Fig. 7, illustrating the absolute error with a larger value represented by a
darker shade. For conciseness, we denote ResNet50s with RN, ViT-Bs with VT, Hyperkvasir-unlabelled with HK, ImageNet-1k with IN, MoCo v3
with MC, Barlow Twins with BT, MAE with MA, supervised pretraining with SL, and no pretraining with NA-NA.

[0, 1]. The loss is then computed using the scale- and shift-
invariant (SSI) mean squared error (MSE) [58] with a multi-
scale shift-invariant gradient matching term [59], which is
computed only on the pixels that are covered by the lens
(corners are not covered — see examples in Fig. 7), and
we use the mSSI-MSE for pixels covered by the lens as the
validation metric:

mSSI-MSE =
1

NeNv

Ne∑
i=1

Nv∑
j=1

(
siŷi,j + ti − yi,j

)2 (23)

where Nv is the number of pixels covered by the lens in
an image, ŷi,j is the output value for the jth pixel covered

by the lens in the ith image, yi,j is the corresponding
target value, and si and ti are the scale and shift computed
using the closed form solution to the standard least squares
problem:

h∗
i = argmin

hi

Nv∑
j=1

(
ŷ⊤
i,jhi − yi,j

)2
(24)

where hi = (si, ti)⊤ and ŷi,j =
(
ŷi,j, 1

)⊤. The transformations
applied to the validation images include the same padding,
resizing, and normalisation applied to the training images,
with the validation maps also padded and resized to

46194 VOLUME 12, 2024



E. Sanderson and B. J. Matuszewski: Study on Self-Supervised Pretraining for Vision Problems

224×224 and depth values scaled to [0, 1]. Finally, the model
is trained on this basis for 50 epochs, with the parameters
saved after each epoch that leads to an improvement in SSI
MSE on the validation set, with any batch normalisation
synchronised across GPUs.

D. EVALUATION
We evaluate the resulting monocular depth estimation models
using the test data, where the images are pre-processed in the
same manner as the validation images. We load two target
depth maps for each image, one which is pre-processed in the
same manner as the validation depth maps, for computing the
scale and shift for pixels covered by the lens, and one left at
the original size and scale ([0cm, 10cm]), for computing the
performance. We compute and apply the scale and shift for
the prediction, then resize the result tomax(h,w)×max(h,w),
where h and w are the height and width of the original image,
crop to h×w to remove values for padded pixels, clip values to
[0, 1], set any values for pixels not covered by the lens to 0,
and scale the resulting values to [0cm, 10cm]. We then use
the four metrics used the SimCol3D challenge [60], namely
the arithmetic mean across the test set of: the root MSE
(mRMSE), the median relative absolute error (mMRAE), and
the mean absolute error (mMAE), which are only applied to
pixels covered by the lens:

mRMSE =
1
Ne

Ne∑
i=1

√√√√√ 1
NV

NV∑
j=1

(
ŷi,j − yi,j

)2 (25)

mMRAE =
1
Ne

Ne∑
i=1

median
j=1,...,NV

(∣∣∣∣ ŷi,j − yi,j
yi,j

∣∣∣∣) (26)

mMAE =
1

NeNV

Ne∑
i=1

NV∑
j=1

∣∣ŷi,j − yi,j
∣∣ (27)

where NV is the number of pixels covered by the lens in an
image at its original size, ŷi,j is the value in the post-processed
prediction for the jth pixel covered by the lens in the ith image
at its original size, and yi,j is the corresponding target value.
For all metrics, a lower value indicates better performance.
The results are presented in Table 9, and some examples are
shown in Fig. 7 with corresponding error maps shown in
Fig. 8 to help visualise the differences.

VIII. ANALYSIS
The results presented in the previous sections primarily
provide an indication of the ranking of the pretraining
pipelines for each considered GIE vision task. Notably,
there is some variation in this ranking, as illustrated in
Fig. 9, however the ViT-B encoder pretrained with MAE and
ImageNet-1k most consistently allows for either the best,
or highly competitive, downstream performance. Beyond this
identification, however, these results provide evidence for
more general principles regarding the pretraining of encoders

FIGURE 9. Ranking of the performance of each model on each task,
as measured by mF1 (anatomical landmark recognition and pathological
finding characterisation), AP (polyp detection), mDice (polyp
segmentation), and mRMSE (monocular depth estimation in
colonoscopy), where a better rank is represented by a greater distance
from the centre. For conciseness, we denote ResNet50s with RN, ViT-Bs
with VT, Hyperkvasir-unlabelled with HK, ImageNet-1k with IN, MoCo v3
with MC, Barlow Twins with BT, MAE with MA, supervised
pretraining with SL, and no pretraining with NA-NA. Additionally, we refer
to anatomical landmark recognition as anat, pathological finding
characterisation as path, polyp detection as det, polyp segmentation with
Kvasir-SEG as segk, polyp segmentation with CVC-ClinicDB as segc, and
monocular depth estimation in colonoscopy as dep.

for use as backbones in solutions to GIE vision tasks, which
we reveal through an analysis presented in this section.

First, we demonstrate that self-supervised pretraining is
generallymore suitable than supervised pretraining. To assess
this, we evaluate the relative improvement of each model that
uses a backbone pretrained in a self-supervised manner with
ImageNet-1k vs. the equivalent model (same architecture and
task) that uses a backbone pretrained in a supervised manner
with ImageNet-1k. To compute the relative improvement,
we consider the primary metric for each task as mF1 (image
classification), AP (object detection), mDice (semantic
segmentation), and mRMSE (depth estimation), as defined
in the discussion of each task. Then, for all but mRMSE,
we take the absolute difference between the result and a
perfect score of 1, in order to convert each score (higher is
better) to a measure of error (lower is better). We do not do
this for mRMSE since it is already ameasure of error.We then
compute the relative improvement using:

%ImprovementSL→SSL = 100
δSL − δSSL

δSL
(28)

where δSSL is the error for a model with a backbone pretrained
in a self-supervised manner and δSL is the error for an equiva-
lent model (same architecture, pretraining data, and task) with
a backbone pretrained in a supervised manner. Note that this
analysis omits any results for pretraining with Hyperkvasir-
unlabelled or no pretraining. We visualise the results of this
analysis in Fig. 10, where it can be seen that self-supervised
pretraining overwhelmingly provides improvements over
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FIGURE 10. Improvement of self-supervised pretraining vs. supervised pretraining for same architecture and pretraining data
(ImageNet-1k). For conciseness, we denote ResNet50s with RN, ViT-Bs with VT, MoCo v3 with MC, Barlow Twins with BT, and MAE with
MA. Additionally, we refer to anatomical landmark recognition as anat, pathological finding characterisation as path, polyp detection
as det, polyp segmentation with Kvasir-SEG as segk, polyp segmentation with CVC-ClinicDB as segc, and monocular depth estimation
in colonoscopy as dep.

FIGURE 11. Improvement of pretraining with Hyperkvasir-unlabelled vs. pretraining with ImageNet-1k for same architecture and
self-supervised pretraining algorithm. For conciseness, we denote ResNet50s with RN, ViT-Bs with VT, MoCo v3 with MC, Barlow Twins
with BT, and MAE with MA. Additionally, we refer to anatomical landmark recognition as anat, pathological finding characterisation as
path, polyp detection as det, polyp segmentation with Kvasir-SEG as segk, polyp segmentation with CVC-ClinicDB as segc, and
monocular depth estimation in colonoscopy as dep.

supervised pretraining in our experiments, with only a
single marginal exception to this observed across all self-
supervised pretraining algorithms, architectures, and tasks.
We can therefore confidently conclude that self-supervised
pretraining with ImageNet-1k generally provides better
backbones than supervised pretraining with ImageNet-1k.
Since supervised pretraining with ImageNet-1k is still the
conventional pretraining pipeline for backbones used in
solutions to vision tasks in GIE, including the state-of-the-
art, this is a crucial finding.

We also demonstrate that self-supervised pretraining with
ImageNet-1k is generally more suitable than self-supervised
pretraining with Hyperkvasir-unlabelled in the considered
downstream tasks, with the notable exception of monocular
depth estimation in colonoscopy. To assess this, we use
the same measures of error used in the previous analysis
and evaluate the relative improvement from pretraining with

Hyperkvasir-unlabelled vs. ImageNet-1k using:

%ImprovementIN→HK = 100
δIN − δHK

δIN
(29)

where δHK is the error for a model with a backbone pretrained
with Hyperkvasir-unlabelled and δIN is the error for an
equivalent model (same architecture, pretraining algorithm,
and task) with a backbone pretrained with ImageNet-1k.

Note that this analysis omits any results for supervised
pretraining or no pretraining. We visualise the results
of this analysis in Fig. 11, where it can be seen that
self-supervised pretraining with ImageNet-1k generally
provides better performance than self-supervised pretraining
with Hyperkvasir-unlabelled, with exceptions including the
anatomical landmark recognition models with MAE pre-
trained backbones, as well as all monocular depth estimation
models. While the result for the anatomical landmark
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FIGURE 12. Improvement of ViT-B over ResNet50 for same pretraining pipeline (data and algorithm). For conciseness, we denote
Hyperkvasir-unlabelled with HK, ImageNet-1k with IN, MoCo v3 with MC, supervised pretraining with SL, and no pretraining with
NA-NA. Additionally, we refer to anatomical landmark recognition as anat, pathological finding characterisation as path, polyp
detection as det, polyp segmentation with Kvasir-SEG as segk, polyp segmentation with CVC-ClinicDB as segc, and monocular depth
estimation in colonoscopy as dep.

FIGURE 13. Distribution of Dice score (higher is better) across the test set for each Kvasir-SEG polyp segmentation
model, visualised as box and violin plots. For conciseness, we denote ResNet50s with RN, ViT-Bs with VT,
Hyperkvasir-unlabelled with HK, ImageNet-1k with IN, MoCo v3 with MC, Barlow Twins with BT, MAE with MA,
supervised pretraining with SL, and no pretraining with NA-NA. For clarity, the violin plots for ResNet50 models are
coloured red and the violin plots for ViT-B models are coloured blue.

recognition models with MAE pretrained backbones
shows only a marginal improvement for pretraining with
Hyperkvasir-unlabelled vs. ImageNet-1k, the results for the
depth estimation models are more significant. This implies
that the similarity of the pretraining data to the data used
in the depth estimation experiments is much more critical
than the amount of pretraining data, in comparison to other
tasks. While this finding is significant for the development
of solutions to vision tasks in GIE, it may have broader
implications and further work may find this to be true for
monocular depth estimation in general.

Finally, we demonstrate that models with a ViT-B back-
bone are generally better than models with a ResNet50
backbone in polyp segmentation and monocular depth esti-
mation in colonoscopy, generally worse in polyp detection,
and generally similar in image classification. To assess this,

we use the same measures of error used in the previous
analyses and evaluate the relative improvement from using
a ViT-B vs. a ResNet50 using:

%ImprovementRN→VT = 100
δRN − δVT

δRN
(30)

where δVT is the error for a model with a ViT-B backbone
and δRN is the error for an equivalent model (same pretraining
pipeline and task) with a ResNet50 backbone.

Note that this analysis omits any results for pretraining
with Barlow Twins or MAE. We visualise the results of this
analysis in Fig. 12, where it can be seen that the ResNet50
and ViT-B models perform similarly in anatomical landmark
recognition and pathological finding characterisation, that
the ResNet50 models perform better than the ViT-B models
perform in polyp detection, and that the ViT-B models
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FIGURE 14. Distribution of Dice score (higher is better) across the test set for each CVC-ClinicDB polyp segmentation
model, visualised as box and violin plots. For conciseness, we denote ResNet50s with RN, ViT-Bs with VT,
Hyperkvasir-unlabelled with HK, ImageNet-1k with IN, MoCo v3 with MC, Barlow Twins with BT, MAE with MA,
supervised pretraining with SL, and no pretraining with NA-NA. For clarity, the violin plots for ResNet50 models are
coloured red and the violin plots for ViT-B models are coloured blue.

FIGURE 15. Distribution of RMSE (lower is better) across the test set for each C3VD monocular depth estimation model,
visualised as box and violin plots. For conciseness, we denote ResNet50s with RN, ViT-Bs with VT,
Hyperkvasir-unlabelled with HK, ImageNet-1k with IN, MoCo v3 with MC, Barlow Twins with BT, MAE with MA,
supervised pretraining with SL, and no pretraining with NA-NA. For clarity, the violin plots for ResNet50 models are
coloured red and the violin plots for ViT-B models are coloured blue.

generally perform better in the dense prediction tasks of polyp
segmentation and monocular depth estimation colonoscopy.
We further demonstrate the advantage of the ViT-B models
over the ResNet50 models in dense prediction by visualising
the distribution of performance across the Kvasir-SEG, CVC-
ClinicDB, and C3VD test sets in Fig. 13, Fig. 14, and Fig. 15,
respectively. Such visualisations are only suitable for these
experiments since the metrics measure the performance on
each instance prior to averaging, which is not the case for our
image classification or object detection experiments. While
we observe that ResNet50 models are typically better on
polyp detection, we note that the polyp detection model with
an MAE pretrained backbone with ImageNet-1k performs
better than all but two models with ResNet50 backbones with
respect to AP, and performs best with respect to AP50, further

emphasising the particular robustness of this pretraining
pipeline. There is still much to understand about the relative
strengths and weaknesses of these architectures, particularly
in the context of domains where the availability of data is
much lower than that of everyday images, such as GIE.
However, these results provide useful insights into which
architecture may be better suited to each considered task.

One final note we make is that, as expected, pretraining
with any of the considered pipelines consistently leads to bet-
ter fine-tuned performance than training on the downstream
task from random initialisation.

IX. CONCLUSION
In this work, we studied the pretraining of image encoders
for use as backbones in solutions to vision tasks in GIE,
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considering variation in encoder architecture, pretraining
pipeline (data and algorithm), and downstream task. This
was motivated by recent opportunities to improve on
the convention of supervised pretraining backbones on
image classification with ImageNet-1k, namely modern
self-supervised pretraining algorithms and Hyperkvasir-
unlabelled — a relatively large dataset of unlabelled GIE
images. We primarily identified the best pretraining pipeline
and architecture, out of those considered, for each considered
task by adapting the encoders to the tasks with state-of-the-
art decoders, fine-tuning the resulting models on datasets
that include suitable annotations for the tasks, and evaluating
the performance on test sets with well-established metrics.
Overall, we found that a ViT-B backbone pretrained using
the MAE algorithm and ImageNet-1k was most robust.
Additionally, our findings suggest three general principles
regarding the pretraining of encoders for use as backbones in
solutions to vision tasks in GIE, which we revealed through
an analysis of the downstream performance. These include:

• Self-supervised pretraining generally produces more
suitable backbones than supervised pretraining. This
result is significant as it is still the convention to use
backbones that have been pretrained on ImageNet-1k
in a supervised manner — this implies that the current
state-of-the-art could be improved upon through self-
supervised pretraining. Additionally, this result contrasts
with the results observed for tasks involving everyday
images, where supervised pretraining typically leads to
better performance.

• Self-supervised pretraining with ImageNet-1k gener-
ally produces more suitable backbones than self-
supervised pretraining with Hyperkvasir-unlabelled,
with the notable exception of monocular depth esti-
mation in colonoscopy where the similarity of the
pretraining data to the downstream data appears to be
more critical than the amount of pretraining data. While
this is a useful insight for the development of monocular
depth estimation models for GIE, this finding may also
be true for monocular depth estimation solutions in other
domains.

• That ResNet50 backbones are generally better for polyp
detection, whereas ViT-B backbones are generally better
for polyp segmentation and monocular depth estimation
in colonoscopy, and both architectures perform similarly
in anatomical landmark recognition and pathological
finding characterisation.

We hope that this paper encourages further work on the
topic of pretraining image encoders for use as backbones
in solutions to vision tasks in GIE. Firstly, the scope of
this work could be extended to more tasks and datasets,
as well as decoder architectures and fine-tuning procedures.
For example, we considered the Faster R-CNN object
detection pipeline, which is a 2-stage detector, and it is worth
investigating whether our findings are also true for 1-stage
detectors. Additionally, we considered supervised fine-tuning

for monocular depth estimation in colonoscopy, while self-
supervised fine-tuning for monocular depth estimation is
also a promising research avenue and may benefit from an
investigation into pretraining. Also, the impact of existing
pretraining pipelines on the hybrid architectures that combine
both convolutional and transformer components and that have
found success in polyp segmentation can be investigated.
We believe that such research should lay the groundwork for
the development of backbones that are better suited to tasks in
GIE, which should allow for significant advancement in the
state-of-the-art. Beyond extending the scope of this study and
the further investigation of existing pretraining algorithms,
we suggest that future work also studies the development of
pretraining algorithms specifically for this domain, as well as
for other encoder architectures.
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