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ABSTRACT With the rapid progress of computer vision and deep learning techniques, accurately predicting
continuous human motions from very few image inputs and generating high-quality 3D human models has
become a cutting-edge research direction in this field. Despite the achievements in 2D to 3D conversion
techniques, it is still a great challenge to capture coherent movements from limited image frames and generate
texture-rich 3D models. In this paper, we propose a 3D clothed human body generation method based on
Inter-Frame Motion Prediction (IFMP for short) of 2D images, which is capable of not only predicting a
series of coherent human body motions, but also reconstructing a detailed textured 3D human body model
from only two image frames. The method automatically focuses on key parts of the image through action
coding and uses a conditional generative adversarial network to generate a series of consecutive intermediate
frame images. A depth-aware implicit function representation is combined to map a 3D model from the 2D
image, and high quality textures of the human body in a clothed state are obtained by texture mapping and
model detail enhancement methods. Finally, the experimental results validate the advantages of the IFMP
method in image action coherence prediction, as well as verifying the effectiveness of the human 3D model
generated by the method in terms of geometric accuracy and texture quality.

INDEX TERMS Deep learning, inter-frame motion prediction, 3D human reconstruction, texture mapping.

I. INTRODUCTION
As the digital world continues to integrate into the real life
of human beings, the capture and analysis of human motion
has become a key technology in several fields, especially
in the industries of virtual reality (VR), film production,
video games, medical rehabilitation, and professional sports
training. With the continuous advancement of technology,
there is a growing demand from researchers and developers
for more accurate, natural and smooth human motion capture
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techniques [1], [2]. Against this background, the technique
of predicting continuous human movements and generat-
ing 3D models through inter-frame prediction has emerged,
which is not only of great significance for academic research,
but also lays the foundation for technological advancement
and market competitiveness of related industries. For exam-
ple, the ability to generate complete action sequences through
the use of only minimal image inputs will greatly simplify
the content creation process, reduce costs, and open up the
possibility of high-quality content creation in low-resource
environments [3], [4]. In addition, this technological advance-
ment will facilitate the development of a new generation of
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interactive applications that will be able to respond in real
time to the user’s actions and intentions, creating a more per-
sonalized and dynamic digital experience. As the technology
matures and refines, entirely new application models may
emerge in the future, such as virtual representatives in remote
work, personalized virtual anchors on social media, and even
real-time virtual fashion displays. These applications will
further deepen the integration of the digital and real worlds,
bringing changes to the way humans live and work.

Currently, research in humanmovement prediction focuses
on how to capture and predict human movements more accu-
rately in the short term. However, long-term, coherent motion
prediction remains a challenge, especially under complex and
variable environmental conditions [5]. In addition, although
2D motion capture technology is relatively mature, there are
still many problems in converting from 2D data to 3Dmodels,
such as data incompleteness, noise interference, and inaccu-
rate mapping from 2D to 3D. These problems not only affect
the accuracy of 3D models, but also limit their application in
a wider range of scenarios [6], [7].

In the field of 3D human model generation, although deep
learning methods have made significant progress in enabling
conversion from 2D images to 3Dmodels, current techniques
still face some significant challenges [8]. Most of the current
methods focus on the mapping of a single image to a 3D
model and lack a deep understanding of dynamic continuity
and temporal coherence. This means that while structurally
accurate 3D models can be created from a single 2D image,
it is still an open challenge to capture and accurately predict
a coherent series of actions from a very small number of
frame images - e.g., only two. In addition, while existing 3D
reconstruction techniques are capable of generating models
that are relatively accurate in terms of shape structure, the
fidelity in terms of texture, lighting, and materials still needs
to be improved. These factors largely affect the realism of the
generated models and limit their usability in a wider range of
practical application scenarios.

In light of these challenges, this paper aims to explore
a new approach that can accurately predict and generate a
series of coherent 3D human action models from just two
frame images. Our research not only aims to improve the
accuracy of the 3Dmodels in terms of dynamic continuity and
temporal consistency, but also aims to enhance the realism
of the generated models in terms of texture and detail, thus
providing a richer and more realistic user experience for
various application scenarios.

II. RELATED WORK
Deep learning has made significant progress in the field of
motion prediction for 2D images. For example, some research
scholars have dug deeper into the complexity of capturing
and analyzing human movements using deep learning tech-
niques [9].Cao et al. proposed a method for long-term human
movement prediction using scene background, which fully
considers the influence of the environment on human move-
ment and achieves an accurate prediction of future human

movements in complex scenes [10].Cui et al. broke away
from the traditional static analysis method and introduced a
framework capable of capturing dynamic interpersonal rela-
tionships and individual behavioral patterns [11]. A research
scholar proposed an innovative neural time-series model that
leverages the advantages of deep learning in time-series
data processing to accurately predict the future movement
trajectories and behaviors of individuals [12]. These works
demonstrate the potential of utilizing deep learning for move-
ment prediction.

With the rapid development in the field of computer vision,
generating 3D models from 2D images has become a hot
research topic. For example, the PaMIR method utilizes
an implicit representation of parametric model conditioning
for image-based human reconstruction [13].NeRF performs
view synthesis by representing the scene as a neural radi-
ation field [14].ICON utilizes implicitly clothed human
bodies obtained from normals [15], while HumanNeRF
implements free-viewpoint rendering of a moving figure
from monocular video [16]. In addition, KeypointNeRF
promotes image-based volumetric avatars through relative
spatial coding of keypoints [17], while PIFu and PIFuHD use
pixel-aligned implicit functions to digitize high-resolution
clothed human bodies [18], [19], respectively. These studies
show that the conversion from 2D images to 3D models
requires not only advanced geometric and textural under-
standing, but also a deep understanding of object motion and
morphology.

III. MOTION PREDICTION
Predicting intermediate actions from consecutive 2D images
is a key challenge in research on motion capture and human
pose estimation. The core goal of action prediction is to
generate a series of consecutive intermediate frame images
from two consecutive frame action images, as shown in Fig. 1.
To achieve this goal, we employ an approach that combines
an attentionmechanism, deep learning coding, and generative
adversarial networks.

A. ACTION CODING
The goal of action coding is to extract meaningful features
from two consecutive framed action images and provide
useful information for the subsequent generation process.
To achieve this goal, we use an approach that combines
a bidirectional long and short-term memory network (Bi-
LSTM) and a self-attention mechanism.

First, we use Bi-LSTM [20] to capture the temporal
dependency between two images. Bi-LSTM consists of two
directional LSTMs, one from front to back and the other from
back to front, which can capture the contextual information
before and after. Given two images with feature sequences
X = {x1, x2, the forward and backward hidden states of
Bi-LSTM are respectively:

−→
ht = LSTMforward (xt ,

−−→
ht−1) (1)

←−
ht = LSTMbackward (xt ,

←−−
ht−1) (2)
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FIGURE 1. Predicting actions from the original two-frame image.

The final hidden state is a concatenation of hidden states
in both directions:

ht =
−→
ht ⊕

←−
ht (3)

To further enhance the feature representation of these two
images, we use the self-attention mechanism. This mecha-
nism automatically focuses on key parts of the image and
assigns higher weights to these parts. Given the output H =
{h1, h2} of Bi-LSTM, the output of the self-attention mecha-
nism is:

Attentionh(Q,K ,V ) = softmax(
QKT
√
dk
+M )V (4)

where Q, K , and V are queries, keys, and values which are
obtained from the output H of Bi-LSTM by different linear
transformations, Q = WqH + bq, K = WkH + bk ,V =
WvH + bv, M is a mask matrix used to make sure that only
valid positions are focused on, andW and b denote are weight
and bias, respectively.

To enhance the expressive power of the model, we intro-
duced Multi-headed Self-attention [21]. In this mechanism,
we run multiple self-attention mechanisms in parallel and
concatenate their outputs, with the final output being a con-
catenation of the outputs of all the heads:

MultiHeadAttention(Q,K ,V )

= Concat(Attention1,Attention2, . . . ,AttentionH )WO (5)

where WO is an output weight matrix. The pseudo-code for
the model to perform action coding is as follows:

B. PREDICTIVE IMAGE GENERATION
In the action encoding phase, we have extracted meaningful
features from two consecutive frame action images. Next,
we will use these features as conditions to generate a series
of consecutive intermediate frame images via a conditional
generative adversarial network.

The generator employs a deep residual network (ResNet)
structure [22], which has been shown to perform well in
image generation tasks. To enhance the detail and quality
of the generated images, we also include dense connections
in the network. The inputs to the generator are the random

Algorithm 1 Action Encoding
1: Input: Two consecutive action frame images
2: Output: Enhanced feature representations
3: A. Feature Extraction and Temporal Dependency Analysis
4: Extract features from two consecutive action frame images.
5: Capture temporal dependencies between images using Bi-LSTM.
6: Given: Feature sequences X − {x1, x2}
7: h−→t = LSTMforward

(
xt , ht−1

)
8: h−t = LSTMbackward

(
xt , h

+

t−1

)
9: hi = h+t ⊕ h

+
t

10: B. Feature Enhancement with Self-Attention Mechanism
11: Enhance feature representations using self-attentionmechanism.
12: Given: H = {/ii,/i2}
13: Q = Wq H + bq,K= WkH + bk ,V = WVH + bv
14: M is a mask matrix for focusing on effective positions.
15: Attention h(Q,K ,V ) = sothmax

(
QKT
√
dk
+M

)
V

16: C. Multi-Head Attention for Enhanced Model Expressive-
ness
17: Introduce multi-head attention mechanism.
18: MultiHeadAttention(Q, K, V)= Concat(Attention1.
Attention2,. . . , AttentionH ) Wo

noise z and the action representation a obtained from the
previous encoding. These two are first combined through a
fully connected layer, then passed through multiple residual
and densely connected blocks, and finally through a trans-
posed convolutional layer to generate a series of consecutive
intermediate frames of an image denoted as:

Ige = G(z, a) (6)

where G is the network structure of the generator, consist-
ing of multiple deep residual blocks and densely connected
blocks.

The discriminator employs a deep convolutional neu-
ral network that includes multiple convolutional layers,
batch normalization, and a LeakyReLU activation func-
tion. To improve the discriminative power of the model,
we also include spectral normalization in the discriminator.
The inputs to the discriminator are an image and an action
representation. These two are first combined through a con-
volutional layer, then through multiple convolutional layers,
and finally through a fully connected layer that outputs a
probability indicating the probability that the input image is
true.

Preal = D(Ireal, a) (7)

Pge = D(Ige, a) (8)

D is the network structure of the discriminator, consisting
of multiple convolutional layers, batch normalization and
LeakyReLU activation function, and Ireal denotes the real
image. The model employs a loss function designed to ensure
that the generated intermediate frame image is as similar as
possible to the real intermediate frame image and is consis-
tent with the representation of the action obtained from the
encoding. The loss function consists of the generator’s loss
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and the discriminator’s loss:

Lge = − log (D (G (z, a) , a))+ λMSE(G (z, a) , Itarget )

(9)

Ldis = − log (D (Ireal, a))− log(1− D (G (z, a) , a)) (10)

where MSE is the mean square error, which is used to ensure
that the difference between the generated image and the target
image is minimized at the pixel level, and λ is a weighting
parameter that balances the two loss terms.

To ensure that the generated images are consistent with the
input image at different scales, we can also add multi-scale
structures to the generator and discriminator. This allows us
to capture and generate details of the image at different scales.
By computing the losses at different scales and summing
them up, we can ensure that the generated image agrees with
the input image at all scales. The pseudo-code for the model
to perform action prediction is as follows:

Algorithm 2 Predictive Image Generation
1: Input: Random noise z, action representation a
2: Output: Generated image Igen
3: Generate images using conditional GAN.
4: Igen =G(z, a)
5: Use deep convolutional neural network for discriminator.
6: Preal = D (Ireal , a)
7: Pgen = D

(
Igen , a

)
8: Define loss function for image similarity.
9: Lgen = − log(D(G(z, a), a))+ λMSE

(
G(z, a), Itarget

)
10: Ldis = − log (D (Ireal , a))− log(1− D(G(z, a), a))

C. MULTI-TASK LEARNING WITH DEPTH ESTIMATION
In the process of action prediction, in addition to generating
consecutive frames of action images, depth information is
also a key component that can provide valuable contextual
information for subsequent 3D model generation. Therefore,
our model employs a multitask learning strategy for both
action prediction and depth estimation.

Multi-task learning allows the model to learn multiple
related tasks in a single framework, thus enabling knowledge
sharing between tasks and improving the model’s general-
ization ability. In our scenario, action prediction and depth
estimation are two highly related tasks. Depth information
can help the model better understand the motion and posi-
tional relationships of objects, while action information can
provide context about the shape and structure of objects for
depth estimation.

To perform depth estimation, we use an advanced network
structure-Dense Depth, which is based on DenseNet [23] and
incorporates the features of depth estimation. For image depth
estimation, we use the following network structure:

(1) Initial convolutional layer: the input image first passes
through an initial convolutional layer to obtain a set of pre-
liminary feature maps.

(2) Dense blocks: these feature maps go into a series of
dense blocks. Each dense block contains multiple convolu-
tional layers, and the output of each convolutional layer is
connected to the outputs of all previous layers of the block,
ensuring that each layer has access to information from all
previous layers.

(3) Transition layer: in order to reduce the resolution of
the feature map, we add a transition layer between every two
dense blocks containing a convolutional layer and an average
pooling layer.

(4) Global average pooling: after all dense blocks, we use
global average pooling to get a fixed size feature vector.

(5) Regression layer: finally the feature vector is converted
to a depth map by a fully connected layer.

Given an image I , the output of the depth estimation net-
work is:

D (I ) = DepthNet(I ) (11)

where DepthNet(·) denotes the aforementioned DenseNet-
based depth estimation network structure.

In order to learn action prediction and depth estimation
simultaneously, we design a multi-task loss function. This
loss function is a weighted sum of the action prediction loss
and the depth estimation loss:

Ltotal = αLaction + βLdepth (12)

where Laction is the loss of the action prediction, which con-
sists of the generator’s loss Lge and the discriminator’s loss
Ldis. α and β are two weight parameters used to balance
the two loss terms. Ldepth is the loss of the depth estimation
network, expressed as the mean square error between the
predicted depth map and the true depth map:

Ldepth = MSE(DepthNet (I ) , Idepth_true) (13)

where Idepth_true is the true depth map. With this multi-task
learning strategy, our model can perform both action pre-
diction and depth estimation, thus improving the overall
performance of the model.

The pseudo-code for the model to perform multi-task
learning and depth estimation is shown below.

Algorithm 3Multi-task Learning and Depth Estimation
1: Input: An image I
2: Outputs: Action prediction, Depth estimation
3: Employ multi-task learning for action prediction and depth
estimation.
4: Use Dense Depth network for depth estimation.
5: D(I ) = DepthNet(I )
6: Design a multi-task loss function.
7: Ltotal = αLaction + βLdepth
8: Ldepth = MSE

(
DepthNet(I ), Idepth_true

)

IV. 2D IMAGE TO 3D MODEL CONVERSION
In this chapter, we take an in-depth look at the conver-
sion process from 2D images to 3D models, especially after
motion prediction has been completed. In order to ensure high
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FIGURE 2. Convert predicted 2D images to 3D models.

resolution of the 3D model as well as texture mapping and
optimization, we introduce innovative technical strategies.
First, by using implicit functions and depth-aware modules,
we are able to obtain 3Dmesh surfaces from 2D images.
Second, in the texture mapping stage, we employ a texture
fusion method that ensures a high degree of texture con-
sistency and accuracy under various lighting and viewing
angle conditions. Finally, to further enhance the details of the
model, we improve the quality of the texture by generating an
adversarial network. The process is shown in Fig. 2.

A. COMBINING DEPTH-AWARE IMPLICIT FUNCTION
REPRESENTATIONS
The implicit function representation provides a continuous,
mapping from 2D images to 3D models for 3D reconstruc-
tion. The 3D model is represented in PIFuHD using the
implicit function S(x; θ), where x is a point in 3D space and
θ is a parameter of the network. The output of this function
is a scalar value indicating whether point x is occupied by
the 3D model or not. Specifically, if S (x; θ) > 0, the point
is occupied by the model; otherwise, point x is outside the
model.

Traditional implicit function representations typically use
fixed-resolution images, which limits the model’s ability to
capture high-frequency details, especially in texture-rich or
complexly shaped regions. Our approach introduces adap-
tive resolution extraction. The system automatically adjusts
the resolution of the input image based on the content
and complexity of the image, ensuring higher resolution in
detail-rich or shape-complex regions, thus capturing details
more accurately. This process can be achieved by the follow-
ing optimized objective function:

minθLres =
∑

x∈X

∥∥Ihigh (x)− Igen (x; θ)
∥∥2 (14)

where Ihigh is the high resolution image, Igen is the generated
image, X is all the pixel points, θ is the network parameter
and Lres is the resolution loss.
We introduce a depth-aware module that utilizes depth

information obtained from a multi-task learning framework
to enhance the 3D perception of 2D features. This way of
feature encoding incorporating depth information helps the
implicit function to more accurately infer the occupation state
of points in 3D space. The depth-aware feature encoding can
be described by the following function:

E (I ,D (I ) ; θE ) = fenc(I ; θenc)⊕ gdepth(D (I ) ; θdepth) (15)

where fenc and gdepth are the coding functions for image
and depth information, respectively, D (I ) denotes the output
of the depth estimation network, ⊕ denotes the fusion of
features, and θenc and θdepth are the corresponding network
parameters.
In standard implicit function representations, each 3D

point is treated independently without considering point-
to-point relationships, which ignores the importance of the
distribution and interaction of points in 3D space for shape
understanding. We introduce the Point Transformer layer,
which captures and understands the complex relationships
between 3D points. This layer dynamically adjusts the fea-
ture representation of each point by considering the state of
each point and its neighborhood. The Point Transformer is
implemented by the following function:

T (x; θT ) = Transformer(E (x) ,E (N (x)) ;θT ) (16)

where T (x) is the transformed feature of point x, E (x) is the
original feature of point x, and N (x) denotes the set of points
in x’s neighborhood, θT denotes the network parameters of
the point Transformer layer, including weights and biases.
Finally, we combine the featureE (I ,D (I ) ; θE )with depth

information and the processed 3D point T (x; θT ) into the
implicit function S(x; θ). The implicit function will output
a scalar value representing the occupation state of the point x
in 3D space:

S (x; θ) = σ (E (I ,D (I ) ; θE ) ,T (x; θT ) ; θ ) (17)

In this way, the implicit function is enabled to accurately
represent the 3D model, making it possible to utilize not only
the visual and depth information of the 2D image, but also to
understand the contextual relationships of the points in the 3D
space, thus enabling an accurate mapping from the 2D image
to the 3D model.

B. TEXTURE MAPPING
Texture mapping is a critical step in 3D model creation that
involves accurately mapping the texture information of a
2D image onto the surface of a 3D model. This process
requires not only geometric accuracy but also a high degree
of consistency with the original image in terms of color,
texture, and lighting. In this section, we employ an innovative
texture mapping and optimization framework that focuses
on handling high-resolution textures and is able to adapt to
lighting and viewing angle variations.
We use the ResNeSt network [24] to extract texture features

from 2D images, and ResNeSt is able to capture richer con-
textual information and fine-grained features by introducing
segmented transforms and attention mechanisms:

Tf = ResNeSt(I ; θtexture) (18)

where Tf is the texture feature extracted from the 2D image I,
ResNeSt(·) is the feature extraction network, and θtexture is the
network parameters.
We introduce a Lighting-viewing consistency module

(LVCM for short) that handles both lighting variations and
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viewing angle variations to maintain texture consistency
under different conditions. Based on the estimated lighting
and viewing angle parameters, the LVCM adjusts the texture
of the 3D model to ensure visual consistency under different
conditions. This involves adjusting attributes such as color,
brightness, and contrast of the texture to match the predicted
lighting and viewing angle conditions. The loss function for
texture consistency is defined as follows:

Ltexture =
∥∥Toriginal − Tadjusted (Plight ,Pview)∥∥2 (19)

Toriginal is the original texture, Tadjusted is the texture
adjusted according to the lighting and perspective, Pview is the
real perspective parameter, Plight is the real lighting parame-
ter.

The LVCM estimates the lighting conditions in the current
view, which is achieved by analyzing the input image and
predicting the lighting parameters such as the light source
direction, intensity, and ambient light conditions. The LVCM
also evaluates the viewing angle conditions of the current
view, including the position and orientation of the camera.
The loss function for illumination estimation and the loss
function for viewpoint estimation are defined as follows,
respectively:

Llight =
∥∥∥Plight − P̂light∥∥∥2 (20)

Lview =
∥∥∥Pview − P̂view∥∥∥2 (21)

P̂light , P̂view denote the predicted light parameter and the
predicted view parameter, respectively. The ultimate goal of
LVCM is to minimize the weighted sum of all loss functions:

LLVCM = w1Llight + w2Lview + w3L texture (22)

C. MODEL DETAIL ENHANCEMENT
After completing the texture mapping, we further enhance the
visual quality of the 3D model, especially in terms of texture
details. To achieve finer texture details, we propose a deep
learning-based detail enhancement method that combines the
advantages of Asymptotic Feature Pyramid Network (AFPN)
[25] and Generative Adversarial Network (GAN) to generate
high-resolution, high-quality textures.

After the texture mapping is complete, we further extract
and enhance the texture features obtained from the origi-
nal 2D image using an AFPN network, which enhances the
important texture information by adaptively re-weighting the
feature maps at different levels while suppressing irrelevant
details. This can be achieved by the following optimization
objective:

min
θf

LAFPN = −
∑N

i=1
λilogP(Yi |X; θf ) (23)

where LAFPN denotes the loss function of the AFPN network,
P is the prediction of the network, Yi is the real texture label
of the i-th scale, X is the input low-resolution texture, θf is
the parameter of the AFPN network, and λi is the adaptive
weight.

Based on the AFPN network, we further introduce a tex-
ture refinement generative adversarial network to refine and
enhance the texture details of 3D models. The network uses a
generator and a discriminator to enhance the texture details.
The generator uses the output of the AFPN network and
further refines the texture. The discriminator then evaluates
the realism of the generated texture. The objective function
of the network consists of two parts: one part evaluates the
realism of the generated texture and the other part penalizes
the Euclidean distance between the generated texture and the
real texture, which can be expressed as:

min
θg

max
θd

LGan = Ex∼pdata(x) [logD (x; θd )]

+ Ez∼pz(z)
[
log

(
1− D(G

(
z; θg

)
; θd )

)]
+ µ

∥∥G (
z; θg

)
− x

∥∥2
2 (24)

where x denotes the original texture data extracted from the
surface of the 3D model, z is the random noise, and µ is the
weight of the Euclidean distance penalty. By this method,
we further enhance the texture details of the 3D model to
achieve a higher degree of visual fidelity and aesthetics.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASETS AND EVALUATION METRICS
Self-filmed video sequences: To validate the accuracy of our
IFMP method in predicting human movements, we used self-
filmed 30-minute video sequences that contain about 54,000
frames. These videos captured diverse human movements
under a variety of lighting and background conditions.

THuman2.0 dataset [26]: In order to validate the accu-
racy of our IFMP method in converting 2D images to 3D
models, we used the widely recognized THuman2.0 dataset.
This dataset contains human images and corresponding high-
accuracy 3D models under a wide range of poses, clothing
and lighting conditions.

For 2D action prediction, we used the following key met-
rics: (1) Prediction accuracy. Evaluated by comparing the
Euclidean distance between the predicted keypoint locations
and the true keypoint locations. (2) Action coherence. The
smoothness of the action is assessed by analyzing the frame-
to-frame differences in the predicted action sequences, which
can be quantified by calculating the rate of change of the
motion velocity of the keypoints.

For 3D model generation, we used the following metrics:
(1) Geometric accuracy. This is evaluated by calculating the
point cloud distance between the generated 3Dmodel and the
real model. (2) Texture quality. The structural similarity index
(SSIM) and peak signal-to-noise ratio (PSNR) were used
to quantitatively assess the similarity between the generated
texture and the real texture.

B. IMPLEMENTATION DETAILS
Our IFMP model is implemented based on PyTorch. For
action prediction, we use the Adam optimizer on selfie video
sequences with an initial learning rate set to 1e-4 and a
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FIGURE 3. Predicting the accuracy of key points.

learning rate decay strategy. The model is trained on two
NVIDIA GTX 3080 Ti GPUs for a total of 60 epochs. data
enhancement includes random cropping, level flipping, and
normalization. For 2D to 3D conversion, we trained and val-
idated on the THuman 2.0 dataset. We employed multi-view
geometry and depth estimation, where the depth estimation
module uses a fully connected layer with 512 neurons. For the
texture mapping and detail enhancement phases, we used a
deep learning based approach combining Asymptotic Feature
Pyramid Network and Generative Adversarial Network.

In order to validate the state-of-the-art of the methods in
this paper, for 2D action prediction, the comparison algo-
rithms we used are the GANimator [27] method, and the
method from the literature [28] (hereinafter referred to as
FOMM), which can create animations from a single 2D
image. For the comparison of 3D model generation, the com-
parison methods we used were PIFu, PIFuHD, and PaMIR.
To ensure a fair comparison, we evaluated all methods on the
same experimental platform, dataset, and evaluation metrics.

C. COMPARISON AND ANALYSIS
In order to validate the performance of our IFMP method
for 2D action prediction, we used the accuracy of predicted
keypoint locations as an evaluation metric. This is achieved
by calculating the Euclidean distance between the predicted
keypoints and the real keypoints. Our experiments were per-
formed on a 30-minute video sequence shot by ourselves.
We compared IFMP with state-of-the-art GANimator and
FOMMmethods. The experiments were performed given two
initial frame images, with the aim of generating three to
eight frame images with consecutive actions. The Euclidean
distance between all the keypoints of each generated image
and the true keypoint is calculated, and then a distance greater
than 0.2 mm is judged to be a non-conformity of the keypoint
with the true keypoint. Then the average accuracy of all the
keypoints of all the generated images is counted and the
experimental results in Fig. 3 are obtained.

As can be seen from the above figure, IFMP slightly out-
performs the GANimator and FOMM methods in all cases.
It is worth noting that the accuracy of all methods shows
a decreasing trend as the number of frames to be predicted
increases. However, the performance degradation of IFMP is

FIGURE 4. MVCR comparison results.

smaller relative to both GANimator and FOMM, suggesting
that our method is more robust when dealing with longer
sequences. Specifically, when generating 8 images from 2 ini-
tial frame images, the accuracy of IFMP decreases by 36.7%,
while the accuracy of GANimator decreases by 41.2% and
that of FOMM decreases by 40.4%. One possible reason
for this difference in performance is that IFMP employs a
more efficient time-continuum modeling approach that is
better able to capture and predict actions in future frames.
In addition, IFMP employs an improved loss function and
finer feature extraction for keypoint detection and action
generation, which further improves the prediction accuracy.

In addition to prediction accuracy, action coherence is
also a key metric for evaluating action prediction algo-
rithms. To quantify action fluency, we calculated the rate
of change of motion velocity at each key point in the pre-
dicted action sequence. Ideally, a coherent action sequence
should have a small rate of change of velocity because in the
real world, human actions are usually smooth and coherent.
We use a standardized metric called Mean Velocity Change
Rate (MVCR).MVCR is obtained by calculating the velocity
change at each key point in the sequence and averaging
it. A lower MVCR indicates better action coherence. The
following is a comparison of the MVCR of the IFMP method
with GANimator and FOMM for different sequence lengths:

From the results, it can be seen that both in shorter
and longer sequences, the IFMP method exhibits a lower
MVCR compared to both methods, GANimator and FOMM,
which means that our method generates smoother and more
coherent action sequences. Especially in longer sequences
(e.g., 8 frames), the MVCR of IFMP is only 0.40, while
the MVCR of GANimator reaches 0.60 and the MVCR of
FOMM reaches 0.65, which indicates that the latter two have
significantly lower performance in terms of action coherence.

In terms of verifying the effect of 3D conversion of 2D
images, we tested the IFMP method proposed in this paper
with PIFuHD and PaMIR methods for 3D image generation
using the same 2D images under the same training dataset and
simulation environment, and obtained the results in Fig. 5.
As can be seen from the following experimental results,
PaMIR and IFMP perform better in 3D model generation
compared to PIFuHD, especially in model details, capturing
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FIGURE 5. Experimental results of PIFuHD, PaMIR and IFMP methods for
3D model generation.

FIGURE 6. MPCD results for different action types.

FIGURE 7. SSIM results for different action types.

the fine details of the model more accurately, including sur-
face fine textures and small geometric changes.

In order to comprehensively evaluate the performance of
our IFMP method under different conditions, we chose dif-
ferent movement types to test the geometric accuracy of the
model. These movement types include standing, walking,
running, and jumping, each with its own unique challenges
such as different body dynamics and pose changes. We calcu-
lated theMean Point Cloud Distance (MPCD) between IFMP
and PIFu, PIFuHD, and PaMIR for these specific movement
types. Figure 6 below shows the results of the experiment:

FIGURE 8. PSNR results for different action types.

As can be seen from the above figure, different movement
types have a significant effect on the geometric accuracy.
In the relatively static ‘‘standing’’ action, all methods show
high accuracy, with IFMP reaching the lowest MPCD value
of 0.025, demonstrating its accuracy in capturing static poses.
However, the geometric accuracy starts to decrease with
the addition of movements such as ‘‘walking’’ and ‘‘run-
ning’’ because these movements introduce more dynamics
and uncertainty, which increases the difficulty of 3D recon-
struction. In more dynamic and complex actions, such as
‘‘jumping’’, the MPCD values of all methods increase, but
the IFMP still maintains a relatively low value. This shows
the effectiveness of IFMP in dealing with complex dynamic
scenes.

Texture quality is another important metric for the real-
ism of 3D mannequins. In order to quantitatively evaluate
the performance of our IFMP method in texture generation,
we use the structural similarity index (SSIM) and peak signal-
to-noise ratio (PSNR) as evaluation metrics. SSIM is used to
measure the visual similarity between two images, whereas
PSNR is a commonly used metric to characterize the quality
of an image reconstruction, especially when detail and texture
preservation of an image are taken into account. Figures 7
and 8 show the experimental results.

In the reconstruction of the jumping action, the IFMP
reached 0.76 on SSIM, showing its ability to maintain the
image structure. This is mainly due to the fact that IFMP
synthesizes information from multiple perspectives and is
able to effectively deal with lighting and viewpoint changes.
However, despite IFMP’s advantage in texture quality, the
gap with other methods is not significant. This suggests that
existing 3D human reconstruction methods have been able to
achieve high texture reconstruction quality. Future work can
exploremore texture enhancement techniques and data fusion
methods to further improve the visual realism of 3D models.
It is worth noting that PSNR values are usually associated
with background noise and detail loss in images. Although
IFMP obtained 26.4 dB in PSNR in jumping action, this score
still has room for improvement when dealing with complex
backgrounds and different lighting conditions. These factors
may affect the quality of texture reconstruction, so future
research needs to further explore noise suppression and detail
enhancement techniques to improve texture quality.
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VI. CONCLUSION
This research is dedicated to predicting intermediate actions
from consecutive 2D images and generating them into 3D
models. We propose an integrated framework that combines
an attention mechanism, deep learning coding, and genera-
tive adversarial networks to generate a series of consecutive
intermediate frame images, and explore the transformation
from 2D images to 3D models, especially high-resolution
3D model reconstruction and texture mapping after action
prediction is complete. For action coding, we employ a
bi-directional long and short-term memory network and a
self-attention mechanism to capture temporal dependencies
between images and automatically focus on critical parts
of the image. In addition, we introduce Multi-headed Self-
attention to enhance the expressive power of the model. For
predictive image generation, we use a conditional genera-
tive adversarial network to generate a series of consecutive
intermediate frame images. The generator employs a deep
residual network structure and incorporates dense connec-
tions to enhance the detail and quality of the generated
images. The discriminator, on the other hand, employs a deep
convolutional neural network and incorporates spectral nor-
malization to improve the discriminative power of the model.
For 2D image to 3D model conversion, we introduce inno-
vative technical strategies such as incorporating depth-aware
implicit function representation, texture mapping and model
detail enhancement. We propose a deep learning-based detail
enhancement method that combines Asymptotic Feature
Pyramid Network and Generative Adversarial Network to
generate high-resolution, high-quality textures. Future work
will focus on further improving the accuracy and real-time
performance of the model, as well as exploring more appli-
cation scenarios.

REFERENCES
[1] J. Xie, Y. Xu, Z. Zheng, S.-C. Zhu, and Y. N. Wu, ‘‘Generative PointNet:

Deep energy-based learning on unordered point sets for 3D generation,
reconstruction and classification,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 14971–14980.

[2] X. Zheng, Y. Liu, P. Wang, and X. Tong, ‘‘SDF-StyleGAN: Implicit
SDF-based StyleGAN for 3D shape generation,’’ Comput. Graph. Forum,
vol. 41, no. 5, pp. 52–63, Aug. 2022.

[3] F. Hong, Z. Chen, Y. Lan, L. Pan, and Z. Liu, ‘‘EVA3D: Compositional 3D
human generation from 2D image collections,’’ 2022, arXiv:2210.04888.

[4] J. Gu, L. Liu, P. Wang, and C. Theobalt, ‘‘StyleNeRF: A style-
based 3D-aware generator for high-resolution image synthesis,’’ 2021,
arXiv:2110.08985.

[5] L. Zhou, Y. Du, and J. Wu, ‘‘3D shape generation and completion through
point-voxel diffusion,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 5806–5815.

[6] Y. Deng, J. Yang, D. Chen, F. Wen, and X. Tong, ‘‘Disentangled and con-
trollable face image generation via 3D imitative-contrastive learning,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 5153–5162.

[7] B. Li, Y. Zhang, B. Zhao, and H. Shao, ‘‘3D-ReConstnet: A single-
view 3D-object point cloud reconstruction network,’’ IEEE Access, vol. 8,
pp. 83782–83790, 2020.

[8] H. Wang, X. Du, J. Li, R. A. Yeh, and G. Shakhnarovich, ‘‘Score Jacobian
chaining: Lifting pretrained 2D diffusion models for 3D generation,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 12619–12629.

[9] J. Bütepage, M. J. Black, D. Kragic, and H. Kjellström, ‘‘Deep repre-
sentation learning for human motion prediction and classification,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 1591–1599.

[10] Z. Cao, H. Gao, K. Mangalam, Q.-Z. Cai, M. Vo, and J. Malik,
‘‘Long-term human motion prediction with scene context,’’ in Proc.
16th Eur. Conf. Comput. Vis. (ECCV), Glasgow, U.K., Aug. 2020,
pp. 387–404.

[11] Q. Cui, H. Sun, and F. Yang, ‘‘Learning dynamic relationships for 3D
human motion prediction,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 6518–6526.

[12] A. Gopalakrishnan, A. Mali, D. Kifer, L. Giles, and A. G. Ororbia,
‘‘A neural temporal model for human motion prediction,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 12108–12117.

[13] Z. Zheng, T. Yu, Y. Liu, and Q. Dai, ‘‘PaMIR: Parametric model-
conditioned implicit representation for image-based human recon-
struction,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 6,
pp. 3170–3184, Jun. 2022.

[14] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, ‘‘NeRF: Representing scenes as neural radiance fields
for view synthesis,’’ Commun. ACM, vol. 65, no. 1, pp. 99–106,
Jan. 2022.

[15] Y. Xiu, J. Yang, D. Tzionas, and M. J. Black, ‘‘ICON: Implicit clothed
humans obtained from normals,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 13286–13296.

[16] C. Weng, B. Curless, P. P. Srinivasan, J. T. Barron, and
I. Kemelmacher-Shlizerman, ‘‘HumanNeRF: Free-viewpoint
rendering of moving people from monocular video,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 16189–16199.

[17] M. Mihajlovic, A. Bansal, M. Zollhoefer, S. Tang, and S. Saito, ‘‘Key-
pointNeRF: Generalizing image-based volumetric avatars using relative
spatial encoding of keypoints,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2022, pp. 179–197.

[18] S. Saito, Z. Huang, R. Natsume, S. Morishima, H. Li, and A. Kanazawa,
‘‘PIFu: Pixel-aligned implicit function for high-resolution clothed human
digitization,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 2304–2314.

[19] S. Saito, T. Simon, J. Saragih, and H. Joo, ‘‘PIFuHD: Multi-level pixel-
aligned implicit function for high-resolution 3D human digitization,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 81–90.

[20] H. Li, A. Shrestha, H. Heidari, J. Le Kernec, and F. Fioranelli, ‘‘Bi-
LSTM network for multimodal continuous human activity recognition
and fall detection,’’ IEEE Sensors J., vol. 20, no. 3, pp. 1191–1201,
Feb. 2020.

[21] J. Mercat, T. Gilles, N. El Zoghby, G. Sandou, D. Beauvois, and G. P. Gil,
‘‘Multi-head attention for multi-modal joint vehicle motion forecasting,’’
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2020, pp. 9638–9644.

[22] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[23] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[24] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He,
J. Mueller, R. Manmatha, M. Li, and A. Smola, ‘‘ResNeSt: Split-attention
networks,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. Work-
shops (CVPRW), Jun. 2022, pp. 2736–2746.

[25] G. Yang, J. Lei, Z. Zhu, S. Cheng, Z. Feng, and R. Liang, ‘‘AFPN:
Asymptotic feature pyramid network for object detection,’’ 2023,
arXiv:2306.15988.

[26] T. Yu, Z. Zheng, K. Guo, P. Liu, Q. Dai, and Y. Liu, ‘‘Function4D:
Real-time human volumetric capture from very sparse consumer RGBD
sensors,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 5742–5752.

[27] P. Li, K. Aberman, Z. Zhang, R. Hanocka, and O. Sorkine-Hornung,
‘‘GANimator: Neural motion synthesis from a single sequence,’’ ACM
Trans. Graph., vol. 41, no. 4, pp. 1–12, Jul. 2022.

[28] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, and N. Sebe, ‘‘First order
motion model for image animation,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 32, 2019, pp. 7137–7147.

47154 VOLUME 12, 2024


