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ABSTRACT Extreme large-scale multiple-input multiple-output (XL-MIMO) is one of the key technologies
for future 6G communications. Channel estimation plays a crucial role in XL-MIMO systems, as accurate
Channel State Information (CSI) is essential for effective signal transmission. The existing channel
estimation methods mainly distinguish between far-field channel estimation and near-field channel
estimation. In the case where the sparsity of the channel is known, the traditional Orthogonal Matching
Pursuit (OMP) algorithm is relied upon to estimate the hybrid-field channel in XL-MIMO systems.To
overcome these limitations, in this paper, we propose a joint hybrid-field channel estimation scheme
and adopt the Simultaneous Weighted Orthogonal Matching Pursuit (SWOMP) algorithm to effectively
address these issues. Specifically, to more effectively estimate the hybrid-field channel, we propose a
joint channel estimation approach that no longer distinguishes between far-field and near-field channel
estimation methods. In the case where the sparsity of the hybrid-field channel is unknown, we employ
the SWOMP algorithm to accurately estimate the channel state information. Furthermore, we substitute
the Sherman-Morrison-Woodbury transform for the matrix inversion operation in the SWOMP algorithm,
which does not reduce computational complexity but provides a novel approach to matrix inversion. Based
on this, finally, we further propose a low-complexity SWOMP algorithm based on the Gauss-Seidel method
transformation. Simulation results demonstrate that the proposed approach can obtain more accurate channel
state information compared to traditional methods in XL-MIMO systems.

INDEX TERMS Extreme large-scale multiple-input multiple-output, channel estimation, hybrid-field, low-
complexity simultaneous weighted orthogonal matching pursuit.

I. INTRODUCTION
With the rapid development of communication technology,
6G is expected to achieve ten times the throughput of 5G [1],
[2]. One promising technology to achieve this goal is the
use of Extremely Large-scale Multiple Input Multiple Output
(XL-MIMO) systems. By deploying base stations (BS) with
a large number of antennas, XL-MIMO can greatly enhance
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spectral efficiency and system gain [3], [4]. However, the
increase in the number of BS antennas may also lead to
an increase in pilot overhead, which could have a negative
impact on communication efficiency. Therefore, reducing
pilot overhead in XL-MIMO communication networks and
obtaining accurate Channel State Information (CSI) using
low-complexity algorithms are crucial.

However, due to the deployment of high-frequency radio
frequency (RF) links on BS and the potential for high
power consumption, a hybrid precoding architecture has been
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proposed for BS, which may pose challenges for RF chains
with fewer antennas than BS [5]. Additionally, introducing
BS’s RF links can effectively reduce the pilot overhead
for channel estimation. Channel estimation methods based
on CS not only reduce pilot overhead but also achieve
higher accuracy in sparse channel estimation. For example,
in [6], the sparse characteristics of far-field channels in
Massive MIMO systems are utilized in the angular domain,
and an algorithm based on Compressed Sensing (CS) is
used to obtain accurate CSI. As the Message Passing (MP)
based CS algorithm requires strict prior distribution of the
channel, there are some limitations for channel estimation
or signal detection. However, compared to some existing
works on sparse channel estimation and signal detection,
MP algorithm can achieve higher accuracy with fewer pilot
training symbols [7], [8].
In recent years, notable progress has been made in the

theory of near-field communication. In [9], it is observed
that the sparse characteristics of far-field angle-domain
channels are no longer applicable to near-field channels,
whichmay result in greater energy leakage. Therefore, further
accurate description of the sparse characteristics of near-field
channels is needed to apply CS-based algorithms to near-field
channel estimation. In [10], the sparse nature of near-field
channels is accurately represented using polar coordinate
domainmatrices, and the Simultaneous OrthogonalMatching
Pursuit (SOMP) algorithm is used to reduce pilot overhead,
followed by the deployment of the Simultaneous Iterative
Gridless Weighting (SIWG) algorithm to further improve
the accuracy of XL-MIMO channel estimation. In [11],
the combination of Terahertz (THz) communication with
near-field communication is proposed to achieve larger
system capacity [12]. Based on the beam splitting effect of
Terahertz communication, a method based on bilinear pattern
detection is proposed to effectively obtain accurate channel
state information. In [13], the authors utilize Reconfigurable
Intelligent Surfaces (RIS) to assist near-field communication,
which can still achieve reliable communication and improve
system throughput even in the presence of obstruction.

When considering the existing scattering situations, it is
necessary to simultaneously consider the characteristics
of near-field and far-field channels in the communication
environment. Therefore, the concept of hybrid-field channels
is proposed in XL-MIMO communication systems. Sub-
sequently, some domestic and international articles have
conducted research based on literature [14]. In [15], the
authors propose a compressed sensing hybrid-field channel
estimation algorithm based on the Alternating Directions
Method ofMultiplier (ADMM), which can effectively reduce
the pilot overhead for system channel estimation. In [16], the
authors propose to estimate the information brought by the
positions of near-field and far-field scattering bodies based
on the position information of these bodies, transforming the
channel estimation problem into the estimation of parameters
for estimating the position of scattering bodies, and simi-
larly achieve good estimation of hybrid-field channel state

information. In [17], the authors propose a hybrid-field chan-
nel estimation scheme based on changing the deployment of
base station antennas and introduce the Support Detection
OMP (SD-OMP) algorithm, which can reduce the pilot
overhead and improve system spectral efficiency in hybrid-
field channel estimation. However, the algorithm proposed
in literature [14] needs to distinguish between near-field and
far-field for channel estimation, requiring a higher number
of pilots, does not achieve efficient channel estimation, and
also requires knowledge of channel sparsity, resulting in high
algorithm complexity.

Therefore, based on these reasons, this paper considers
an XL-MIMO system [18] based on RF chain architec-
ture, which can reduce pilot overhead. In addition, the
channel estimation scheme based on [14], [15], and [17]
proposes estimating the far-field first and then the near-
field in a hybrid-field channel. However, such a scheme
is not efficient.Therefore, a joint near-far field channel
estimation scheme is proposed to achieve more efficient
results. To our knowledge, the need for only one hybrid-field
channel estimation without requiring separate coarse and fine
estimation schemes is a concept we pioneered. Furthermore,
The simultaneous weighted orthogonal matching pursuit
algorithm (SWOMP) [19] is used to estimate the channel
values even in unknown hybrid-field channel sparsity. Then,
based on the ‘‘Woodbury’’ transformation [20], the matrix
inversion operation in the SWOMP algorithm is replaced
to matrix inverse operation. However, the computation
complexity did not reduce after the transformation, thus
another method based on the ‘‘Gauss-Seidel’’ method [21]
was proposed to decrease the computation complexity of
the algorithm. The main contributions are summarized as
follows:

• A joint estimation scheme that does not distinguish
between near and far field channels is proposed, which
achieves more efficient results in high-dimensional hybrid-
field channels. The SWOMP algorithm is then proposed for
the joint channel estimation problem, which can still obtain
good channel estimation results even in unknown hybrid-field
channel sparsity.

• Due to the matrix inversion operation in the SWOMP
algorithm, the ‘‘Woodbury’’ transformation method is used
to replace the matrix inversion step in the algorithm.
However, the ‘‘Woodbury’’ transformation did not reduce the
computation complexity of matrix inversion in the SWOMP
algorithm, so a method based on the ‘‘Gauss-Seidel’’ method
is proposed to reduce the computation complexity of matrix
inversion in the SWOMP algorithm to a linear computation
complexity.

• Finally,simulation results are presented to demonstrate
its effectiveness and superiority over existing algorithms
in terms of reduced complexity without sacrificing perfor-
mance.

The remaining parts of this article are arranged as follows.
Part 2 introduces the system model, where the channel
model of hybrid-field is described in detail, and the angle
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domain matrix that makes the far-field channel sparse and
the polarization domain matrix that makes the near-field
channel sparse are characterized. In Part 3, the joint channel
estimation problem is formulated, and a channel estimation
algorithm is proposed. Part 4 followed by an equivalent
replacement method for the matrix inversion process in
the algorithm. Part 5 proposes a low-complexity algorithm
based on matrix inversion, and its convergence is analyzed.
Simulation results to verify the effectiveness of the proposed
algorithm are presented in Part 6, and Part 7 concludes this
paper.

II. SYSTEM MODEL
As shown in Figure 1, the XL-MIMO system based on a
hybrid precoding architecture with NRF radio frequency (RF)
is considered, and a hybrid-field channel is employed in the
Time Division Duplexing (TDD) mode [22]. It is assumed
that there are N antennas deployed at the base station (BS)
and single antenna deployed at the user equipment (UEs).
We consider the uplink communication between the UEs and
the BS. Since the channel state information of each user can
be obtained individually by K UEs, the channel estimation
process typically discusses the channel estimation of any user
here.

FIGURE 1. Hybrid-field communication scenario of XL-MIMO.

A. SIGNAL MODEL
Specifically, let h∈CN×1 represent the link from a single user
to the BS. Let s(t), w(t)∈CN×1, and F̃(t) represent the data
symbols transmitted to the user in the t−th time slot, and
the complex Gaussian noise corresponds to the distribution
CN (0, σ 2

0 IN ). Therefore, the received signal at the BS can be
expressed as:

yt = F̃(t)hs(t) + F̃(t)w(t). (1)

Without loss of generality, we assume that s(t) = 1, where
t = 1, · · ·, τ . The analog value y received at the BS over the

entire τ time slots can be expressed as:

y = F̃h + w, (2)

where y =
[
yT1 , y

T
2 , · · ·, y

T
τ

]T
∈CτNRF×1 w =[

wT (1)FT (1),wT (2)FT (2), · · ·, wT (τ )FT (τ )
]T

∈CτNRF×1.

Let F̃ =

[
˜FT (1) , ˜FT (2), · · ·, ˜FT (τ )

]T
∈ CτNRF×N be the

observation matrix, where each element of F̃ follows the
distribution 1

√
N

{−1 , 1} .
Upon observing (2), we note that the noise w is not Gaus-

sian white noise. To accurately obtain CSI, measures should
be taken to restore the original noise by pre-whitening.WeLet
C = σ 2

0 diag{̃F̃(1)F̃
H (1), F̃(2)F̃H (2), · · · , F̃ (τ ) F̃H (τ )}

represent the covariance matrix of w, and use the matrix
G ∈ CτNRF×τNRF to predict the received signal. The matrix
G is obtained by performing eigenvalue decomposition on
C = σ 2

0V6VH , where G=V6
1
2 . Multiplying both sides

of (2) by G yields:

y = G−1y = G−1F̃h + G−1w = 8h + w (3)

where 8 = G−1̃F and w = G−1w. Meanwhile, the noise
w∽CN (0,σ 2

0IτN
F
R ). The proof is as follows:

C̃ = E
[
G−1wwHG−H

]
= E

[
G−1CG−H

]
= σ 2

0 6−
1
2V−1V6VHV−H6−

1
2

= σ 2
0 IτNRF , (4)

where C̃ represents the covariance matrix of the noise w.

B. CHANNEL MODEL
In the literatur [14], the concept of a hybrid-field channel
is proposed. Therefore, there is no detailed description here.
Wemainly describe how Rayleigh distance, far-field channel,
and near-field channel aremodeled. Therefore, the expression
for the Rayleigh distance is given as follows:

R =
2D2

λ
, (5)

where D represents the aperture of the antenna array and λ
represents the wavelength. It is worth noting that in wireless
communication systems, the electromagnetic radiation field
may be divided into the far field and near field, resulting
in both far-field channels and near-field channels in the
communication environment. Specifically, we first introduce
the Rayleigh distance in Equation (5), where communication
is in the far-field range when d̃ > R and in the near-
field range when d̃ < R, with d̃ representing the physical
distance from the base station to the scatterer. Subsequently,
during communication between the user and the base station,
in the NLoS path component, the user receives signals after
reflections from scatterers in both far-field and near-field
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ranges. Therefore, the signal traverses a combination of far-
field and near-field channels, referred to as a hybrid-field
channel.

The far-field channel hFF can be modeled as:

hFF =

√
N
P

∑PF

pf =1
γpf a(θpf ), (6)

where P and PF respectively represent the total number
of paths for the hybrid-field and far-field channels. γpf
represents the path gain of the pf −th far-field path, θpf
represents the angle of the pf −th far-field path. a(θpf )∈CN×1

is the steering vector of the far-field array, and the expression
for a(θpf ) is:

a(θpf ) =
1

√
N

[
1, e−j2πθpf , · · ·, e−j2π (N−1)θpf

]H
, (7)

where θpf =
β
λ
cos

(
ψpf

)
and ψpf correspond to the actual

physical angles of the pf −th far-field path, and β =
λ
2 is the

distance between adjacent antennas.
Since the far-field channel is non-sparse, this may intro-

duce a huge pilot overhead in channel estimation. Therefore,
we need to use the DFT matrix A to transform hFF into a
sparse angular domain channel hAFF , which can be represented
as:

hFF = AhAFF , (8)

where A = [a(ϑ1 ) , · · · , a(ϑN )] ∈ CN×N (ϑn
=

2n−N−1
N n = 1, · · ·,N ) is an unitary matrices. It is worth

noting that hAFF is the sparse representation of the far-field
channel hFF in the angular domain.Therefore, we can use CS
algorithms to further reduce the pilot overhead of the channel.

In addition, the near-field channel hNF can be modeled as
follows:

hNF =

√
N
P

∑PN

pn=1
µpnb(θpn , lpn ), (9)

where PN ,µpn ,θpnand lpn represent the total number of paths,
path gains, actual physical path angles, and distances between
thepn−th scatterer and the uniform linear array antennas
respectively. b(θpn , lpn )∈CN×1 is the steering vector of the
near-field array, which can be represented as:

b(θpn , lpn ) =
1

√
N

[
e−j

2π
λ
(l(1)pn −lpn ) ,···,e−j

2π
λ
(l(N )
pn −lpn )

]H
,

(10)

where l(n)pn =

√
l2pn − 2lpnζβθpn + β2ζ 2 refers to the distance

between the pn−th scatterer and the n−th antenna of the base
station. The transformationmatrix in polar coordinate domain
can be represented as D:

D =

[
b
(
θ1, l11

)
, · · ·, b

(
θ1, l

Z1
1

)
, · · ·, b

(
θN , l

ZN
N

)
,

(11)

where θn and l
zn
n respectively represent the sampled physical

angle and the distance between the scatterer and the n−th

antenna of the base station. The near-field channel model can
be represented as follows:

hNF = DhPNF , (12)

where hPNF∈ CZ ×1 is the sparse channel vector in polar
coordinate domain, and the sparse property can further reduce
the pilot overhead of channel estimation.

By combining the far-field and near-field channels,
a hybrid-field channel model is introduced, which can be
represented as follows:

h =

√
N
P

(∑ϵP

pf =1
γpna(θpf ) +

∑(1−ϵ)P

pn=1
µpnb(θpn , lpn )

)
,

(13)

where ϵ represents the ratio of far-field channel paths and
near-field channel paths. pf + pn = P denote total number
of paths for hybrid-field channel and ϵ∈ [0, 1] is control
variables. The hybrid-field channel model can be obtained
through equations (8) and (12), and can be further described
as follows:

h = AhAFF + DhPNF . (14)

Let B=8A ∈CτNRF×N and W=8D∈ CτNRF×Z respec-
tively undergo channel estimation using CS algorithms,
representing the sensing matrices of the far-field channel
and the near-field channel. Therefore, (3) can be further
represented as follows:

y = 8AhAFF+8DhPNF + w

= BhAFF+WhPNF + w

= Sh + w, (15)

where S = [B,W] = 89 ∈ CτNRF×(Z+N ),9 = [A,D] ∈
CN×(Z+N ), h = [

(
hAFF

)H
,
(
hPNF

)H ]H ∈ C(Z+N )×1. There-
fore, this paper no longer estimates the near-field or far-field
channel separately, but adopts joint estimation of the hybrid-
field channel, which enables a more efficient estimation of
the hybrid-field channel. Subsequently, we focus solely on
equation (15) to propose algorithm design solutions.

III. THE PROPOSED SWOMP CHANNEL ESTIMATION
METHOD FOR JOINT HYBRID-FIELD CHANNEL
ESTIMATION
In this paper adopts the Simultaneous Weighted Orthogonal
Matching Pursuit (SWOMP) algorithm, which can accurately
estimate the hybrid-field channel even without knowing
its sparsity. Due to the matrix inversion operation in the
algorithm, an equivalent matrix inversion operation based
on the ‘‘Woodbury’’ transformation is proposed. A detailed
derivation process based on the ‘‘Woodbury’’ transformation
is provided to demonstrate this. According to the compres-
sive sensing theory, the problem of hybrid-field channel
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estimation can be formulated as follows:

ˆh = argminh∥h∥0

s.t. ∥y − Sh∥
2
2 ≤ ϱ, (16)

where ϱ is a constant related to the noise level.
Formula (16) is a Compressed Sensing (CS) problem of

a Single Measurement Vector (SMV). Since the sparsity
of the channel is generally unknown in practical scenarios,
the SWOMP algorithm is used to solve the hybrid-field
channel estimation problem. Next, the algorithm is described
in detail. Firstly, the received signal y, sensing matrix S, and
threshold δ are inputted, where δ is related to the variance
of the noise σ 2

0 . Then, since the sparsity of the channel
is unknown, a while loop is used. In the first step of the
algorithm, the compressed sensing matrix is multiplied by
the defined residual vector r. In the second step, the position
of the maximum value in the multiplied vector is found,
which corresponds to the column number of the sensing
matrix. In the third step, a support set is formed from the
selected columns of the sensing matrix in each loop. In the
fourth step, the pseudo-inverse of the support set is obtained,
and then multiplied with the received signal y to obtain
an estimate of the hybrid-field channel. In the fifth step,
the residual is updated. In the sixth step, the mean square
error of the residual is calculated until it is less than the
threshold δ. Where the threshold δ is derived based on prior
information of the received signal [19], while the threshold
used in [23] is chosen as an appropriate value to serve as the
stopping criterion for the sparse recovery algorithm.and then
the algorithm ends, completing the channel estimation. The
specific Algorithm 1 process is summarized as follows.

Algorithm 1 Proposed SWOMP Algorithm for Hybrid-Field
Channel Estimation
Input: y,8,A,D, δ
Output: ĥ
Initialization: � = ∅, r = y,T = size(y, 1).
// Joint estimate hybrid-field channel
1. S = [8A,8D]
2. While RMSE > δ do
3. c∗ = argmax

∥∥SH (:, n)r∥∥22 , n = 1, 2, · · · , (N + Z )
4. � = � ∪ c∗

5. ĥ = (S�)† y
6. r = y − S�ĥ
7. RMSE =

1
T ∗ trace

(
rH ∗ r

)
8. end

IV. THE PROPOSED WOODBURY SWOMP ALGORITHM
As can be seen from Algorithm 1, there is a step involving
matrix inversion. Therefore, we propose an equivalent
matrix inversion operation based on the ‘‘Woodbury’’
transformation.

The mathematical expression of the ‘‘Woodbury’’ trans-
form can be written as(

A
H
A + ςI

)−1

=
1
ς

(
I−A

H
(
ςI + AA

H
)−1

A

)
,

where ς represents a tunable parameter. Therefore, we trans-
form the matrix inversion operation in the algorithm into this
form of the Woodbury transform. Since the matrix A to be
transformed contains complex numbers, we further discuss
the transformation for various scenarios to adapt to this form
of transformation. Then, Step 5 of the algorithm can be
further expanded as follows:

ˆh = (S�)† y =

(
SH�S�

)−1
SH�y, (17)

where † represents the pseudo-inverse of the matrix, and
S� represents a matrix set composed of column vectors
selected from the sensing matrix S in each loop of the
SWOMP algorithm. The number of columns in matrix
S� is related to the sparsity of the hybrid-field channel.(
SH�S�

)−1
represents the inverse of matrix SH�S�, and H

represents the conjugate transpose. In order to conform
to the Woodbury transformation,

(
SH�S�

)−1needs to be
transformed. Since the signal sent by the user is complex, the
support set S� is a complex matrix, and let X = SH�S�, then
X is a Hermitian matrix, that is, its diagonal elements are all
real numbers. Therefore, X can be expressed as:

X = U + diag [e1, · · ·, eM ] , (18)

where matrix U represents the non-diagonal elements of
matrix X, diag represents the diagonalization operation,
[e1, · · ·, eM ] is a row vector, and (em, m = 1, 2, · · ·,M )
represents the diagonal elements of matrix X. Formula (18)
can also be written as:

X = U1 + αIM . (19)

In this case, let α represent the assigned coefficients and IM
represent theM×M identity matrix. Based on equation (19),
in order to satisfy the form of the Woodbury transformation,
which is an identity matrix multiplied by the coefficient α
and then added with an unknown matrix U1, equaling the
original matrix X, we only need to analyze the diagonal
elements of matrix U1. If a diagonal element of matrix X is
greater than α, then the corresponding diagonal element of
matrix U1 should be subtracted byα. If a diagonal element of
matrix X is smaller than α, then the corresponding diagonal
element of matrix U1 should be equal to α minus the value
of the corresponding diagonal element in matrix X, but with
the opposite sign. This way, we obtain the values of the
diagonal elements of matrix U1. The non-diagonal elements
of matrix U1 are the same as the non-diagonal elements of
matrix X. Through the above analysis, it can be concluded
that U1 is also a Hermitian matrix. Therefore, the unknown
matrix U1 has been determined.To further conform to the
form of the Woodbury transformation, it is necessary to
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further decompose matrixU1 into the product of its conjugate
transpose and an identical matrix. Therefore, the next step
is to explain how matrix U1 can be decomposed in order to
achieve this form. Performing an eigenvalue decomposition
on matrix U1 will yield the solution.

U1 = AEAH, (20)

where A is an orthogonal matrix, and E is a diagonal matrix
with its diagonal elements being the eigenvalues of matrix
U1. Next, let’s analyze how to decompose matrix U1 into the
product of a matrix and its transpose. (The eigenvalues of a
Hermitian matrix are real numbers). Next, we will analyze
several scenarios based on the ‘‘Woodbury’’ transform and
then summarize the final conclusions.

In the first case, if all eigenvalues of matrix U1 are non-
negative real numbers, then decompose the eigenvalue matrix
E of U1 to obtain:

E =

√
ẼIM

√
Ẽ , (21)

where
√
Ẽ is also a diagonal matrix. Then, U1 can be

expressed as:

U1 = A
√
ẼIM

√
ẼAH

= (A
√
Ẽ)IM (A

√
Ẽ)H

= U2UH
2 , (22)

where U2 = A
√
Ẽ. The conjugate transpose of a non-

negative number is still non-negative. In the second case,
if all eigenvalues of matrix U1 are negative, then E can be
expressed as:

E =

√
ẼIM

(√
Ẽ
)H
. (23)

In this case, after taking the square root of a negative
number, it becomes an imaginary number, thus we need to
add a conjugate transpose. Therefore, U1 can be expressed
as:

U1 = A
√
ẼIM

(√
Ẽ
)H

AH

= (A
√
Ẽ)IM (A

√
Ẽ)H

= U2UH
2 . (24)

In the third case, if the eigenvalues of matrix U1 include
both negative and positive numbers, then E can be expressed
as:

E =

√
ẼIM

(√
Ẽ
)H
. (25)

As we can see, it is the same as the second case. This is
because the conjugate transpose of a positive number is still
itself, thus adding the conjugate transpose does not have any

effect. Therefore, U1 can be expressed as:

U1 = A
√
ẼIM

(√
Ẽ
)H

AH

= (A
√
Ẽ)IM (A

√
Ẽ)H

= U2UH
2 . (26)

Based on the discussion of the three cases mentioned
above, matrix U1 can be written in the form of a matrix
multiplied by the transpose of another matrix. Therefore, let
Y = UH

2 , then Y
H

= U4, and as a result, X can be written as:

X = YHY + αIM . (27)

Therefore, based on equation (27),
(
SH�S�

)−1
can be

further expressed as:(
SH�S�

)−1
=

(
YHY + αIM

)−1
. (28)

Then, by employing the Sherman-Morrison-Woodbury
formula, also known as the ‘‘Sherman-Morrison-Woodbury’’
transformation [20], abbreviated as the ‘‘Woodbury’’ trans-
formation, Therefore, based on the aforementioned mathe-
matical form of the Woodbury transform, equation (28) can
be written as:(

SH�S�
)−1

=

(
YHY + αIM

)−1

=
1
α

(
IM − YH

(
αIM + YYH

)−1
Y
)
.

(29)

Finally, substituting the transformed equation (29) into
equation (17), The channel estimation values we obtained for
the mixed-field are as follows:

ˆh =
1
α

(
IM − YH

(
αIM + YYH

)
−1Y

)
SH�y. (30)

At this point, the computational complexity after the
transformation is O(M3), where M represents the number
of columns in the support set, i.e., the number of columns
in the support matrix. Finally, by replacing the fifth step
in Algorithm 1 with equation (30), the Woodbury SWOMP
algorithm is derived. Due to space constraints, further
elaboration is omitted here.

V. THE PROPOSED LOW COMPLEXITY SWOMP
ALGORITHM BASED ON THE ‘‘GAUSS-SEIDEL’’ METHOD
Based on the derivation in the previous section, it can be
concluded that the ‘‘Woodbury’’ transformation also involves
the process of matrix inversion, even after decomposition,
where the dimensions of the matrix remain the same as
the dimensions of the support set. Fortunately, we found
that the matrix inversion operation in the fourth step of
the SWOMP algorithm is actually obtained using the least
squares (LS) algorithm. As is well known, LS is used to
solve linear equations. Therefore, we can use the Gauss-
Seidel method based on approximate iteration to reduce the
computational complexity of directly computing the matrix
inversion operation in the LS algorithm.
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Firstly, the SWOMP algorithm is an improvement upon
the OMP algorithm. Based on the properties of OMP,
the estimated channel obtained from each iteration of the
algorithm and the corresponding residual are orthogonal
projection [24]. As a result, the obtained support sets are
mutually orthogonal, indicating that the rank(S�) is equal
to M , forming a column full-rank matrix. Furthermore, the
solution for S�q = 0 is unique, which means that q is a zero
vector of sizeM×1. Hence, for any non-zero vector x of size
M × 1, we have the following relationship:

(S�x)H S�x = xH
(
SH�S�

)
x = xHLx > 0, (31)

where the Gram matrix L = S�HS� is positive definite.
Additionally, we have:

L
H

=

(
SH�S�

)H
= L, (32)

where L is symmetric. Hence, L is a symmetric positive
semi-definite matrix. Due to this specific property and
the presence of

(
SH�S�

)−1
operation in equation (17), the

‘‘Gauss-Seidel’’ method can be efficiently utilized to address
the high computational complexity caused by the matrix
inversion operation in equation (17). This GS method can
be used to solve the linear equation Ak̃ = c̀, where A is
a symmetric positive definite matrix, k̃ is a solution vector,
and c̀ is an observation vector. Traditional methods directly
compute A

−1
c̀ to obtain k̃; however, the GS method can

effectively obtain the solution to this equation iteratively with
lower complexity. Since the matrix A is symmetric positive
definite, we can decompose matrix A into a strictly lower
triangular matrix 4A, a diagonal matrix D̈A, and a strictly
upper triangular matrix 4H

A
.The operation of solving the

linear equationAk̃ = c̀ based on the ‘‘Gauss-Seidel’’ method
can be mathematically represented as [21]:

k̃(i+1)
=
(
D̈A + 4A

)−1
(
c̀ − 4H

A
k̃(i)
)
, i = 0, 1, 2 · · · (33)

where i represents the number of iterations. In order to better
conform to the form of solving linear iterations with GS as
in (33), (17) can be rewritten:

L ˆh = y (34)

where y = S�H y and ˆh = L−1y. Based on the above
analysis, since the matrix L is symmetric positive definite,
it can be decomposed into:

L = W + 4 + W
H
, (35)

where W,4 and W
H
represent the strictly lower triangular

matrix, diagonal matrix, and strictly upper triangular matrix,
respectively. Based on the mathematical expression of
the (33) GS method, the solution to problem (34) can be
expressed as:

ˆh
(i+1)

=

(
4 + W

)−1
(
y − W

H
ˆh
(i)
)
. i = 0, 1, 2 · · ·

(36)

Since 4+W is a lower triangular matrix,
ˆ

h
(i+1)

can be
obtained through low-complexity computation, thus we have:

ˆh
(i+1)
j =

1

Lj,j

(
yj −

∑
k<j

Lj,k
ˆh
(i+1)
k −

∑
k>j

Lj,k
ˆh
(i)
k

)
,

(37)

where j, k = 1, 2, · · · ,M . ˆh
(i)
j , ˆh

(i+1)
j and yj represent the j-th

element of ˆh
(i)
, ˆh
(i+1)

and y, respectively. Lj,k represents the
element in the j-th row and k-th column of matrix L.

Therefore, by utilizing the linear approximation iterative
method in (37), each element in ˆh

(i+1)
can be computed,

ultimately converging to the vector value ˆh, which cor-
responds to ˆh in (17). From (37), it can be seen that
in the calculation of ˆh

(i+1)
, multiplication is required M

times. Since ˆh
(i+1)

has M elements, the total number of
multiplications isM2.Furthermore, the convergence speed of
the linear approximation iterative method based on GS is
faster compared to the method based on Neumann [25], and
it also has lower computational complexity [26].As shown
in Table 1, we compared the complexity of the proposed
algorithm.

TABLE 1. Algorithm complexity.

Here, Ns represents the adaptively hybrid-field sparsity
level in the SWOMP algorithm. irepresents the total number
of iterations for the GS approximate iteration.It can be
observed that the complexity of the algorithm is concentrated
on N 3

s , therefore reducing it to a square will result in a
significant decrease in complexity. Similarly, by replacing the
approximate iterative convergence in Algorithm 1 with the
fifth step, the LC-SWOMP algorithm is obtained.

VI. SIMULATION RESULTS AND PERFORMANCE
ANALYSES OF THE PROPOSED SCHEME
In this section, we use several algorithms to compare the
performance of the proposed algorithm. The compared algo-
rithms include hybrid-Field OMP [14], Far-Field OMP [27],
Near-Field OMP [10], and Minimum Mean Square Error
(MMSE) algorithm. Additionally, we define Normalized
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Mean Square Error (NMSE) as a metric for performance
evaluation, which can be expressed as:

NMSE = 10 log10
∥h − ĥ∥

2
2

∥h∥
2
2

, (38)

where ĥ =9
ˆh. Consider an uplink XL-MIMO communica-

tion system using hybrid beamforming. For the simulation
parameters of the system, we employ a base station equipped
withN = 512 antennas. The total number of path components
is defined as P = 6. The number of radio frequency (RF)
chains is set to NRF = 4. The complex path gains for both
near-field and far-field are defined as γpf , µpn CN ( 0, 1).
The angles θpf and θpn correspond to θpf , θpn U (−1 , 1).
Additionally, the range of near-field distances is taken as
lpn = [10 , 80] meters. For the polar domain transformation
matrix D, the number of sampling grids is Z=2071.
In the XL-MIMO system, we only consider a single-carrier
scenario. Thus, the carrier frequency is set to 30 GHz.

In Figure 2, the comparison of the NMSE performance
between the proposed SWOMP algorithm and other algo-
rithms is presented first. In this scenario, the adjustable
parameter ϵ is set to 0.5, and the length of the pilot sequence
is denoted as 64. From the graph, it can be observed that
the proposed method exhibits higher accuracy in hybrid-field
channel estimation. This is attributed to the joint estimation of
both far-field and near-field hybrid channels, which reduces
the error caused by initially estimating only the far-field
channel and leads to improved performance. In addition,
we can also observe that under high signal-to-noise ratio
(SNR), the performance of the MMSE algorithm is superior
to that of all other algorithms. This is because the pilot
overhead required by the MMSE algorithm is equal to the
number of base station antennas, and thus solving the linear
problem is related to the SNR. As the SNR increases, the
channel estimation error obtained by the MMSE algorithm
becomes smaller. In our simulations, we only use the MMSE
as a reference, and it can be seen that under low SNR, our
proposed algorithm does not require pilot overhead consistent
with the number of base station antennas, yet still outperforms
the MMSE. This demonstrates the significant impact of the
SNR on the MMSE algorithm in channel estimation and its
requirement for high pilot overhead. Therefore, our proposed
algorithm’s effectiveness is further highlighted. As a result,
the interpretations of Figures 3 and 4 follow a similar
rationale, and will not be reiterated here.

As shown in Figure 3, the comparison mainly focuses
on the proposed ‘‘Woodbury’’-based transformed SWOMP
algorithm and other algorithms. In this case, the adjustable
parameter ϵ is set to 0.5, and the length of the pilot sequence
is denoted as 64. From the graph, it can be observed
that the algorithm after the ‘‘Woodbury’’ transformation
almost completely overlaps with the traditional SWOMP
algorithm in terms of NMSE performance. This indicates
that the proposed ‘‘Woodbury’’-based transformed SWOMP
algorithm achieves the same level of accuracy as the matrix

FIGURE 2. The proposed SWOMP is compared with NMSE under different
signal-to-noise ratios.

inversion approach, thus demonstrating the effectiveness of
the proposed equivalent algorithm.

FIGURE 3. The two proposed algorithms are compared with NMSE under
different SNR.

As shown in Figure 4, the performance of the proposed
low-complexity SWOMP algorithm is compared with other
algorithms. Similarly, the adjustable parameter ϵ is set to
0.5, and the length of the pilot sequence is denoted as 64.
The low-complexity SWOMP (LC-SWOMP) algorithm after
the ‘‘Gauss-Seidel’’ transformation eliminates the matrix
inversion operation, and from the graph, it can be observed
that its performance is almost identical to that of SWOMP
and WD-SWOMP. This indicates that the proposed low-
complexity algorithm not only maintains its performance but
also has a certain reduction in computational complexity, thus
demonstrating the effectiveness of the proposed algorithm.

As shown in Figure 5, the performance of the proposed
SWOMP algorithm is compared with other algorithms under
different path parameters ϵ. In this case, the adjustable
parameter SNR is set to 5dB, and the length of the pilot
sequence is set to 64. From the graph, it can be observed that
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FIGURE 4. The proposed low complexity algorithm is compared with
NMSE under different SNR.

the proposed algorithm outperforms other existing algorithms
in terms ofNMSE performance, and as the distance parameter
ϵ increases, the NMSE continues to decrease. This is because
as the parameter ϵ increases, the hybrid-field channel of
the XL-MIMO system tends to favor the far-field channel,
resulting in a dominant role of the far-field channel. The
decreasing trend also indicates that the sparsity of the near-
field channel is not as strong as that of the far-field channel.
Therefore, compressed sensing algorithms perform better in
channels with more obvious sparsity. When ϵ = 0 and
ϵ = 1, the proposed SWOMP algorithm does not exhibit
the NMSE performance of utilizing the OMP algorithm
alone for channel estimation because it is based on the
SWOMP algorithm. In the case of unknown channel sparsity,
this algorithm can more accurately capture the sparsity of
the channel, demonstrating better performance compared to
traditional OMP algorithm.

FIGURE 5. The proposed SWOMP is compared with NMSE under different
path parameters.

To further demonstrate the superiority of the pro-
posed algorithm based on the ‘‘Woodbury’’ equivalent

transformation, we conducted comparisons between the pro-
posed algorithm and the SWOMP algorithm under different
channel parameters. The SNR was set to 5dB, and the pilot
length was set to 64. From the Figure 6, it can be seen that the
proposed algorithm does not sacrifice performance but rather
overlaps almost perfectly with the performance curve of the
SWOMP algorithm. This also indicates the effectiveness of
the matrix inverse transformation based on the ‘‘Woodbury’’
method.

FIGURE 6. The two proposed algorithms are compared with NMSE under
different path parameters.

In order to illustrate the comparison between the proposed
LC-SWOMP algorithm and SWOMP, WD-SWOMP under
different path parameters ϵ, we conducted another set
of experiments as shown in Figure 7. In this simulation
experiment, with SNR=5dB and pilot length of 64, it can
be observed from the graph that the performance curve of
the proposed LC-SWOMP algorithm almost overlaps with
SWOMP and WD-SWOMP. This further demonstrates the
good robustness of the proposed LC-SWOMP algorithm
under different channel path parameters.

FIGURE 7. The proposed low complexity algorithm is compared with
NMSE under different path parameters.
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As shown in Figure 8, the performance comparison of
the proposed SWOMP, WD-SWOMP, and LC-SWOMP
algorithms under different pilot lengths is conducted in a
simulation environment with SNR=0dB and path parameter
ϵ=0.5. From the graph, it can be observed that the proposed
SWOMP algorithm has better performance compared to other
algorithms. The simulation curves of the proposed WD-
SWOMP and LC-SWOMP almost overlap with the SWOMP,
indicating that they have similar performance. This once
again proves the effectiveness of the proposed WD-SWOMP
and LC-SWOMP algorithms. Moreover, the proposed low-
complexity SWOMP algorithm not only has comparable
performance to the SWOMP algorithm but also reduces com-
putational complexity. The simulation results demonstrate
that this adaptive sparsity-based channel estimation method
has certain effectiveness in hybrid-field channel estimation.

FIGURE 8. The performance comparison of the three proposed methods
under different pilot lengths.

FIGURE 9. The performance comparison of the three proposed methods
under different total number of paths.

As shown in Figure 9, a comparison between the proposed
three methods and other hybrid-field channel estimation
methods is conducted in a simulation environment with

SNR=0dB and channel path parameter ϵ=0.5. From the
graph, it can be observed that the proposed three methods
have better performance compared to other methods. As the
path parameter increases, the NMSE also increases, indi-
cating that the estimated hybrid-field channel becomes less
accurate. This is because as the number of paths increases,
the non-sparse components of the channel also increase.
Therefore, with an unchanged pilot length, compressive
sensing faces some loss in estimation performance when
dealing with channels with more non-sparse components.
However, from the simulation graph, it can be seen that
the proposed three methods consistently outperform other
algorithms as the total number of paths increases. This once
again proves the effectiveness of the proposed three methods
in hybrid-field channel estimation.

VII. CONCLUSION
This article proposes a joint hybrid-field channel estima-
tion scheme in XL-MIMO systems based on RF chain
architecture. Based on the proposed approach using the
SWOMP algorithm to address the problem in the presence
of unknown channel sparsity, we found that the proposed
algorithm can accurately obtain the hybrid-field channel
state information. Subsequently, due to the matrix inversion
operation in the SWOMP algorithm, we then proposed the
WD-SWOMP algorithm based on the Woodbury transform
for equivalent matrix inversion, which achieves the same
channel estimation performance as the SWOMP algorithm.
Furthermore, by employing linear approximate iteration
to eliminate the matrix inversion step in the algorithm,
we introduced the low-complexity LC-SWOMP algorithm.
After iterative convergence, LC-SWOMP can achieve the
same channel estimation performance. Finally, simulation
results demonstrate the efficiency of the proposed hybrid-
field channel estimation scheme and the effectiveness of the
proposed algorithms.
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