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ABSTRACT The technology development greatly increases the amount of digital visual information.
Existing devices cannot efficiently process such huge amounts of data. The technical characteristics of digital
image processing (DIP) devices and systems are being actively improved to resolve this contradiction in
science and technology. The state-of-the-art methodology includes a huge number of very diverse approaches
at the mathematical, software, and hardware implementation levels. We have analyzed all modern trends
to improve the technical characteristics of DIP devices and systems. The main distinguishing feature of
this review is that we are not limited to considering various aspects of neural network image processing,
to which the vast majority of both review and research papers on the designated topic are devoted.
Review papers on the subject under consideration are analyzed. Various mathematical and arithmetic-logical
methods for improving the characteristics of image processing devices are described in detail. Original
and significant architectural and structural solutions are analyzed. Promising neural network models of
visual data processing are characterized. Hardware platforms for the design and operation of DIP systems
that are efficient in terms of resource costs are considered. The most significant improvements achieved
through the hardware implementation of models and methods on field-programmable gate arrays and
application-specific integrated circuits are noted.

INDEX TERMS High-performance computing, low-area design, low-power device, energy-efficient
architecture, neural network, hardware accelerator, FPGA, ASIC.

I. INTRODUCTION
The technology development is accompanied by a huge
increase in the amount of digital visual information [1], [2].
Nowadays, almost every modern member of society has a
smartphone from an early age, on which he quickly learns
and gets used to taking photos and videos. Many have one or
more desktop or laptop computers and other digital devices
with even more tools for creating and distributing visual con-
tent. In addition to everyday life, digital imaging and image
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processing devices have been introduced into various indus-
tries, medical diagnostics, satellite systems, are actively used
by law enforcement agencies, and so on [3], [4]. The charac-
teristics of digital images are constantly improving including
spatial resolution and color depth. Their number is increasing
at the same time. This significantly increases the amount
of visual information that needs to be registered, processed,
stored, and transmitted [2], [5]. But existing and developed
devices cannot efficiently process such huge amounts of data,
since the rate of their characteristics improvement is infe-
rior to the rate of increasing the amount of information [1],
[6]. The technical characteristics of digital image processing
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(DIP) devices and systems are being actively improved to
resolve this contradiction in science and technology [6], [7].

Scientists and engineers around the world develop and
implement various mathematical models, computational
methods, algorithms, and programs, design experimental
architectures and microelectronic devices to improve the DIP
system characteristics [8], [9]. Modernmethodology includes
a huge number of very diverse approaches at the mathemat-
ical, software, and hardware implementation levels. Many
ideas such as parallel computing have become so widespread
that they have been a generally accepted tool used ‘‘by
default’’. However, not all approaches are so successful and
developed. The main motivation of this review is to cover
the variety of approaches to improving the technical char-
acteristics of DIP devices and systems and analyze the most
successful or promising of them.

The main purpose of this review is to draw the attention of
specialists in the field under consideration to themost modern
and widely used approaches with significant undiscovered
or unrealized potential which can further improve the tech-
nical characteristics of DIP devices and systems. Relevant
and significant scientific review and research papers were
analyzed. We have identified the most promising mathemat-
ical approaches and concepts, architectural and structural
solutions, as well as their hardware simulations and imple-
mentations. These solutions are systematized and classified.
Their common features are highlighted.We draw conclusions
about the current state of the ideas development presented
and give appropriate recommendations. A separate section is
devoted to the analysis of related review papers.

Themain distinguishing feature of this review is that we are
not limited to considering various aspects of neural network
image processing, to which the vast majority of both review
and research papers on the designated topic are devoted. This
review is structured according to the papers content. The
order of materials presentation is defined and presented in the
next section.

II. REVIEW METHODOLOGY
Scientific materials are collected and analyzed in three main
stages. Firstly, a search was made for journal research and
review papers. A database with significant scientific sources
has been compiled. Secondly, a selection of works was car-
ried out. Insignificant works were weeded out. Thirdly, the
approaches classification according to the collected research
data is carried out.

A. SEARCH STRATEGY
The collection of relevant review sources with significant
scientific results was the search purpose. We searched for
papers published from 2018 to early 2023 in the journals
of leading scientific publishers on the research topic. Pub-
lishers data and links to them are presented in Table 1. The
arXiv database was not considered as a source of signifi-
cant scientific information since the works published in it
are not peer-reviewed. Research topics acted as the main

search guide.Wewere interested in variousDIP problems that
require huge computing resources for their solution, as well
as a variety of mathematical and technical methods and tools
that are actively used to reduce resource costs and improve
the technical characteristics of image processing devices and
systems. We focused on the image processing itself and not
on the processes of their registration, coding, encryption,
and transmission over communication channels. Also, this
review does not cover the physical principles and technolo-
gies underlying the construction of integrated circuit chips
such as complementary metal-oxide-semiconductor transis-
tors and their analogues. Various subtleties of the image
processing methods implementation, such as the efficiency of
computation routing in modern microelectronic devices, are
not considered.We did not pay attention to problemswith low
computational complexity.

TABLE 1. Scientific publishers used to collect research and review papers.

Many different keywords are used to search for papers.
All possible combinations of two groups of words and
phrases have been compiled. The first group includes
ways to improve various technical characteristics of image
processing devices: ‘‘fast’’; ‘‘speed’’; ‘‘high-speed’’; ‘‘high-
performance’’; ‘‘low latency’’; ‘‘real-time’’; ‘‘accelerator’’;
‘‘low-cost’’; ‘‘efficient’’; ‘‘area-efficient’’; ‘‘low-power’’;
‘‘power-efficient’’; ‘‘energy-efficient’’; ‘‘low-complexity’’;
‘‘FPGA’’; ‘‘multiply-accumulate’’. The second group
includes the names of tasks or tools most often used to solve
them: ‘‘image processing’’; ‘‘image filter’’; ‘‘image neural
network’’; ‘‘image CNN’’. Many other words and phrases
are also used. However, the search for them did not yield
meaningful results. The works found by the given keywords
were sorted by relevance in each information resource from
Table 1. The titles of the first hundred papers were analyzed.
Works whose titles corresponded to the research topic were
selected for further analysis.

Most of the papers were low-grade works without signifi-
cant scientific results. The analysis and primary paper selec-
tion according to their abstracts was carried out already at
the search stage in order to collect high-quality sources with
reliable information. Works focusing on software implemen-
tation of the proposed solutions were screened out, as well
as work with image processing on central processing unit
(CPU), graphics processing unit (GPU), and random access
memory (RAM). The significance of all state-of-the-art
solutions is only proven by hardware implementation or sim-
ulation on specialized platforms such as field-programmable
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gate arrays (FPGAs) and application-specific integrated cir-
cuits (ASICs). Mathematical papers without original and
significant solutions and methods were sifted out. Works
containing modifications of known approaches for solving
problems with low computational complexity, such as pattern
recognition using only simple databases (MNIST, Fashion-
MNIST, SVHN) and binary image processing, were also
ignored. An exception in this case are papers devoted to
promising neural network models such as spiking neural
network (SNN).

The compiled database of found sources includes
432 research and review papers with significant scientific
results on the review subject. The distribution of these works
by publishers is shown in Fig. 1.

FIGURE 1. Distribution of collected papers by publishers (number of
papers; share of the total sources number, %).

B. QUALITY ASSESSMENT
The selection of research papers was carried out according to
the criteria from previous subsection. However, this time they
were applied to the papers themselves and not just their titles
and abstracts. The selection of review papers at this stage was
carried out only in accordance with the topic under consider-
ation without regard to the work quality. In general, most of
the sources were excluded due to low scientific significance.
More than 95% of the selected papers were published in
journals fromQ1 and Q2 according to JCR 2021 or SJR 2021.
Other research and review papers did not contain original
and significant solutions the loss of which would affect the
methodology breadth under consideration. Thus, they were
excluded from our database. A total of 94 papers remained
after selection. However, additional sources were found in the
analysis of selected works. Those that met all the search crite-
ria were also added to database. Final database consists of the
most significant sources and includes 110 papers: 81 research
and 29 review. Their distribution by publishers is shown in
Fig. 2. We can conclude that IEEE is the leading publisher
on the subject under consideration and has published more
than half of the found and selected papers. IEEE and Elsevier

FIGURE 2. Distribution of selected papers by publishers (number of
papers; share of the total sources number, %).

TABLE 2. Journals with the largest number of relevant and significant
papers on the topic under consideration.

contain a total of more than 75%. We also identified the most
promising journals with a high concentration of high-quality
works (Table 2 ) containing 5 or more selected sources.
We recommend papers from the presented journals, first of
all, when collecting sources and analyzing current methods to
teams whose research topics are closely related to this review.

The following conclusions are made based on the analysis
results with all the papers found and can be used as criteria for
work quality assessing when selecting sources for scientific
research.

1. Most researchers are guided by the results obtained in
the software implementation of their developments. They use
Matlab instead of modern specialized computer-aided design
systems. This fact frankly testifies to the low level of their
scientific competence, the low quality of results obtained
verification, and the low significance of the proposed solu-
tions. Works with the software implementation results are
published mainly in Q3 and Q4 journals of international
scientometric databases. Xilinx, Altera, Synopsys, Cadence,
as well as open source software tools such as Yosys are
strongly recommended as platforms for such research teams
to implement their methods and solutions.
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2. A huge number of works contain a comparison of the
proposed solutions on FPGA with the implementation results
on CPU and GPU while declaring an improvement in device
characteristics by tens and hundreds of times. This compari-
son is absolutely incorrect since FPGA implements the DIP
methods and algorithms much more efficiently than CPU and
GPU. The presence of such a comparison also indicates the
material low quality. Unfortunately, even journals with a high
impact factor often contain works with such a comparison.

3. Many researchers compare their developments on
FPGAswith approaches implemented on other board families
and generations. Often using different conditions and imple-
mentation or simulation parameters. Such comparisons are
not correct to the proper extent and have low significance.
All of the above largely affects the results interpretation
and distorts the real significance and scientific value of the
proposed solutions.

4. Very often, researchers choose simple image databases
such as MNIST, Fashion-MNIST, SVHN as a target source
of initial data for the development and implementation of
neural network approaches, as well as experimental compar-
ison with state-of-the-art methods. Sometimes binary images
are also considered as input data. These problems have low
computational complexity and are not a significant test of the
proposed solutions. You should not pay attention to works
without the results of image processing from other image
databases.

5. A significant number of papers on intelligent image
processing methods are the same type of work with min-
imal differences and offer nothing original. Someone uses
well-known developments to solve a highly specialized prob-
lem that does not require a significant change in approach.
Someone focuses on some minor subtleties of the hardware
implementation on FPGA. One way or another, a signifi-
cant number of works parasitize on known methods without
offering anything new and significant.

6. Many papers including those from journals with a high
impact factor contain: systematic violation of the paper struc-
ture and the information presentation logic; insufficiently
complete description of the simulation conditions which
does not allow the experiments to be reproduced by outside
research teams; focusing on the results obtained which tes-
tify in favor of the proposed solutions, in conjunction with
partial or complete disregard for ‘‘uncomfortable’’ results
that can negatively affect the assessment of the developments
described. The authors do not always consistently and clearly
explain and substantiate in the annotation and introduction:
the problem relevance; the proposed approaches and solu-
tions essence; the developed methods purpose; reason of
device characteristics improving. For example, it is quite
difficult to understand the researchers’ ideas by the paper title
‘‘FPGA implementation of hybrid recursive reversable box
filter-based fast adaptive bilateral filter for image denoising,’’
in which one of the many adjectives also contains a spelling
error (correctly ‘‘reversible’’). The abstract does not clarify
the situation much, while this paper was published in the

journal fromQ2 according to JCR 2021 and SJR 2021. Often,
the authors write in the abstract that they achieve an improve-
ment in various indicators but do not indicate how and due to
what. Thus, the ideas underlying the developed approaches
and the scientific contribution remain unclear. Authors often
describe specific numerical results obtained or experimental
conditions in introduction instead of a brief summary of the
proposed solutions, the ideas underlying them, and distinctive
features. Some authors pass off the proposed approach imple-
mentation as the scientific contribution, while it is nothing
more than a tool for testing the adequacy and significance
of this approach. Known methods and original scientific
materials are not always clearly separated and do not allow
to evaluate the authors contribution. An incredible variety of
such errors exists which indicates the low qualification and
competence of many actively published scientific research
teams.

C. SYNTHESIS OF CONSIDERED APPROACHES
The most common and significant approaches to improving
the technical characteristics of DIP devices are structured
based on the analysis results of selected papers. All solu-
tions are conditionally separated into: mathematical and
arithmetic-logical; architectural-structural; perspective; hard-
ware. All found review papers on a given topic in the amount
of 29 sources are considered before analyzing the selected
approaches. Fig. 3 shows the further presentation order of
the review materials. Section III analyzes related review
papers. Section IV contains popular mathematical ideas and
particular approaches based on them. Section V consists of
the original architectural and structural solutions description.
Section VI describes the neural networkmodels that are being
actively developed, which can become a powerful tool for
solving various DIP problems. Section VII provides informa-
tion on the improvements of image processing devices for all
significant FPGA and ASIC hardware implementations made
in the analyzed research papers. The main conclusions are
formulated in section VIII. Review summary is presented in
section IX.

FIGURE 3. The further presentation order of the review materials.

III. OVERVIEW OF REVIEW PAPERS
Many review papers in addition to research papers were
found. This section analyzes reviews on the designated sci-
entific problem. The materials are structured as follows: a
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TABLE 3. Intersections of significant scientific materials in the found review papers with this review subject.

table with all found review papers; a brief description of
each work; conclusions based on the analysis results. The
characterization of reviewmaterials is subjective and does not
claim to be the ultimate truth.

Table 3 is presented below and contains review papers
found and highlighted approaches to improve the technical
characteristics of DIP devices and systems. If the work con-
tains significant materials on any of the selected approaches,
then the cell at their intersection is marked with the sign ‘‘×’’.
If any review paper does not contain significant materials
relevant to our review subject, then the mark is located in the
last column.

Paper [1] considers further ways of methodology devel-
opment for digital devices computations organization based
on non-traditional mathematical paradigms: logarithmic
number system; residue number system (RNS); stochastic
computations; hyperdimensional arithmetic. This review also
contains a description of developing technologies to create a
material and technical base that can serve as the basis for new
generations of digital devices.

Work [2] contains a comprehensive analysis of hardware
accelerators for the implementation of image processing and
computer vision algorithms. A thorough comparison of dig-
ital signal processing units (DSP units), GPU, and FPGA
was carried out. Numerous features of various architectures
and device families from various manufacturers, advantages
and disadvantages of various platforms are described in
detail.

Paper [3] is devoted to ASIC accelerators for deep neural
network (DNN). Multiplier-accumulator (MAC unit) imple-
mentation and neural network sparsity are considered in
detail. However, the ASIC-based implementation features of
neural network computations are described superficially.

Work [4] is devoted to hardware accelerators for real-time
face recognition. A lot of algorithms and their implementa-
tions based on CPU, GPU, and FPGA are analyzed to solve
problems from the area under consideration. The work has a
narrow specialization. However, the authors compare various
DIP systems in sufficient detail and focus on the high device
performance among other things.
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Paper [5] is devoted to the analysis of methods for speeding
up computations in convolutional neural network (CNN).
The review has a strange structure and contains many minor
errors and typos. Methods for organizing parallel computa-
tions and convolution are considered in detail. The issue of
implementing convolution through matrix multiplication is
widely covered. Various subsampling techniques and acti-
vation functions are described. Attention is also drawn to
optimization methods for CNN training.

Work [6] is devoted to the analysis of CNN implementa-
tions on ASIC. Comparison of neural network architectures
on GPU, FPGA, and ASIC is carried out. Many methods
for optimizing computations are considered. Various aspects
and features of ASIC, as well as specialized techniques for
increasing the efficiency of neural network data processing
methods, are analyzed. A detailed discussion of the problems
is presented and the most promising ways to solve them are
outlined.

Paper [7] is a comprehensive analysis of hardware acceler-
ators with a clear structure. This review does not pay much
attention to improving the device technical characteristics,
but analyzes in detail all sorts of modern platforms aspects
and the computations implementation nuances. A huge
amount of work is being considered. Their clear classification
according to various features is given. A large-scale compari-
son ofmethods for accelerators implementation is carried out.
All existing problems, their current solutions and challenges
are described in an orderly and detailed.

Work [8] is devoted to the analysis of energy-efficient
architectures for DNN implementation on edge and mobile
devices. Various approaches to optimization of neural net-
work computations on ASIC including those based on
network sparsity and approximate computing are considered.

Paper [9] analyzes many aspects of the FPGA accelerators
implementation in order to optimize computations in various
CNN components. This review is well structured and covers
a large number of state-of-the-art approaches. The paper
materials are presented clearly. However, not all the ideas
described have been analyzed in depth. The narrow coverage
of the considered sources is noticeable in places.

Work [10] is a good tutorial with a detailed and visual
presentation of all the basics and functioning principles of
CNN components. Various aspects of neural network image
processing are considered. State-of-the-art CNN architec-
tures are analyzed. This review also has an extensive list of
sources for further knowledge deepening.

Paper [11] is a brief and superficial review of DNN opti-
mization methods for efficient hardware implementation on
FPGA. This work has a low presentation quality and does
not cover all the main implementation aspects of neural net-
work computing. Conference and arXiv papers make up the
majority of sources used. These arguments greatly reduce the
review significance.

Work [12] reviews FPGA-based deep learning accelera-
tors. Many aspects of the neural network methods implemen-
tation for image processing are analyzed. A comparison of

various research developments is carried out. The considered
works are classified according to various features.

Paper [13] contains a detailed analysis of MAC unit
implementation with controlled computation accuracy for
neural network devices. Many architectures have been con-
sidered. An extensive comparative modeling and comparison
of the obtained results was carried out. This review is well
structured and has a high presentation quality.

Work [14] is devoted to the analysis of machine vision
systems based on FPGA accelerators for unmanned vehi-
cles. Various aspects of autonomous driving and existing
FPGA-based solutions for the efficient implementation of
neural network computing are considered and discussed. This
review focuses on various problems of modern hardware
solutions and contains an extended discussion.

Paper [15] reviews the methods of hardware accelerators
design for DNN and contains the superficial analysis results
of digital device design techniques.

Work [16] considers stochastic computing as a tool for
machine learning applications. The architectures of neurons,
adders, and multipliers are presented, as well as the analysis
results of their effectiveness.

Paper [17] is a review of hardware accelerator architec-
tures for efficient implementation of 3D convolution in CNN.
Consideration of 3D convolution instead of a traditional 2D
convolution using 3D filter masks is a distinguishing feature
of the work. This review is an updated and more compact ver-
sion of the previous review due to the chosen specialization
with all its inherent advantages and disadvantages.

Work [18] is devoted to the analysis of algorithms and hard-
ware implementations of SNN. It mainly discusses the ideas
underlying these networks and describes the spike-based
computation principles. However, actual hardware solutions
are analyzed superficially. This review can serve as a good
starting point for researchers interested in mastering this
toolkit and wishing to reveal the SNN potential.

Paper [19] is a review of methods for algorithmic and
hardware optimization of neural network computations on
FPGA devices. Versatile but poorly structured work with
a detailed but superficial analysis of approaches based on
the analysis of sources with predominantly low scientific
significance (30 arXiv papers, 54 conference papers). These
shortcomings reduce the review significance.

Work [20] is devoted to the analysis and comparison
of existing FPGA-based DNN accelerators. This review is
poorly structured but analyzes many papers. Tables with a
detailed comparison of various FPGA implementations and
a comprehensive description of their characteristics are of
particular interest.

Paper [21] is devoted to a detailed analysis of binary
neural networks (BNN). The calculations organizing prin-
ciples using binary weights and activation functions are
analyzed. BNN hardware implementation methods based
on FPGA and ASIC are described. Various techniques
are presented to improve the accuracy of BNN data pro-
cessing. This review is of interest to researchers who
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want to deepen their knowledge of the BNN functioning
principles.

Work [22] is a low-quality and superficial review of hard-
ware implementation approaches for artificial intelligence
algorithms with poor structure and a predominant number
of conference papers as sources. This review contains many
errors and inaccuracies. The identified shortcomings greatly
reduce the review significance.

Paper [23] is a low-quality and superficial review of
approaches to the hardware implementation of neural net-
work architectures. This paper contains 150 sources including
55 arXiv papers and 65 conference papers. These facts greatly
reduce the review significance.

Work [24] is a low-quality and superficial review of CNN.
This review is based on the analysis results of low-grade
scientific sources and has a poor structure. The identified
shortcomings greatly reduce the review significance.

Paper [25] is devoted to a review of methods for neural
networks designing and optimizing based on FPGA devices.
The materials are well structured. Various neural network
models are considered. Many aspects and features of the
neural networks hardware implementation on FPGA are dis-
cussed. Themain approaches to optimization of computations
are classified and described, including the computational
accuracy reduction and the convolution implementation in the
matrix form. Various architectural solutions are considered
and compared.

Work [26] is a brief and superficial review of FPGA-based
DNN acceleration methods in the context of cloud com-
puting. Approaches to improve the device performance are
described briefly. The identified shortcomings greatly reduce
the review significance.

Paper [27] is a review of acceleration methods for neural
network computations on FPGA devices. The methodology
under consideration is broad in scope. However, approaches
are often not analyzed deeply enough and are described
briefly, only in general terms revealing the underlying idea.
The authors do not describe many works at all, citing only the
characteristics of the developed devices.

Work [28] is a low-quality and superficial review of CNN
architectures and their FPGA-based implementations. Many
methods are described in general terms in a few sentences.
arXiv papers make up over a quarter of the sources. Confer-
ence papers more than half. These facts greatly reduce the
review significance.

Paper [29] is a review of FPGA accelerators for object
detection. A superficial analysis and comparison of various
platforms and methods for hardware architectures optimizing
is carried out. The paper materials are presented at a low
scientific level. Nearly half of the sources are arXiv or con-
ference papers. These shortcomings greatly reduce the review
significance.

The following conclusions are drawn from the analysis of
these review papers.

1. Most of the works are devoted to the methodology devel-
opment for intelligent processing of digital images based on

deep learning and various neural network models. Almost all
developments that are not directly related to neural network
computing can also improve the technical characteristics of
devices and systems for intelligent data processing.

2. The most widely discussed and frequently used
approaches are: approximate computing; convolution imple-
mentation in the matrix form by the Winograd method
(WM); various architectural solutions mostly based on neural
network sparsity and pruning; development of specialized
hardware accelerators based on FPGA and ASIC.

3. Scientific teams pay a lot of attention to low-grade
sources of scientific information when conducting research
and writing review papers: non peer-reviewed papers from
arXiv; conference papers without a proper description of the
methods and conditions for their implementation; journal
articles with low scientometric indicators. This fact calls
into question the comparison correctness of various research
methods and their implementation results, as well as the con-
clusions drawn significance. The high concentration of such
sources clearly indicates the low-quality work. In addition,
a significant number of sources are more than 10 years old
by the time the corresponding review was published and
obviously are not relevant enough for their analysis.

Most of the reviews focused on one or more aspects of
DIP. Our review contains the analysis results of all modern
tools that are widely used to improve the technical charac-
teristics of DIP devices and systems. The following section
introduces the most current and significant mathematical and
arithmetic-logical methods of DIP.

IV. MATHEMATICAL AND ARITHMETIC-LOGICAL
METHODS
Modern images are stored primarily in digital form and have
limited accuracy. The higher the image accuracy, the more
information we have about it. This refers to the image dimen-
sion, resolution, the number and depth of color channels. The
more information, the more resources are required to process
it. Reducing the data representation accuracy in the device
memory, namely, approximate computing (subsection IV-A)
is the simplest idea to save resources from this point of view.

An image is processed by performing various operations
on its pixels or voxels in the case of 3D image. The arith-
metic operations of addition, subtraction, multiplication, and
division are the basic and most commonly used in image pro-
cessing. Scaling, comparison, sign detection, exponentiation,
square root, and many other are also widely used. Some of
them are performed through others depending on the level of
implementation (mathematical, software, hardware) and the
features of the tools used. Operations have different computa-
tional complexity and require different amounts of resources
for their implementation. For example, fixed-point multipli-
cation has higher computational complexity than fixed-point
addition because it is implemented bymultiple additions. The
floating point format reverses the computational complexity
of these operations. The fixed-point format is more common
as it is focused on high-speed computing. The floating point
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format is mainly used in applications with high require-
ments for computational accuracy. Many approaches have
now been developed to further increase the efficiency of per-
forming various fixed-point operations such as addition and
multiplication (subsection IV-B). Many of them use approxi-
mate computing similar to the methods in subsection IV-A,
but implement them by making significant changes to the
processing element (PE) structure.

The sharing and reuse of addition and multiplication is at
the digital filtering basis which is the most commonly used
computational tool for image processing. Filtering is most
often implemented as a convolution of an image fragment
with a filter of the appropriate size. It is convolution that
underlies modern neural network technologies to which the
vast majority of works in this research area are devoted.
CNN have this name for a reason. Neural network convo-
lution extracts features but also has a large impact on the
computational complexity of image processing. Most of the
resource costs for the neural network implementation are
required precisely for convolution. DNNs with a large num-
ber of convolutional layers deserve special attention in this
regard. Work is actively underway to modify existing and
develop new methods and principles for the convolutional
computations implementation in connection with this. The
so-called WM (subsection IV-C) is one of the most signifi-
cant approaches and has repeatedly demonstrated significant
success in this direction. This method is based on matrix cal-
culations. Traditional convolution calculates a single value.
For example, the brightness of one pixel. WM calculates
multiple values in one iteration.

While some researchers are developing various modifi-
cations to improve the certain operations efficiency, oth-
ers are actively working on computing paradigms. RNS
(subsection IV-D) is one of the most successful. This tool
parallelizes calculations at the arithmetic-logical level and
significantly reduces the resource costs of the numerous
convolution in particular and the implementation of various
image processing methods in general.

All the papers described in section IV are based on
one of four basic ideas according to which they are dis-
tributed in the corresponding subsections. Therefore, each of
subsections IV-A-IV-D first describes the idea itself which
underlies the various approaches to its implementation. The
following is a brief works description that somehow develop
this idea. A conclusion is made based on the papers analysis
results after that. Subsections IV-C and IV-D sources rely on a
specific method and concept, respectively. Therefore, a brief
historical background is made for them.

A. APPROXIMATE COMPUTING
Approximate computing is not only the simplest tool for
reducing computational complexity but also the most prob-
lematic in the context of reducing accuracy. Reducing the
amount of information about the image greatly affects the
calculation error and the processing quality. This approach
is associated with many limitations aimed at achieving the

required image quality as a result of image processing in
practice. Requirements for the processing quality are imposed
on each DIP system developed to solve any particular prob-
lem. The most significant calculation error occurs with inputs
data size changing. Thus, the original image is usually not
cropped and all information about it is used. However, there
are works that consider the image bit-depth reduction and
analyze the loss of quality caused. The authors of [30] use
images with low image bit-depth to increase frame rate and
reduce device power consumption while maintaining the nec-
essary accuracy of neural network classification. The input
8-bit image bit-depth is reduced to 3 bits and leads to a
moderate calculation error when solving a relatively simple
problem. But such a technique imposes many restrictions
on reducing the accuracy of intermediate calculations which
significantly limits the possibilities of its targeted application.
In addition, reducing the input image bit-depth is used in
practice only in intelligent data processing which does not
require a visual quality assessment by a person and is aimed
at reducing the amount of processed data by highlighting
main information in the image. In general, approximate com-
puting is implemented mainly in three ways when solving
various DIP problems: the designs modifying of adders and
multipliers; reducing the bit-width of weight coefficients and
activation functions in neural networks; reducing the coef-
ficients bit-width of digital filters used. The first method is
discussed in subsection IV-B since it is based on structural
changes in PEs and not on a simple discarding of the least
significant bits. Approximate computing is a consequence of
such changes in this case but not the root cause in contrast to
the second and third ways examples of which are presented
below.

Weight coefficients and activation functions. The authors
of [30] reduce the bit-width of weight coefficients and acti-
vation functions in addition to the initial data size to reduce
the computational complexity of neural network calculations.
Weights are quantized with 4 bits and the activation functions
with 6 bits. In [31] only binary weights are used at all, but
unlike BNN from 3 to 6 bits are allocated for activation
functions, which significantly improves performance and the
energy efficiency of convolution. In contrast to this work,
the authors of [32] reduce the hardware and time require-
ments for the implementation of neural network calculations
by approximating the hyperbolic tangent function used as
an activation function. In paper [33] the quantized weight
coefficients have a reduced bit-width to minimize resource
costs for the calculations implementation. High accuracy of
pattern recognition in images is maintained.

Digital filter coefficients. Paper [34] is devoted to the
design of approximate bilateral filters for image denoising.
The authors proposed a new approach to digital filtering
with reduced computational complexity by approximating
the spatial domain coefficients and the intensity range to
unsigned integers. A significant improvement in throughput
and hardware costs reduction is achieved, at the expense of
an acceptable loss in image processing quality. Work [35]
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analyzes the influence of the wavelet coefficients accuracy
of on the image processing quality at the direct and inverse
discrete wavelet transforms. Formulas are derived for cal-
culating the coefficients bit-width that improve the devices
characteristics and a high-quality processing is achieved.
Paper [36] generalizes the previous study results to the cases
of 3D image processing with different color channels bit-
depths. The cases of 8-, 12-, and 16-bit images are considered.
In [37], a scaling parameter for filter coefficients is intro-
duced and a scheme for digital wavelet filtering of images
with reduced computational complexity is proposed.

A variety of digital filtering implementations can be traced
in the considered works. However, all of them are based on a
single idea of a significant improvement in the device char-
acteristics due to an acceptable deterioration in its qualitative
characteristics. The different accuracy influence of digital
information representation in intermediate calculations on
the image processing result is analyzed for the most part.
Comprehensive resource reduction is a strong feature of this
approach. Usually, developments reduce one type of resource
costs by increasing another. Since the advantage does not
come from nowhere. For example, various methods are often
proposed to increase device performance with increasing
energy consumption. Approximate computing both increases
the calculation speed and reduces hardware and energy costs.
But the processing quality deterioration entails significant
restrictions on this idea usage in various DIP applications that
do not accept the loss of even a small part of visual informa-
tion. For example, medical image processing is very sensitive
to information loss, as evidenced by the DICOM standard
most commonly used for storing and transmitting diagnos-
tic imaging data. This standard uses increased bit-depth to
store images and does not accept lossy compression. How-
ever, even loss-of-information applications require a balance
between a decrease in computational complexity and an
associated increase in calculation error for an acceptable
image processing quality in accordance with all the specific
limitations of the scientific-technical problem.

B. PROCESSING ELEMENTS MODIFICATION
Adders and multipliers are the main PEs used in digital image
processing devices. PEs multiple use largely determines the
hardware, energy, and time resource costs. Various auxiliary
tools are also involved on FPGA such as DSP units. There-
fore, active work is underway to improve the PEs efficiency.
All significant approaches involve structural changes. These
ideas are developed in twomain directions. The first direction
is mentioned in subsection IV-A and represents the PE sim-
plification and minimization of basic logical operations. The
resulting calculation errors are corrected by some additional
tools that do not require significant computational costs.
The second direction takes into account implicit information
redundancy, various types of connections between PEs,
as well as their number, and other possibilities for compu-
tations optimizing that do not lead to additional calculation

errors. Consider the both directions implementation in more
detail.

Approximate adders and multipliers. In [38], an energy-
efficient approximate adder is proposed. His structure is
based on the division of calculations into several parallel
blocks. This design shortens the critical path and reduces
energy consumption. The resulting errors are detected and
corrected by the built-in mechanism. The structure can be
adapted both for carry propagation adders and parallel-
prefix adders. The authors of [39] proposed three schematic
models of approximate adders with a modified structure.
The developments implementation has reduced power and
time costs with a moderate number of computational errors.
The paper [40] describes methods for hybrid approximate
adders designing based on scale-add operations to reduce
energy consumption. Work [41] presents low-power and
error-resistant adders and multipliers based on approxima-
tion moduli. The authors of [42] propose two designs of
a low-power approximate multiplier with a reduced criti-
cal path and correction of emerging computational errors.
Paper [43] is devoted to the design of approximate Booth
multipliers with reduced computational complexity due to
some accuracy loss. Three multiplier models are proposed
based on various methods for approximating partial product
calculations.Work [44] presents a low-power implementation
of an approximateMAC unit by replacing multiplication with
scaling. Paper [45] discusses the approximate calculations
in multipliers focused on energy-efficient digital filtering in
convolutional layers of neural networks. Computational error
estimation is carried out on the error variance basis, not the
average absolute or relative error.

Accurate adders and multipliers. Paper [46] presents a
low-power multiplier design based on a Wallace tree using
a 7:3 counter and multi-bit addition. The authors of [47]
proposed the design technique of modified hybrid full adder
and high-performance multiplier. Work [48] describes a
high-speed hierarchicalMACunit architecture with a reduced
critical path based on a modified Booth encoder and a
Wallace tree. Paper [49] presents MAC units with reduced
computational complexity based on parallel accumulation
technique for CNN. The authors change the traditional oper-
ations order. Firstly, they perform the accumulation, then
the joint post-pass multiplication. This approach reduces the
area and power consumption of the used PEs. The authors
of [50] proposed a hardware-efficient implementation of
MACunit based on the Boothmultiplier with dual-mode trun-
cation error compensation for convolutional neural networks.
Work [51] presents a low-power MAC unit with integration
of additions into the partial products reduction. Addition and
accumulation of high order bits are not performed until the
partial product reduction for the next multiplication in the
proposed architecture. The authors of [52] presented a new
approach for designing low-power heterogeneous MAC units
with a short critical path for voltage scaling resilience and
their implementation in DNN. Paper [53] proposes a trun-
cated MAC unit design for digital filtering. This unit does
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not contain a final adder and has two output values, which
significantly reduces the intermediate calculations delay.

The considered works are based on the general idea of
computations implementation using PEs built on the basic
logical operations ‘‘and’’, ‘‘or’’, and ‘‘not’’. All computing
paradigms are built precisely on combinations of these oper-
ations. Adders and multipliers are only an intermediate link.
All the approaches considered in this subsection are based
on increasing the computations efficiency when moving from
the logical operations level to the PEs level. Researchers
are continuously working to improve the principles of this
transition. A wide variety of approaches and their implemen-
tations on modern microelectronic devices is observed as a
result.

C. CONVOLUTION OPTIMIZATION USING THE WINOGRAD
METHOD
Redundant computations accounting in multiple convolution
is the main difference between WM and traditional convo-
lution. The redundancy is present in an implicit form and
is effectively eliminated only when organizing computations
with several output values in one iteration. Andrei Toom first
discovered and described this pattern in his work ‘‘The Com-
plexity of a Scheme of Functional Elements Realizing the
Multiplication of Integers’’ in 1963. Stephen Cook developed
these ideas and presented them more clearly in his Ph.D. the-
sis ‘‘On theMinimumComputation Time forMultiplication’’
in 1966. The Toom-Cook algorithm came about as a result.
Shmuel Winograd generalized this algorithm and published
it in his book ‘‘Arithmetic Complexity of Computation’’ in
1980. All these developments were purely theoretical and did
not arouse noticeable interest initially. However, WM was
repeatedly modified and adapted to various platforms. The
most significant implementation of WMwas presented in the
form of a report on the topic ‘‘Fast Algorithms for Convolu-
tional Neural Networks’’ at a scientific conference in 2016.
Andrew Lavin and Scott Gray clearly demonstrated the WM
advantage over traditional convolution when implementing
neural network computations on GPU. This work aroused
great interest and led to the further WM implementation
into various DIP systems. A significant part of computa-
tions is performed a priori in the modern form of WM.
Most multiplications are replaced by additions with scaling.
The computational complexity of digital filtering is greatly
reduced as a result. The requirements for the technical char-
acteristics of DIP devices that actively use the convolution
operation are reduced using WM. Therefore, WM is actively
used in modern DIP devices and systems. Mostly in various
CNN and DNN models. A detailed description of the WM
principles is presented in the previously mentioned work by
Andrew Lavin and Scott Gray. We focus on modern WM
implementations.

Paper [54] is devoted to the points choice for the Lagrange
polynomial and transformation matrices. This approach
minimizes the resource costs for the WM calculations in

DNN with 1D and 2D convolutions. The authors of [55]
develop these ideas by proposing an approach to point
selection to reduce hardware costs for the implementation
of neural network image processing methods. Paper [56]
presents a WM-based hardware accelerator with reduced
power consumption and hardware costs for object detection
using YOLO networks. Work [57] proposed a heteroge-
neous system for hardware acceleration of neural networks
for text recognition. WM improves device performance.
The authors of [58] presented a hardware CNN accel-
erator based on the unified architecture with WM-based
element-wise matrix multiplication. Paper [59] describes a
high-performance architecture for neural network data pro-
cessing usingWM-based 2D and 3D convolutions. Work [60]
presents a 2D digital filtering architecture based on WM
to speed up calculations. The authors of [61] optimized the
hardware implementation of convolutional computations in
neural networks using WM modification and taking into
account the network sparsity. This approach significantly
reduced the computational latency, device power, and used
DSP units. Paper [62] presents an energy-efficient and high-
throughput sparse CNN accelerator based on WM matrix
multiplication for large convolution kernels. Work [63] pro-
posed a low-power CNN accelerator based on the developed
Winograd minimum filtering algorithm. Paper [64] presents
high-performance methods for 1D, 2D, and 3D WM-based
digital filtering with a convolution step of 2.

Many of the works described contain mostly simple imple-
mentations of WM particular cases with strictly defined sets
of points and transformation matrices compiled on their
basis. The WM digital filtering methodology is developing
very slowly unlike all other approaches presented in this
review. Most research teams have mastered this technique
only superficially without really delving into the mathemat-
ical subtleties. This approach significantly hinders the WM
development. We hope that WM will become a generally
accepted and standard approach to organizing convolutional
computing in the future. Then the researchers will study
this tool more thoroughly and improve the WM efficiency.
This will be a more significant contribution to the science
development than simply replacing the traditional convo-
lution with a WM special case in any neural network
model.

D. COMPUTATIONS IN THE RESIDUE NUMBER SYSTEM
RNS is a non-positional number system in which a number
is represented as a group of remainders when divided by a
set of RNS moduli. RNS computations are implemented by
performing operations on these remainders. RNS is based
on modular arithmetic and relies on the Chinese Remain-
der Theorem first formulated by Sun Tzu in the treatise
‘‘Sunzi Suanjing’’ presumably between the 3rd and 5th cen-
turies AD. Antonin Svoboda and Miro Walach developed
the concept of RNS computations and first presented it
to the scientific community in 1955. Harvey Louis Garner
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developed their ideas and presented an extended descrip-
tion of RNS in his Ph.D. thesis ‘‘Error Checking and the
Structure of Binary Addition’’ in 1958 and a summary of
the basic computational principles in paper ‘‘The Residue
Number System’’ in 1959. The concept of RNS computa-
tions was proposed as an alternative to traditional positional
number systems and gradually developed over time attracting
many researchers with its fault tolerance and high poten-
tial for parallel computing. RNS found its way into various
digital data processing applications at a certain stage in
microelectronics development. In particular, in digital sig-
nal processing which is described in detail in the work
‘‘Residue Number Systems: A New Paradigm to Datapath
Optimization for Low-Power and High-Performance Digital
Signal Processing Applications.’’ RNS is also considered
as a full-fledged replacement for traditional computer arith-
metic systems on promising microelectronic architectures
of future generations [1]. However, RNS has many dis-
advantages. Low efficiency in the non-modulo operations
implementation such as scaling, division, root extraction,
sign determination, and number comparison. High overhead
for transferring from RNS to positional number system.
Impossibility of numbers visual comparison. No visible signs
of overflow. These disadvantages limit the wide practi-
cal application of RNS. However, many DIP methods are
based on the repeated use the modulo operations of addition
and multiplication which realizes the RNS potential. Thus,
the computations efficiency is significantly increased which
is confirmed by the scientific research results presented
below.

The authors of [65] presented a modular adder design with
delayed carry-through to improve the various technical char-
acteristics of digital filtering devices. Paper [66] uses RNS to
improve the digital filtering speed.Work [67] is devoted to the
choice of RNSmoduli set for efficient hardware implementa-
tion of computations. The proposed set weakens the require-
ments for energy consumption and device area, but increase
PEs delay. Paper [68] presents two modular adders with
reduced latency, allocated area, and low energy consumption
based on internal calculations without transfers. The authors
of [69] proposed a computational approach based on RNS
with reduced hardware costs by increasing the energy con-
sumption.Work [37] presents RNS-basedmethod for wavelet
processing of 3D medical images. RNS increased the com-
putation speed by increasing the hardware costs. Paper [70]
proposes a method for energy-efficient neural network image
processing based on RNS. The authors of [33] described an
area-efficient hardware implementation of CNN based on
RNS computations. Paper [60] presents a high-throughput
digital image processing filter architecture based on RNS
computations.

The RNS paradigm is actively developing in many direc-
tions including both the modular computing methodology on
modern platforms and the expansion of its use in DIP appli-
cations. Nevertheless, the niche use of RNS computations
remains due to its inherent disadvantages.

Mathematical tools actively improve the technical charac-
teristics of DIP devices and systems. It relies heavily on the
four identified pillars but is by no means limited to them.
Attention in this review is paid only to the most significant
representatives of this ideas. Many PEs beyond adders and
multipliers are also being actively improved. WM is far from
the only approach to convolution optimization. Likewise,
RNS is just one of many alternative computing paradigms.
However, they are among the most common mathematical
solutions and are actively used by various research teams
around the world. Architectural and structural solutions in
contrast do not have a clear hierarchy. Such approaches
classification is a very difficult task. But the most common
features can be identified. These results are presented in the
next section.

V. VARIOUS ARCHITECTURAL AND STRUCTURAL
SOLUTIONS
Scientific teams offer many approaches to improve the
technical characteristics of DIP devices based on various
architectural and structural solutions. Including hybrid and
multimodal neural networks, as well as neural networks
ensembles. Such solutions are being actively developed
mainly for intelligent data processing systems and represent
a large number of versatile ideas and their implementations.
The works presented in this section are very original and
difficult to classify. They are versatile and replete with great
variety and a high concentration of significant solutions.
Therefore, they are characterized in more detail than the
works from section IV. In addition, some common features
and directions for the development of ideas in these works
have been identified. Table 4 contains all the similarities
found in the considered aspects context of the computational
methods implementation, optimization of the processes under
consideration, and increasing the efficiency of various tools
and structures. The first column contains all works from this
section. Correspondence of works to the selected aspects is
marked with a ‘‘×’’ in other columns.

The authors of [57] proposed a heterogeneous neural
network acceleration system for text detection in images.
The approach is based on the scheme of partitioning into
subgraphs and WM, as well as their implementation on
CPU-FPGA. This system uses fixed-point quantized weights
and piecewise linear approximation of activation functions in
neural network to achieve a high degree of parallel computing
and reduce resource costs. The experimental results showed
a significant increase in device performance.

Work [62] proposes a high-speed hardware CNN accel-
erator based on sparse matrix multiplication using WM.
The dynamic scheduling scheme and the balanced sparse
string compression format improve the computational load
balance and increase the PEs efficiency. The proposed solu-
tions take into account the sparseness of both the weight
coefficients and the CNN activation functions. WM orga-
nizes calculations not only in convolutional layers but also
in fully connected ones. The proposed ideas combination
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TABLE 4. Correspondence of works with architectural and structural solutions to various aspects of the image processing methods implementation.

significantly increases the throughput and energy efficiency
of the neural network image processing device.

Paper [71] proposes a DNN architecture in which the
activation function is combined with the previous level of
computation. Such a construction performs early detection
of negative calculation values before they enter the activation
function and resets them to zero. In addition, support for skip-
ping null values is built into the proposed architecture. This
approach reduces calculations at output features generating in
convolutional and fully connected layers and the number of
MAC units used, significantly speeds up DNN computations,
and reduces its energy consumption while maintaining the
quality indicators of the image processing device at a high
level. The described developments can be integrated into any
real-time DNN accelerator.

The authors of [72] have developed a reconfigurable CNN
hardware accelerator with a scalable architecture and high-
level synthesis. This development supports a combination of
convolutional and fully connected layers, as well as max-
imum element sampling layers, and can be used to speed
up any CNN exported from the Keras open source library.
Also presented is a learning method with quantized weights,
automatically scalable to selected network parameters. The
proposed accelerator is based on templates and can be
adapted to be implemented on the desired platform and neural
network model.

Work [73] presents a CNN coprocessor architecture for
image processing in conjunction with a FPGA. The approach

is based on the parallelized data exchange algorithm between
the coprocessor and FPGA to increased throughput, as well
as reprogramming in order to efficient use of DSP units.
The described algorithm is based on eliminating the bot-
tleneck of external input-output, replacing the traditional
principle of processing by layer size with the principle
of processing in depth. In addition, three new approaches
to direction finding are presented: linear; intermediate lin-
ear; multiline. Their implementation increases the parallel
computing variation and leads to a more efficient PEs
use. The proposed coprocessor does not require the down-
load of bit files for its reprogramming, eliminating delay
between execution of two consecutive tasks. Such flexibil-
ity sets this architecture apart from other state-of-the-art
solutions.

The authors of [74] developed a unified convolution
operator with the uniform data representation accuracy
for high-speed and high-precision CNNs. The proposed
approach is based on the hybrid use of half-precision fixed-
point and floating-point formats to perform addition and
multiplication operations, respectively. The data format is the
same for all CNN layers, which reduces the device design
complexity. ASIC simulations showed a significant improve-
ment in device performance and energy efficiency, as well as
a reduction in power and hardware resource costs.

Work [75] proposes a selective neural network system for
distorted image classifying. This system is an ensemble of
CNNs, each of which is designed to process distorted image
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by a certain noise type. In addition, the proposed structure
includes a compact neural network to determine the type and
degree of distortion in the image and select the appropriate
CNN for its processing.

Paper [76] presents an approach to voltage control of CNN
structural elements to reduce energy by computational errors
moderately increasing. It is based on layer-by-layer scaling of
the buffer voltage based on the error tolerance analysis. Simu-
lation results using common neural network architectures for
image classification showed a significant reduction in energy
consumption by a slight decrease in accuracy.

Work [77] describes the developed energy-efficient con-
volution architecture based on data flow rescheduling. The
proposed approach reduces the redundant accesses to the
built-in memory and reuses the downloaded data. Several
1D and 2D convolution accelerators that support data flow
rescheduling have been studied. The templates of access
to the built-in memory are considered. A qualitative and
quantitative analysis was carried out to select the optimal
accelerators for various convolution models.

Work [78] presents an approach to improve memory effi-
ciency in modern CNN accelerators. The traditionally used
ping-pong buffering method maps subsequent activation lev-
els to disjunctive memory regions. The authors propose a
matching method that allows these regions to overlap and use
memory more efficiently. This method is based on the pre-
sented mathematical model for maximum overlap calculating
of the activation memory and the built-in memory lower
bound required for layer-by-layer data processing in CNNs
on hardware accelerators. Experiments using neural networks
for object detection and image denoising have shown a sig-
nificant reduction in total memory compared to traditional
buffering.

The authors of [79] proposed using CNN layer replica-
tion to improve device performance and simplify design.
Assembling pre-implemented neural network components
using a graph topology minimizes resource costs, pre-
dicts device performance, and simplifies development by
eliminating the source code synthesize in a hardware descrip-
tion language. The implemented components reuse and
the modular principle of the device structural organization
reduce the development time for various CNN designs and
modifications.

Paper [80] presents an engine for designing reconfigurable
FPGA-based DNN accelerators. This engine is based on the
joint implementation of several ideas. A bandwidth-based
tiling algorithm is used to improve the efficiency of direct
memory access data transfer. Three strategies for organizing
parallel computing based on a three-level matrix of shift
registers to increase the efficiency of using PEs with var-
ious convolution parameters. Reconfigurable design of the
computational block for the convolution, sampling, normal-
ization, and activation operations to increase the efficiency of
usingDSP units. Experimental results show that the presented
approach provides a good compromise between hardware
costs, device performance and its reconfigurability.

Work [81] proposed a high-speed hardware-based depth-
separated convolution accelerator for object detection and
image classification by neural networks. Several ideas
underlie this development: an original PE for high-
speed depth-separated convolution; a computational block
with controlled parallelism for different CNN layers; a
space-channel approach to increase device throughput; strat-
egy to reduce external memory access. Experimental results
have shown a significant improvement in the throughput,
power and energy efficiency of FPGA accelerators in the
detection and classification of unmanned aerial vehicles.

The authors of [82] presented a low-power architecture
of a neural network hardware accelerator for real-time data
processing. Proposed pipelined CNN structure with input
data passing and image processing by columns speeds up
computations. The multi-cycle scheme with stage-by-stage
processing of the convolution kernel columns reduces hard-
ware and energy resource costs. The designed hardware
structures based on the developed architecture significantly
reduced the computational delay and increased the energy
efficiency of the neural network image processing device.

Paper [83] proposes a FPGA-based memory-bandwidth-
optimized reprogrammable co-processor for feed-forward
DNNs. The coprocessor can be reprogrammed for a new
network architecture on the fly without FPGA re-synthesis.
Thus, it functions like a peripheral device. Caching of weights
and DNN functions is implemented using on-chip memory to
reduce external memory bandwidth requirements. The data is
pre-selected in several steps to avoid stopping computational
processes. Various optimization techniques are used to reuse
the extracted data. The flow of processed information is
dynamically tuned during the execution of neural network
processing in each DNN layer to achieve high throughput in
a wide range of input image sizes and digital filter sizes used.

Work [84] describes a flexible hardware accelerator for
feature extraction from images based on oriented features
from an accelerated segment test and an algorithm for binary
stable independent elementary features. The presented archi-
tecture is designed for real-time operation and uses a hybrid
workflow to process data of different scales in parallel while
sequentially dividing the running time of dynamic RAM
(DRAM). The block data stream is used to process images of
arbitrary size. Reusing overlapping data between two blocks
saves on-chip memory and DRAM bandwidth.

The authors of [85] developed amethod to eliminate redun-
dant multiplications in neural network computations by using
the same or similar inter-core weights. This method identifies
equal or similar internuclear weights in trained CNNs. Equal
weights are excluded. Similar weights are replaced with
slightly modified reference weights similar to them. Thus,
the CNN sparsity increases and the amount of computation
is reduced. A separate battery optimization method has also
been developed to reduce the energy consumption of MAC
units. Experimental results have shown that the proposed
approach increases the CNN sparsity without compromising
the device accuracy. Comparison with known architectures of
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hardware accelerators for neural network image processing
showed a significant reduction in device power.

Paper [86] presents a memory subsystem for low-power
CNN hardware accelerators. This development is intended
for the implementation of neural network data processing
methods on compact devices including mobile devices. The
developed on-chip memory subsystem includes an active
weight buffer and a set of data buffers covering special-
ized compression techniques to reduce the size of weights
and CNN activation functions, respectively. Memory buffers
contain a built-in detection and removal mechanism of redun-
dant calculations that actively scans the CNN working set to
improve data processing speed.

The authors of [87] have developed a reconfigurable FPGA
accelerator for large-scale and lightweight CNNs based on
modified convolution. The dataflow and control logic are
combined and reused to reduce the computational complex-
ity. MAC units are reused according to programmable exe-
cution schedules. Three modifications of convolution have
been developed: deep convolution; transposed convolution;
extended convolution. Deep convolution is implemented after
standard convolutions without access to external memory.
Amethod of zero carry and skip is proposed for computations
reorganization and load balancing with transposed convo-
lution. The original sparsity handling method eliminates
redundant calculations for transposed and extended convolu-
tions. This method is based on weight-oriented dataflow.

Paper [88] presents an optimized reconfigurable frame-
work for sparse CNN designing on FPGA. An efficient
organization of the sparse dataflow is proposed, in which the
spatial convolution is decomposed into the multiplication of
elements by a vector. Each non-zero weight is handled inde-
pendently by a simple control logic instead of the traditional
multiplex-based selection logic. A kernel fusion technique
and a software method for trimming zero values with balanc-
ing the computational load between various PEs have been
developed. The presented design of the hardware accelera-
tor is reconfigurable and implements an optimized dataflow
distribution.

The authors of [89] developed an energy-efficient neural
network architecture based on a systolic array. Convolutional
computations are organized in parallel between the filter lines
and channels of the output feature maps. Computations in
fully connected layers are optimized by tuning the internal
instruction registers. The systolic dataflow strategy ensures
that information is reused to reduce the memory accesses and
hardware overhead. The proposed CNN architecture uses a
tiered storage system combined with a register file and static
memory. The FPGA implementation has shown a significant
improvement in computing energy efficiency.

The ongoing attempts to improve the technical char-
acteristics of DIP devices and systems based on original
architectural and structural solutions are accompanied by
an active consideration of a huge number of computations
implementation aspects in modern microelectronic devices
and the desire for a comprehensive optimization of various

computing processes at each data processing stage and an
increase in the efficiency of using the available tools in
various designs and architectures. Much attention is paid to
modifying the methods of parallel and convolutional com-
puting, reducing the amount of calculations, increasing the
PEs efficiency, and improving methods for distributing data
streams to reduce the load on various types of memory used
and increase the device throughput. However, all of these
solutions are highly specialized modifications. Most of them
can be applied locally in one or more parts of DIP device
or system and provide a modest improvement in technical
characteristics. At the same time, work is underway to cre-
ate radical modifications of neural network data processing.
Their use should lead to a more meaningful result. The most
promising of them are described below.

VI. PROMISING NEURAL NETWORK MODELS
Various neural network models are the most common tool
used to solve a wide range of DIP problems. Artificial neural
networks are based on the principles of the human brain
functioning and represent some of its similarity used for
intelligent data processing. CNNs and so-called DNNs evolve
this approach and use ideas peeped from nature. Convolu-
tional and subsampling layers which extract features from
visual information and are often located alternately in dif-
ferent neural network structures mimic the human visual
cortex properties for feature extraction. However, the current
level of science and technology does not allow to com-
pletely recreate the natural mind. The scientific community
which has up-to-date tools cannot design such a carefully
designed structure with the proper level of neurons con-
nectivity, that is, a sufficiently large number of synoptic
connections, a qualitatively organized hierarchy, as well as
neuronal and synaptic functionality. Modern neural network
models are only superficially similar to the human brain.
However, this does not prevent the general desire to adopt as
much knowledge as possible from nature in order to improve
computational processes and artificial neural network models
of information processing. At present, the methodology of
intellectual data processing includes many approaches to the
computations organization. Continuous work is underway
to enhance known and develop new neural network models
to improve the technical characteristics of DIP devices and
systems. The most promising of them in our opinion are SNN
and BNN.

A. SPIKING NEURAL NETWORK
SNNs are a promising tool for significantly improving the
energy efficiency of DIP devices. Although not all research
teams share this optimism. The current results of SNN hard-
ware implementation have not yet met expectations according
to some researchers [18]. One way or another, work in this
direction is being actively carried out since many scientists
see a high potential in the SNN concept development. The
time concept use for the computational processes organiza-
tion is a distinctive feature of this neural networkmodel. SNN
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use the short pulses exchange of the same amplitude when the
neuron charge reaches a threshold value. This principle brings
simulation one step closer to a ‘‘natural’’ neural network. The
work [18] contains a more detailed description of SNNs and
neuromorphic computing. Here we will focus on the main
achievements of researchers in recent years.

Paper [90] describes the convolutional accelerator architec-
ture for SNN based on the space-time workload balance. The
authors use the developed method of constructing an approx-
imate proportional relationship and the method of balanced
load planning for a preliminary assessment of the workload
and its efficient distribution over the computing channels,
respectively. The proposed approach improves the perfor-
mance and energy efficiency of the neural network device.
Work [91] presents a reconfigurable SNN architecture based
on the implementation of several traditional techniques:
use of sparsity; reuse of intermediate calculation results;
applying optimization techniques to improve the architec-
ture efficiency and flexibility. Experimental results have
demonstrated a significant acceleration of neural network
calculations. The authors of [92] developed an SNN archi-
tecture based on a reconfigurable firing neuron processing
unit and a sparse dataflow. Paper [93] presents a neuromor-
phic SNN-based system for simulating microscopic neural
dynamics in large-scale brain networks on FPGAs. A scal-
able hierarchical heterogeneous architecture and a synergistic
scheme for routing hybrid neural information are described.
Work [94] is devoted to modeling a self-learning SNN for
cognitive navigation on a scalable neuromorphic architec-
ture with a fault-tolerant computation routing algorithm. The
authors of [95] presented a neuromorphic system for mod-
eling scalable large-scale SNNs and implemented it on an
FPGA. The proposed neuron model with ion conductance
dynamics reduced memory usage and the number of PEs
used. Paper [96] proposes an SNN architecture with an
optimized design and a mechanism for dynamic resource
allocation to increase the computation speed. Work [97]
describes the results of comparing CNN and SNN hardware
FPGA accelerators at image classification and points out
the actual problems of modern SNNs. The authors in [98]
use approximations with dynamic weight representation to
reduce the device power, energy consumption, and hardware
costs of SNN implementation. Paper [99] describes the design
of a fast convergent SNN based on a systematic design
method and computational errors evaluation. The proposed
hardware implementation reduced computation latency and
energy consumption of neural network device. Work [100]
presents an optimized firing neuronmodel based on advanced
prediction correction to improve SNN technical charac-
teristics. A genetic algorithm for adjusting the membrane
threshold of neurons is proposed to improve the image pro-
cessing quality. The authors of [101] implemented an SNN
accelerator with reduced latency based on timing of pulses
with data reuse. Paper [102] analyzed the backpropagation
algorithm problems for SNN training. Work [103] presents
an adaptable architecture for convolutional computations

organizing in SNN. The authors of [104] developed a scalable
FPGA-based hardware platform for simulating large-scale
SNNs. Paper [105] presents a digital neuromorphic SNN
architecture with biophysically plausible dynamics and scal-
able FPGA implementation. The described neuromorphic
methods of neural network implementation of calculations
reduced the number of memory accesses and increased the
speed of calculations.

We can conclude that many problems hinder the SNN
implementation. So far, state-of-the-art architectures do not
allow the use of neuromorphic computing to effectively solve
complex practical DIP problems. Nevertheless, a very active
study of many issues related to both learning and the func-
tioning of this neural network model is currently underway.
SNNs can become a worthy alternative or even a full-fledged
replacement for modern DNNs within a few decades.

B. BINARY NEURAL NETWORK
While most scientists are developing sophisticated modifica-
tions to improve the computing processes efficiency, some
researchers on the contrary are simplifying the principles of
data processing. BNN architectures are a prime example of
this approach. They imitate the binary number system and
allocate only one bit to represent each weight coefficient
and each activation function in the device memory. This
approach significantly reduces the neural network model size
and many times reduces all kinds of resource costs for data
processing. However, this inevitably results in a significant
loss of computational accuracy. The quality of image process-
ing deteriorates noticeably. The work [21] contains a more
detailed description of BNN structure and related problems.
The following are significant results of this concept develop-
ment presented in state-of-the-art research papers.

The authors of [106] designed BNN hardware accelera-
tor based on an adaptive spatial amplitude model for IoT
deviceswith limitedmemory. The proposed approach reduces
redundant calculations in matrix multiplication and hard-
ware costs of BNN implementation. Paper [107] presents a
high-performance and energy-efficient FPGA implementa-
tion of BNN based on the developed model for analyzing the
device resource intensity and methods for internal memory
optimizing. Work [108] proposes a BNN multimodal infer-
ence method to improve the computation speed. A cascade of
neural networks with a different ratio of quality and perfor-
mance indicators of DIP device is considered. The authors
of [109] developed BNN architecture for battery powered
sensors. The described modification combines measurements
and calculations into a single computational process and
directly displays the results obtained.

BNN implementation approaches under development are
gradually narrowing the gap in image processing accuracy.
But CNN and DNN also do not stand still and are actively
evolving. Thus, the BNN scope is often limited to rela-
tively simple practical DIP tasks where the device technical
characteristics is in high priority over image processing
quality.
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FIGURE 4. Comparison of hardware devices based on FPGA (a) and ASIC (b) for the digital image processing methods implementation.

Both considered neural network models are currently far
from the degree of modern CNNs elaboration characteristic.
Nevertheless, they have a high potential provided among
other things by a modern hardware base on which various
relevant developments are actively implemented. FPGA and
ASIC are the main platforms for hardware implementation
of digital data processing methods and approaches. Their
description and the results of using them to improve the tech-
nical characteristics of DIP devices and systems are presented
below.

VII. HARDWARE IMPLEMENTATION ON FPGA AND ASIC
FPGA andASIC are technically efficient platforms for imple-
menting various DIP methods. At the same time, they are
not considered as a self-sufficient alternative or a complete
replacement for traditional general-purpose architectures.
They are most effective as an auxiliary specialized tool that
solves a specific problem with high efficiency. Hardware
devices based on FPGA and ASIC take on the main com-
putational load in most cases. But their low versatility does
not allow them to act as a full-fledged analogue of CPU. For
example, FPGA accelerators are widely used to implement
convolution in various neural network models. However,
a full-fledged implementation of neural network models on
FPGA is usually not performed, since the improvement in
the technical characteristics of DIP system achieved in this
case is not significant compared to the usual partial hardware
implementation and does not compensate for the labor costs
for device design. There are exceptions to this rule. The
authors of [110] presented a full CNN implementation on
FPGA including sampling layers and fully connected layers.
But such works are extremely rare which confirms the inap-
propriateness of this approach. Thus, FPGA and ASIC are
intended more for the auxiliary tools development than for
the full design of DIP systems.

As for the choice between these two platforms, it is neces-
sary to proceed from the goals set and the assigned priorities
for various hardware implementation aspects. Fig. 4 shows a
comparison of FPGA and ASIC based hardware devices for
implementing DIP methods. The greater the device flexibil-
ity, the less design time, the lower the design cost and the
device cost, the higher the performance and energy efficiency,
the lower the power and area, the better and the farther the
corresponding indicator is located from the diagram center.

Most of the research work presented in this review con-
tains the results of hardware implementation or simulation of
the proposed solutions. The ideas and approaches presented
in these papers are described in sections IV-VI. Therefore,
we will not dwell on them here. Key information about all
the work with significant results to improve the technical
characteristics of DIP devices and systems through hardware
implementation or simulation on FPGA and ASIC is pre-
sented in Tables 5 and 6, respectively. The sign ‘‘×’’ marks
the intersection of the column with the improved indicator
and the row with the corresponding paper. Improvements are:
delay reduction (second, s); throughput increasing (number of
processed images per second); device performance improve-
ment (number of operations performed per second); power
reduction (watt, W); energy efficiency improvement (num-
ber of operations performed per second divided by watts);
energy consumption reduction (joule, J); device area reduc-
tion (square meter, m2); reduction of used RAM blocks
(BRAMs), DSPs, lookup tables (LUTs), and flip-flops (FF).

We can draw the following conclusions based on the data
from Tables 5 and 6. Research to improve the technical char-
acteristics of FPGA and ASIC devices for DIP is balanced
across the board. Active work is underway both to increase
the computation speed and to reduce hardware and energy
costs, as well as to increase the efficiency of using all these
resources. This is largely due to different priorities across a
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TABLE 5. Improving the technical characteristics of FPGA devices for efficient hardware implementation of digital image processing methods.

wide range of DIP practical applications. However, it should
be noted that there is confusion in the terminology associated.
For example, some authors equate device performance and
throughput. Some distinguish but consider these indicators in
different ways. Throughput can be calculated as the number
of images processed per second, and performance can be
calculated as the number of operations performed on num-
bers per second in one paper. And vice versa in another
paper. Various scientific teams use the characteristics names
that they consider necessary not always taking into account
the generally accepted designations which often leads to
confusion.

VIII. DISCUSSION
Most of the works in this area are in one way or another
devoted to the development of the methodology of neural
network image processing. Neural networks in particular
and artificial intelligence in general are the most common
tools actively used to create modern DIP systems at present.
Numerous research teams are focusing on various aspects of

TABLE 6. Improving the technical characteristics of ASIC devices for
efficient hardware implementation of digital image processing methods.

the neural network implementation at the same time. Some
researchers analyze methods for organizing calculations to
reduce the computational complexity of their implementation
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in image processing devices. Others focus on efficiently
transferring data between components of a data process-
ing system to reduce its power consumption. Modern DIP
methodology is very diverse. However, we have identified
and structured the most significant, relevant, and promising
approaches for the further development of technology in
the framework of solving problems of DIP in this review.
Among the many approaches, those that focus on approx-
imate computing, processing elements, Winograd method,
residue number system, architectural and structural solu-
tions, spiking neural network, binary neural network, and
aspects of hardware implementation on modern microelec-
tronic devices were highlighted. All scientific research results
were studied and divided into conditional groups of math-
ematical and arithmetic-logical methods, architectural and
structural solutions, promising neural network models, hard-
ware implementation methods on FPGA and ASIC. Discuss
more specifically all the identified approaches in improving
the technical characteristics of devices and systems for DIP.

Approximate computing is widely used to reduce the
computational complexity when implementing DIP methods
and algorithms. Reducing the bitness of the source data
and intermediate calculations significantly reduces resource
costs for image processing. The calculation error inevitably
increases and the quality of image processing decreases at
the same time. When solving each specific scientific and
technical problem, one has to look for a balance between
the qualitative and quantitative characteristics of the device.
At the same time, the methodology for theoretically assessing
the calculation error when using approximate computing is
poorly developed, which is why this balance in practice is
determined mainly experimentally.

Processing elements such as adders and multipliers are
at the heart of the implementation of computational meth-
ods. Various PE modifications with a simplified structure
significantly improve the technical characteristics of image
processing devices. But the designs of MAC block avail-
able today have such a well-developed structure that their
significant improvement within the existing hardware base
is unlikely. However, even minor modifications can have a
significant effect on certain characteristics of digital devices,
which is why there are numerous and varied attempts to
improve various PEs.

The Winograd method is actively used to speed up com-
putations when implementing digital filtering. Currently, this
method is used primarily to organize calculations in con-
volutional layers of neural networks, since modern neural
network architectures require huge computing resources for
their operation. The main computational load in CNNs and
DNNs falls on convolutional layers, in which a digital filter
is applied to fragments of the original image or feature maps
obtained from it. WM uses matrix calculations to reduce the
redundancy of all these computations. This method allows to
obtain several values in one iteration unlike classical convolu-
tion methods, thereby significantly reducing the total number
of iterations required for image processing. Each iteration

takes more time in this case, but the overall computation time
is significantly reduced. However, such an organization of
computations requires a large PEs number and imposes addi-
tional restrictions on the area of the device used. Thus, WM is
suitable for image processing systems aimed at achieving
high computing speed. The choice of WM parameters is its
main problem. Winograd’s methodology is poorly developed
at present. Most researchers use simple sets of parameters to
achieve significant improvements. Far fewer scientists pay
attention to the fundamental study of the WM theoretical
foundations, which is why the high potential of this method
currently remains undiscovered.

The residue number system is one of the most devel-
oped alternative computing paradigms. RNS is of great
interest due to the possibility of parallelizing computa-
tions at the arithmetic-logical level and high fault tolerance.
This approach significantly speeds up calculations based
on repeated use of additions and multiplications. However,
inefficiencies in non-modular operations such as scaling,
dividing, and comparing numbers limit broad practical appli-
cations. Currently, the RNS methodology is being developed
as an auxiliary tool, and not as a full-fledged replacement
for traditional number systems. RNS achieved significant
success in this capacity. RNS has found its application in
various fields of science and technology, including in the field
of DIP. However, the inherent shortcomings of RNS ensure its
niche status.

Researchers are actively proposing a variety of architec-
tural and structural solutions in addition to mathematical
and arithmetic-logical methods. The structuring of these
approaches turns out to be very conditional, since they are
not so much focused on the development of any individual
idea, but are aimed at effectively combiningmany solutions to
achieve a specific result. Researchers analyzemany aspects of
the implementation of computing in modern microelectronic
devices at the same time. The desire for comprehensive opti-
mization of all possible computing processes at each stage
of data processing and increasing the efficiency of using
available tools in DIP systems is obvious. Much attention is
paid to modifying methods for organizing parallel and convo-
lutional calculations, developing ways to reduce the amount
of computations and increase the efficiency of using PEs,
improving methods for distributing data streams to reduce the
load on various types of memory used and increasing device
throughput.

Various promising neural network models are actively
being developed, such as spiking neural network, binary neu-
ral network, ternary neural network, graph neural network,
stochastic neural network, quantum neural network, genera-
tive adversarial neural network, visual transformer, and many
others. Some of them are aimed primarily at the quality of
image processing to the detriment of technical characteristics,
so their analysis is beyond the scope of this review. Others are
niche specialized tools used for a narrow range of tasks. Still
others are only at the stage of theoretical development and
can only demonstrate prototypes in practice. Currently, SNN
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and BNN are the most significant in the context of improving
the technical characteristics of devices and systems for DIP.

Spiking neural networks represent a promising tool for
significantly improving the energy efficiency of image pro-
cessing devices. SNN methodology is rapidly evolving as
there is ample evidence of the high potential of neuromorphic
computing. Currently, many architectures have been devel-
oped that solve relatively simple practical problems. There
is an active study of many issues and problems related to
both training and the functioning of SNNs. It is possible
that over the course of several decades, numerous technical
solutions will be developed that will surpass the technical
characteristics of modern neural network models.

Binary neural networks allocate only one bit to represent
each weight coefficient and each activation function in the
device’s memory. BNN architectures are compact and eco-
nomical in the context of various resource costs as a result.
Moreover, they are gradually closing the gap in the quality
indicators of DIP devices compared to current neural net-
work models. However, at the current stage of development,
BNNs are not yet able to compete with more massive CNNs
and DNNs in accurately solving computationally complex
problems.

All of these approaches, including arithmetic-logical,
architectural-structural, and neural network approaches, are
significant in the context of hardware implementation on
modern microelectronic devices. Currently, FPGAs and
ASICs are the most effective platforms for implementing
various DIP methods in terms of the technical characteris-
tics of the devices being developed. Hardware accelerators
based on them are able to take on the main computational
load when solving most image processing problems. That is
why they are widely used to implement various methods and
compare the effectiveness of proposed developments. The
choice of one of these two platforms is not always non-trivial.
According to a comparison of hardware devices based on
them (Fig. 4), FPGA is a low-cost platform for creating recon-
figurable devices, while ASIC allows to achieve maximum
efficiency for the devices being developed, such as computing
speed, area, and energy efficiency.

In general, the vast majority of modern approaches to
improve the technical characteristics of DIP devices and
systems are based on known methods and are rather their
modifications and implementations with slightly increased
computational efficiency than original proposed ideas.
Researchers often combine known solutions and claim the
result as a ‘‘new’’ method. Many research teams develop
and adapt ideas of other scientists. For example, proposed
by prominent mathematicians in the twentieth century and
having a high potential to improve the characteristics of
digital devices. The search and effective implementation of
these ideas is a difficult but often effective task. However,
researchers are still building on something already known
in these cases. Rarely often prominent and highly qualified
scientists withmany skills and extensive experience offer pre-
viously unexplored approaches and solutions, which later can

even make a small science revolution and serve as the basis
for the emergence of one or more subject areas. But, these
solutions are peeped and borrowed from ‘‘natural’’ objects,
mechanisms, processes, and phenomena as a rule. For exam-
ple, many DIP methods are based on imitation of the human
visual principles. From color perception on which widely
used color image models are based, to the fundamental ideas
for feature extraction and visual information compression that
underlie absolutely all varieties and neural network models.
Thus, a truly original and worthwhile idea can be discovered
extremely rarely in our time. Modern methodology is based
on less original solutions. But work is ongoing in many areas.
All tools known to the scientific community are actively
used to improve the efficiency of using time and hardware
resources.

Neural networks are the most common DIP tool. The
generally accepted topology of neural network technologies
and any unified approach to the design of neural network
architectures are completely absent at the same time. The
neural network processes information in an implicit form,
which is why its structure for solving each specific prac-
tical problem is determined experimentally depending on
the learning outcomes. Templates and frameworks can be
used to test models and validate methods. But each spe-
cific case requires their adjustment to the conditions of the
problem being solved. A different number of convolutional
layers and filters are used depending on the problem com-
putational complexity. The filter size, convolution step, and
subsampling method are also by no means constant. Modern
neural network models often use different techniques, such as
dilatation, interleaving different convolutional layers instead
of the classic convolution-sample, parallel implementation
of different convolutions over several channels, and subse-
quent combination of intermediate image processing results.
Many researchers use various external structural modifica-
tions and create systems for intelligent processing of visual
data based on multimodal architectures and neural network
ensembles. A unified approach to developing the neural net-
work structure depending on the conditions and constraints
of the problem being solved has not yet been proposed.

IX. SUMMARY
This review analyzes current trends in improving the techni-
cal characteristics of DIP devices and systems. A collection
of sources with significant research results was carried out.
Recommendations for the search of high-quality scientific
papers have been developed. The review papers analysis
on the subject under consideration is carried out. Various
mathematical and arithmetic-logical methods for improving
the characteristics of image processing devices are described
in detail. The main implementations of these methods in
state-of-the-art research papers are given. Various original
and significant architectural and structural solutions are ana-
lyzed. The most promising neural network models of visual
data processing are characterized. Modern platforms for
the design and operation of DIP systems are considered.
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Significant improvements achieved through hardware imple-
mentation of models and methods on FPGA and ASIC are
noted. Each section and subsection contains relevant con-
clusions. The discussion outlines identified patterns of the
current research state on the subject under consideration.
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